|
"""largely copy from llama and adapt for CogAgent""" |
|
import warnings |
|
from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any |
|
|
|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torchvision import transforms |
|
from einops import rearrange |
|
|
|
from transformers import PreTrainedModel, PreTrainedTokenizer |
|
from transformers.utils.logging import get_logger |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
|
from .configuration_cogagent import CogAgentConfig |
|
|
|
from torch.nn import functional as F |
|
from .visual import EVA2CLIPModel |
|
from .cross_visual import CrossVisionModel |
|
|
|
if TYPE_CHECKING: |
|
from transformers.utils import ModelOutput |
|
|
|
logger = get_logger(__name__) |
|
|
|
LANGUAGE_TOKEN_TYPE = 0 |
|
VISION_TOKEN_TYPE = 1 |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return (self.weight * hidden_states).to(input_dtype) |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]": |
|
vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool) |
|
vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (token_type_ids[:, 1:] == VISION_TOKEN_TYPE) |
|
language_token_mask = ~vision_token_mask |
|
return vision_token_mask, language_token_mask |
|
|
|
|
|
class VisionExpertMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.language_mlp = MLP(config) |
|
self.vision_mlp = MLP(config) |
|
|
|
def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"): |
|
output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device) |
|
vision_token_mask, language_token_mask = get_expert_mask(token_type_ids) |
|
output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask]) |
|
output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask]) |
|
return output |
|
|
|
|
|
def attention_fn( |
|
query_layer: "torch.tensor(B, H, L, HD)", |
|
key_layer: "torch.tensor(B, H, L, HD)", |
|
value_layer: "torch.tensor(B, H, L, HD)", |
|
attention_mask: "torch.tensor(B, H, L, HD)", |
|
*, |
|
scaling_attention_score: bool = True, |
|
attention_dropout: nn.Module = None |
|
): |
|
attention_mask_bool = (attention_mask == 0) |
|
is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all() |
|
is_full = (attention_mask_bool > 0).all() |
|
if not (int(torch.__version__.split('.')[0]) >= 2): |
|
warnings.warn("It's recommended to use torch2.0 or higher.") |
|
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle): |
|
dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p |
|
return torch.nn.functional.scaled_dot_product_attention( |
|
query_layer, key_layer, value_layer, |
|
attn_mask=None, |
|
dropout_p=dropout_p, |
|
is_causal=not is_full |
|
) |
|
else: |
|
if scaling_attention_score: |
|
query_layer = query_layer / math.sqrt(query_layer.shape[-1]) |
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
attention_scores = attention_scores + attention_mask |
|
attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype) |
|
if attention_dropout is not None: |
|
attention_scores = attention_dropout(attention_scores) |
|
context_layer = torch.matmul(attention_scores, value_layer) |
|
return context_layer |
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = self._compute_inv_freq(device) |
|
self.register_buffer("inv_freq", inv_freq) |
|
self.max_seq_len_cached = 0 |
|
|
|
def _compute_inv_freq(self, device=None): |
|
return 1.0 / ( |
|
self.base |
|
** (torch.arange(0, self.dim, 2, device=device) / self.dim) |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[:, None, :].to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[:, None, :].to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=x1.ndim - 1) |
|
|
|
|
|
def apply_rotary_pos_emb_index_bhs(q, k, cos, sin, position_id): |
|
|
|
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(1), \ |
|
F.embedding(position_id, sin.squeeze(1)).unsqueeze(1) |
|
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) |
|
return q, k |
|
|
|
class VisionExpertAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
|
self.rotary_emb = RotaryEmbedding(self.head_dim) |
|
self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False) |
|
self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False) |
|
self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
|
|
def _transpose_for_scores(self, tensor): |
|
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD].""" |
|
new_tensor_shape = tensor.size()[:-1] + (self.num_heads, self.head_dim) |
|
tensor = tensor.view(*new_tensor_shape) |
|
return tensor.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
token_type_ids: torch.LongTensor, |
|
position_ids: torch.LongTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
vision_token_mask, language_token_mask = get_expert_mask(token_type_ids) |
|
|
|
shape = list(hidden_states.shape) |
|
shape[-1] = shape[-1] * 3 |
|
mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device) |
|
mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask]) |
|
mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask]) |
|
|
|
query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1) |
|
query_states = self._transpose_for_scores(query_states) |
|
key_states = self._transpose_for_scores(key_states) |
|
value_states = self._transpose_for_scores(value_states) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=position_ids.max() + 1) |
|
query_states, key_states = apply_rotary_pos_emb_index_bhs(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
context_layer = attention_fn( |
|
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask, |
|
scaling_attention_score=True, attention_dropout=None) |
|
if context_layer.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {context_layer.size()}" |
|
) |
|
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device) |
|
attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask]) |
|
attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask]) |
|
|
|
if output_attentions: |
|
warnings.warn("output_attentions is not implemented.") |
|
|
|
return attn_output, None, past_key_value |
|
|
|
class CrossAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.cross_hidden_size = config.cross_hidden_size |
|
self.cross_compute_hidden_size = config.cross_compute_hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.cross_head_dim = self.cross_compute_hidden_size // self.num_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
|
self.query = nn.Linear(self.hidden_size, self.cross_compute_hidden_size, bias=False) |
|
self.key_value = nn.Linear(self.cross_hidden_size, self.cross_compute_hidden_size * 2, bias=False) |
|
self.dense = nn.Linear(self.cross_compute_hidden_size, self.hidden_size, bias=False) |
|
|
|
def _transpose_for_scores(self, tensor): |
|
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD].""" |
|
new_tensor_shape = tensor.size()[:-1] + (self.num_heads, self.cross_head_dim) |
|
tensor = tensor.view(*new_tensor_shape) |
|
return tensor.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_outputs: torch.LongTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
shape = list(hidden_states.shape) |
|
shape[-1] = shape[-1] * 3 |
|
|
|
mixed_query_layer = self.query(hidden_states) |
|
if past_key_value is None: |
|
mixed_x_layer = self.key_value(encoder_outputs) |
|
mixed_key_layer, mixed_value_layer = torch.split(mixed_x_layer, self.cross_compute_hidden_size, dim=-1) |
|
key_states = self._transpose_for_scores(mixed_key_layer) |
|
value_states = self._transpose_for_scores(mixed_value_layer) |
|
else: |
|
key_states, value_states = past_key_value |
|
|
|
query_states = self._transpose_for_scores(mixed_query_layer) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
context_layer = attention_fn( |
|
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask, |
|
scaling_attention_score=True, attention_dropout=None) |
|
if context_layer.size() != (bsz, self.num_heads, q_len, self.cross_head_dim): |
|
raise ValueError( |
|
f"`cross_attn_output` should be of size {(bsz, self.num_heads, q_len, self.cross_head_dim)}, but is" |
|
f" {context_layer.size()}" |
|
) |
|
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.cross_hidden_size) |
|
|
|
attn_output = self.dense(context_layer) |
|
|
|
if output_attentions: |
|
warnings.warn("output_attentions is not implemented.") |
|
|
|
return attn_output, None, past_key_value |
|
|
|
class CogAgentDecoderLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = VisionExpertAttention(config=config) |
|
self.cross_attn = CrossAttention(config=config) |
|
self.mlp = VisionExpertMLP(config) |
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_cross_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_outputs: torch.Tensor, |
|
token_type_ids: torch.LongTensor, |
|
position_ids: torch.LongTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_value=past_key_value[:2] if past_key_value is not None else None, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
cross_input = self.post_cross_attention_layernorm(hidden_states) |
|
|
|
attention_output, self_cross_attn_weights, present_cross_key_value = self.cross_attn( |
|
hidden_states=cross_input, |
|
encoder_outputs=encoder_outputs, |
|
attention_mask=cross_attention_mask, |
|
past_key_value=past_key_value[-2:] if past_key_value is not None else None, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = hidden_states + attention_output |
|
mlp_input = self.post_attention_layernorm(hidden_states) |
|
mlp_output = self.mlp(mlp_input, token_type_ids=token_type_ids) |
|
hidden_states = mlp_output + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value+present_cross_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class CogAgentPreTrainedModel(PreTrainedModel): |
|
config_class = CogAgentConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = False |
|
_no_split_modules = ["CogAgentDecoderLayer", 'TransformerLayer', 'Block'] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
def is_empty(images_list: Optional[List[List[torch.Tensor]]]): |
|
if images_list is None or len(images_list) == 0: |
|
return True |
|
for image_list in images_list: |
|
if len(image_list): |
|
return False |
|
return True |
|
|
|
|
|
def build_position_ids(x: "torch.BoolTensor(B, L)", attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)": |
|
if attention_mask is not None: |
|
tmp = x.clone() |
|
tmp[~(attention_mask.bool())] = -1 |
|
else: |
|
tmp = x.clone() |
|
|
|
is_boi_eoi = torch.zeros_like(x, dtype=torch.bool) |
|
is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE) |
|
is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE) |
|
is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) |
|
is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE) |
|
tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE |
|
|
|
y = torch.zeros_like(x, dtype=torch.long) |
|
y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | ((tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)) |
|
y = y.cumsum(dim=-1) |
|
return y |
|
|
|
|
|
class CogAgentModel(CogAgentPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([CogAgentDecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.vision = EVA2CLIPModel(config) |
|
self.cross_vision = CrossVisionModel(config) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def encode_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor: |
|
images_list, images = images, [] |
|
|
|
images = [] |
|
for image_list in images_list: |
|
for image in image_list: |
|
images.append(image) |
|
|
|
images = torch.stack(images) |
|
images_features = self.vision(images) |
|
return images_features |
|
|
|
def encode_cross_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor: |
|
images_list, images = images, [] |
|
|
|
images = [] |
|
for image_list in images_list: |
|
for image in image_list: |
|
images.append(image) |
|
|
|
images = torch.stack(images) |
|
encoder_outputs = self.cross_vision(images) |
|
return encoder_outputs |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
images: List[List[torch.Tensor]] = None, |
|
cross_images: List[List[torch.Tensor]] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
"""take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)""" |
|
|
|
if past_key_values is not None: |
|
encoder_outputs = None |
|
|
|
else: |
|
|
|
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}" |
|
if not is_empty(images): |
|
assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!" |
|
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}" |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
images_features = self.encode_images(images) |
|
encoder_outputs = self.encode_cross_images(cross_images) |
|
images_features = rearrange(images_features, 'b n d -> (b n) d') |
|
images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device) |
|
inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features) |
|
else: |
|
if token_type_ids is None: |
|
token_type_ids = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device) * LANGUAGE_TOKEN_TYPE |
|
assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}" |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
encoder_outputs = None |
|
|
|
if position_ids is None: |
|
position_ids = build_position_ids(token_type_ids, attention_mask) |
|
input_ids = None |
|
|
|
return self.llm_forward( |
|
input_ids=input_ids, |
|
encoder_outputs=encoder_outputs, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
cross_attention_mask=cross_attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
def llm_forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
encoder_outputs: torch.LongTensor = None, |
|
token_type_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
"""largely copy from llama forward and adapt for CogAgent with `token_type_ids`""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
if cross_attention_mask is None: |
|
cross_attention_mask = torch.ones( |
|
(batch_size, 1), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
encoder_outputs=encoder_outputs, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
cross_attention_mask=cross_attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def vqa_history_to_prompt(history, query): |
|
|
|
prompt = "<EOI>Question: " |
|
|
|
|
|
prompt += query + " Short answer:" |
|
return prompt |
|
|
|
def chat_old_history_to_prompt(history, query): |
|
prompt = "<EOI>Question: " |
|
for i, (old_query, response) in enumerate(history): |
|
prompt += old_query + " Answer: " + response + "\nQuestion: " |
|
prompt += query + " Answer:" |
|
return prompt |
|
|
|
def chat_history_to_prompt(history, query): |
|
prompt = " [INST] " |
|
for i, (old_query, response) in enumerate(history): |
|
prompt += old_query + " [/INST] " + response + " [INST] " |
|
prompt += query + " [/INST] " |
|
return prompt |
|
|
|
|
|
def base_history_to_prompt(history, query): |
|
prompt = query |
|
return prompt |
|
|
|
|
|
_history_to_prompt = { |
|
"base": base_history_to_prompt, |
|
"chat": chat_history_to_prompt, |
|
"chat_old": chat_old_history_to_prompt, |
|
"vqa": vqa_history_to_prompt |
|
} |
|
|
|
|
|
class CogAgentForCausalLM(CogAgentPreTrainedModel): |
|
_auto_class = "AutoModelForCausalLM" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = CogAgentModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
images: List[List[torch.Tensor]] = None, |
|
cross_images: List[List[torch.Tensor]] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
images=images, |
|
cross_images=cross_images, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def _prepare_attention_mask_for_generation( |
|
self, |
|
inputs: torch.Tensor, |
|
pad_token_id: Optional[int], |
|
eos_token_id: Optional[Union[int, List[int]]], |
|
) -> torch.LongTensor: |
|
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, token_type_ids, images=None, cross_images=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if position_ids is None: |
|
position_ids = build_position_ids(token_type_ids, attention_mask) |
|
|
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
token_type_ids = token_type_ids[:, -1:] |
|
position_ids = position_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"token_type_ids": token_type_ids, |
|
"images": images, |
|
"cross_images": cross_images, |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: "ModelOutput", |
|
model_kwargs: Dict[str, Any], |
|
is_encoder_decoder: bool = False, |
|
standardize_cache_format: bool = False, |
|
model_inputs: Optional[Dict[str, Any]] = None, |
|
) -> Dict[str, Any]: |
|
|
|
model_kwargs["past_key_values"] = self._extract_past_from_model_output( |
|
outputs, standardize_cache_format=standardize_cache_format |
|
) |
|
if getattr(outputs, "state", None) is not None: |
|
model_kwargs["state"] = outputs.state |
|
|
|
|
|
if "token_type_ids" in model_kwargs: |
|
token_type_ids = model_kwargs["token_type_ids"] |
|
new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype, device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE |
|
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1) |
|
|
|
if not is_encoder_decoder: |
|
|
|
if "attention_mask" in model_kwargs: |
|
attention_mask = model_kwargs["attention_mask"] |
|
model_kwargs["attention_mask"] = torch.cat( |
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 |
|
) |
|
else: |
|
|
|
if "decoder_attention_mask" in model_kwargs: |
|
decoder_attention_mask = model_kwargs["decoder_attention_mask"] |
|
model_kwargs["decoder_attention_mask"] = torch.cat( |
|
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], |
|
dim=-1, |
|
) |
|
|
|
return model_kwargs |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
def build_conversation_input_ids( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
*, |
|
query: str, |
|
history: Optional[List[Tuple[str, str]]] = None, |
|
images: Optional[List["PIL.Image"]] = None, |
|
template_version: Optional[Literal["base", "chat", "vqa"]] = None, |
|
): |
|
image_size: int = self.config.vision_config['image_size'] |
|
cross_image_size: int = self.config.cross_image_size |
|
patch_size: int = self.config.vision_config['patch_size'] |
|
template_version = template_version or self.config.template_version |
|
assert images is None or len(images) <= 1, f"not support multi images by now." |
|
history = history or [] |
|
text = _history_to_prompt[template_version](history, query) |
|
|
|
input_ids = [tokenizer.bos_token_id] |
|
token_type_ids = [LANGUAGE_TOKEN_TYPE] |
|
if images is not None and len(images) == 1: |
|
ori = images |
|
|
|
transform = transforms.Compose( |
|
[ |
|
transforms.Resize( |
|
(image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC |
|
), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), |
|
] |
|
) |
|
images = [transform(ori[0])] |
|
cross_transform = transforms.Compose( |
|
[ |
|
transforms.Resize( |
|
(cross_image_size, cross_image_size), interpolation=transforms.InterpolationMode.BICUBIC |
|
), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), |
|
] |
|
) |
|
cross_images = [cross_transform(ori[0])] |
|
|
|
vision_token_num = (image_size // patch_size) * (image_size // patch_size) + 2 |
|
input_ids += [tokenizer.pad_token_id] * vision_token_num |
|
token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num |
|
text_ids = tokenizer.encode(text, add_special_tokens=False) |
|
|
|
input_ids += text_ids |
|
token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids) |
|
attention_mask = [1] * len(input_ids) |
|
|
|
return { |
|
'input_ids': torch.tensor(input_ids, dtype=torch.long), |
|
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long), |
|
'attention_mask': torch.tensor(attention_mask, dtype=torch.long), |
|
'images': images, |
|
'cross_images': cross_images |
|
} |
|
|