File size: 32,621 Bytes
a2c2a1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
from math import pi
import torch
from torch import nn
from einops import rearrange, repeat
import logging
def broadcat(tensors, dim = -1):
num_tensors = len(tensors)
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
shape_len = list(shape_lens)[0]
dim = (dim + shape_len) if dim < 0 else dim
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
expanded_dims.insert(dim, (dim, dims[dim]))
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
return torch.cat(tensors, dim = dim)
def rotate_half(x):
x = rearrange(x, '... (d r) -> ... d r', r = 2)
x1, x2 = x.unbind(dim = -1)
x = torch.stack((-x2, x1), dim = -1)
return rearrange(x, '... d r -> ... (d r)')
class VisionRotaryEmbeddingFast(nn.Module):
def __init__(
self,
dim,
pt_seq_len,
ft_seq_len=None,
custom_freqs = None,
freqs_for = 'lang',
theta = 10000,
max_freq = 10,
num_freqs = 1,
patch_dropout = 0.
):
super().__init__()
if custom_freqs:
freqs = custom_freqs
elif freqs_for == 'lang':
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
elif freqs_for == 'pixel':
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
elif freqs_for == 'constant':
freqs = torch.ones(num_freqs).float()
else:
raise ValueError(f'unknown modality {freqs_for}')
if ft_seq_len is None: ft_seq_len = pt_seq_len
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
freqs = torch.einsum('..., f -> ... f', t, freqs)
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
self.patch_dropout = patch_dropout
self.register_buffer("freqs_cos", freqs_cos)
self.register_buffer("freqs_sin", freqs_sin)
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
def forward(self, t, patch_indices_keep=None):
if patch_indices_keep is not None:
batch = t.size()[0]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
return t * freqs_cos + rotate_half(t) * freqs_sin
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
import torch.nn as nn
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
# --------------------------------------------------------
# Adapted from https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import math
import os
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import logging
try:
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
except:
from timm.layers import drop_path, to_2tuple, trunc_normal_
class PatchDropout(nn.Module):
"""
https://arxiv.org/abs/2212.00794
"""
def __init__(self, prob, exclude_first_token=True):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob
self.exclude_first_token = exclude_first_token # exclude CLS token
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
def forward(self, x):
if not self.training or self.prob == 0.:
return x
if self.exclude_first_token:
cls_tokens, x = x[:, :1], x[:, 1:]
else:
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
batch = x.size()[0]
num_tokens = x.size()[1]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
keep_prob = 1 - self.prob
num_patches_keep = max(1, int(num_tokens * keep_prob))
rand = torch.randn(batch, num_tokens)
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
x = x[batch_indices, patch_indices_keep]
if self.exclude_first_token:
x = torch.cat((cls_tokens, x), dim=1)
if self.training and os.getenv('RoPE') == '1':
return x, patch_indices_keep
return x
if os.getenv('ENV_TYPE') == 'deepspeed':
try:
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
except:
from torch.utils.checkpoint import checkpoint
else:
from torch.utils.checkpoint import checkpoint
import xformers.ops as xops
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
drop=0.,
subln=False,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.ffn_ln(x)
x = self.fc2(x)
x = self.drop(x)
return x
class SwiGLU(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
norm_layer=nn.LayerNorm, subln=False):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.w1 = nn.Linear(in_features, hidden_features)
self.w2 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
self.w3 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x1 = self.w1(x)
x2 = self.w2(x)
hidden = self.act(x1) * x2
x = self.ffn_ln(hidden)
x = self.w3(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
self.subln = subln
if self.subln:
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
else:
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
# self.proj = nn.Linear(all_head_dim, all_head_dim)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.xattn = xattn
self.xattn_drop = attn_drop
self.rope = rope
def forward(self, x, rel_pos_bias=None, attn_mask=None):
B, N, C = x.shape
if self.subln:
if self.q_proj.weight.dtype == torch.uint8:
import bitsandbytes as bnb
q = bnb.matmul_4bit(x, self.q_proj.weight.t(), bias=self.q_bias, quant_state=self.q_proj.weight.quant_state)
k = bnb.matmul_4bit(x, self.k_proj.weight.t(), bias=None, quant_state=self.k_proj.weight.quant_state)
v = bnb.matmul_4bit(x, self.v_proj.weight.t(), bias=self.v_bias, quant_state=self.v_proj.weight.quant_state)
else:
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
else:
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
q, k, v = qkv[0], qkv[1], qkv[2]
if self.rope:
# slightly fast impl
q_t = q[:, :, 1:, :]
ro_q_t = self.rope(q_t)
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
k_t = k[:, :, 1:, :]
ro_k_t = self.rope(k_t)
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
if self.xattn:
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
x = xops.memory_efficient_attention(
q, k, v,
p=self.xattn_drop,
scale=self.scale,
)
x = x.reshape(B, N, -1)
x = self.inner_attn_ln(x)
x = self.proj(x)
x = self.proj_drop(x)
else:
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias.type_as(attn)
if attn_mask is not None:
attn_mask = attn_mask.bool()
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.inner_attn_ln(x)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
subln=False, naiveswiglu=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if naiveswiglu:
self.mlp = SwiGLU(
in_features=dim,
hidden_features=mlp_hidden_dim,
subln=subln,
norm_layer=norm_layer,
)
else:
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
subln=subln,
drop=drop
)
if init_values is not None and init_values > 0:
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
self.postnorm = postnorm
def forward(self, x, rel_pos_bias=None, attn_mask=None):
if self.gamma_1 is None:
if self.postnorm:
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
x = x + self.drop_path(self.norm2(self.mlp(x)))
else:
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
if self.postnorm:
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x, **kwargs):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
def forward(self):
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class EVAVisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
super().__init__()
self.image_size = img_size
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
else:
self.rel_pos_bias = None
if rope:
half_head_dim = embed_dim // num_heads // 2
hw_seq_len = img_size // patch_size
self.rope = VisionRotaryEmbeddingFast(
dim=half_head_dim,
pt_seq_len=pt_hw_seq_len,
ft_seq_len=hw_seq_len if intp_freq else None,
# patch_dropout=patch_dropout
)
else:
self.rope = None
self.naiveswiglu = naiveswiglu
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.use_rel_pos_bias = use_rel_pos_bias
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
for i in range(depth)])
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
# trunc_normal_(self.mask_token, std=.02)
self.apply(self._init_weights)
self.fix_init_weight()
if isinstance(self.head, nn.Linear):
trunc_normal_(self.head.weight, std=.02)
self.head.weight.data.mul_(init_scale)
self.head.bias.data.mul_(init_scale)
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
self.grad_checkpointing = grad_checkpointing
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
if self.naiveswiglu:
rescale(layer.mlp.w3.weight.data, layer_id + 1)
else:
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def get_cast_dtype(self) -> torch.dtype:
return self.blocks[0].mlp.fc2.weight.dtype
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
for param in self.parameters():
param.requires_grad = False
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x, return_all_features=False):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
if os.getenv('RoPE') == '1':
if self.training and not isinstance(self.patch_dropout, nn.Identity):
x, patch_indices_keep = self.patch_dropout(x)
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
else:
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
x = self.patch_dropout(x)
else:
x = self.patch_dropout(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for i, blk in enumerate(self.blocks):
if i == len(self.blocks)-1:
continue
if self.grad_checkpointing:
x = checkpoint(blk, x, (rel_pos_bias,))
else:
x = blk(x, rel_pos_bias=rel_pos_bias)
if not return_all_features:
x = self.norm(x)
if self.fc_norm is not None:
return self.fc_norm(x.mean(1))
else:
return x[:, 0]
return x
def forward(self, x, return_all_features=False):
if return_all_features:
return self.forward_features(x, return_all_features)
x = self.forward_features(x)
x = self.head(x)
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
try:
from apex.normalization import FusedLayerNorm
except:
FusedLayerNorm = LayerNorm
print("Please 'pip install apex'")
@dataclass
class CLIPVisionCfg:
layers: Union[Tuple[int, int, int, int], int] = 12
width: int = 768
head_width: int = 64
mlp_ratio: float = 4.0
patch_size: int = 16
image_size: Union[Tuple[int, int], int] = 224
ls_init_value: Optional[float] = None # layer scale initial value
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
drop_path_rate: Optional[float] = None # drop path rate
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
timm_proj_bias: bool = False # enable bias final projection
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
qkv_bias: bool = True
fusedLN: bool = False
xattn: bool = False
postnorm: bool = False
rope: bool = False
pt_hw_seq_len: int = 16 # 224/14
intp_freq: bool = False
naiveswiglu: bool = False
subln: bool = False
def _build_vision_tower(
embed_dim: int,
vision_cfg: CLIPVisionCfg
):
if isinstance(vision_cfg, dict):
vision_cfg = CLIPVisionCfg(**vision_cfg)
if vision_cfg.eva_model_name:
vision_heads = vision_cfg.width // vision_cfg.head_width
norm_layer = LayerNorm
visual = EVAVisionTransformer(
img_size=vision_cfg.image_size,
patch_size=vision_cfg.patch_size,
num_classes=embed_dim,
use_mean_pooling=vision_cfg.global_average_pool, #False
init_values=vision_cfg.ls_init_value,
patch_dropout=vision_cfg.patch_dropout,
embed_dim=vision_cfg.width,
depth=vision_cfg.layers,
num_heads=vision_heads,
mlp_ratio=vision_cfg.mlp_ratio,
qkv_bias=vision_cfg.qkv_bias,
drop_path_rate=vision_cfg.drop_path_rate,
norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
xattn=vision_cfg.xattn,
rope=vision_cfg.rope,
postnorm=vision_cfg.postnorm,
pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
intp_freq= vision_cfg.intp_freq,
naiveswiglu= vision_cfg.naiveswiglu,
subln= vision_cfg.subln
)
return visual
class Eva2LargeEncoder(nn.Module):
def __init__(self, image_size=224):
super(Eva2LargeEncoder, self).__init__()
self.config = {
"embed_dim": 768,
"vision_cfg": {
"image_size": 336,
"layers": 24,
"width": 1024,
"drop_path_rate": 0,
"head_width": 64,
"mlp_ratio": 2.6667,
"patch_size": 14,
"eva_model_name": "eva-clip-l-14-336",
"xattn": True,
"fusedLN": True,
"rope": True,
"pt_hw_seq_len": 16,
"intp_freq": True,
"naiveswiglu": True,
"subln": True
}
}
self.config['vision_cfg']['image_size'] = image_size
import os
os.environ['delRoPE'] = '1' # to avoid error in rope params when changing image size
self.model = _build_vision_tower(**self.config)
def forward(self, images):
encode = self.model(images, return_all_features=True)[:, 1:, :]
return encode
class CrossVisionModel(nn.Module):
def __init__(self, config):
super().__init__()
self.vit = Eva2LargeEncoder(image_size=config.cross_image_size)
self.pos_embed = nn.Parameter(torch.zeros((self.vit.config['vision_cfg']['image_size'] // self.vit.config['vision_cfg']['patch_size']) ** 2, self.vit.config['vision_cfg']['width']))
def forward(self, images):
enc = self.vit(images)
return enc + self.pos_embed.unsqueeze(0) |