zR commited on
Commit
d055a49
1 Parent(s): a4101b3

for release

Browse files
Files changed (4) hide show
  1. LICENSE +201 -71
  2. README.md +105 -31
  3. README_zh.md +111 -34
  4. text_encoder/config.json +1 -1
LICENSE CHANGED
@@ -1,71 +1,201 @@
1
- The CogVideoX License
2
-
3
- 1. Definitions
4
-
5
- “Licensor” means the CogVideoX Model Team that distributes its Software.
6
-
7
- “Software” means the CogVideoX model parameters made available under this license.
8
-
9
- 2. License Grant
10
-
11
- Under the terms and conditions of this license, the licensor hereby grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license. The intellectual property rights of the generated content belong to the user to the extent permitted by applicable local laws.
12
- This license allows you to freely use all open-source models in this repository for academic research. Users who wish to use the models for commercial purposes must register and obtain a basic commercial license in https://open.bigmodel.cn/mla/form .
13
- Users who have registered and obtained the basic commercial license can use the models for commercial activities for free, but must comply with all terms and conditions of this license. Additionally, the number of service users (visits) for your commercial activities must not exceed 1 million visits per month.
14
- If the number of service users (visits) for your commercial activities exceeds 1 million visits per month, you need to contact our business team to obtain more commercial licenses.
15
- The above copyright statement and this license statement should be included in all copies or significant portions of this software.
16
-
17
- 3. Restriction
18
-
19
- You will not use, copy, modify, merge, publish, distribute, reproduce, or create derivative works of the Software, in whole or in part, for any military, or illegal purposes.
20
-
21
- You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.
22
-
23
- 4. Disclaimer
24
-
25
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
-
27
- 5. Limitation of Liability
28
-
29
- EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT, NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
30
-
31
- 6. Dispute Resolution
32
-
33
- This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
34
-
35
- Note that the license is subject to update to a more comprehensive version. For any questions related to the license and copyright, please contact us at [email protected].
36
-
37
- 1. 定义
38
-
39
- “许可方”是指分发其软件的 CogVideoX 模型团队。
40
-
41
- “软件”是指根据本许可提供的 CogVideoX 模型参数。
42
-
43
- 2. 许可授予
44
-
45
- 根据本许可的条款和条件,许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。生成内容的知识产权所属,可根据适用当地法律的规定,在法律允许的范围内由用户享有生成内容的知识产权或其他权利。
46
- 本许可允许您免费使用本仓库中的所有开源模型进行学术研究。对于希望将模型用于商业目的的用户,需在 https://open.bigmodel.cn/mla/form 完成登记并获得基础商用授权。
47
-
48
- 经过登记并获得基础商用授权的用户可以免费使用本模型进行商业活动,但必须遵守本许可的所有条款和条件。
49
- 在本许可证下,您的商业活动的服务用户数量(访问量)不得超过100万人次访问 / 每月。如果超过,您需要与我们的商业团队联系以获得更多的商业许可。
50
- 上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。
51
-
52
- 3.限制
53
-
54
- 您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建本软件的全部或部分衍生作品。
55
-
56
- 您不得利用本软件从事任何危害国家安全和国家统一、危害社会公共利益、侵犯人身权益的行为。
57
-
58
- 4.免责声明
59
-
60
- 本软件“按原样”提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途的适用性和非侵权性的保证。
61
- 在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,由软件或软件的使用或其他交易引起、由软件引起或与之相关 软件。
62
-
63
- 5. 责任限制
64
-
65
- 除适用法律禁止的范围外,在任何情况下且根据任何法律理论,无论是基于侵权行为、疏忽、合同、责任或其他原因,任何许可方均不对您承担任何直接、间接、特殊、偶然、示范性、 或间接损害,或任何其他商业损失,即使许可人已被告知此类损害的可能性。
66
-
67
- 6.争议解决
68
-
69
- 本许可受中华人民共和国法律管辖并按其解释。 因本许可引起的或与本许可有关的任何争议应提交北京市海淀区人民法院。
70
-
71
- 请注意,许可证可能会更新到更全面的版本。 有关许可和版权的任何问题,请通过 license@zhipuai.cn 与我们联系。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2024 CogVideo Model Team @ Zhipu AI
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -20,6 +20,7 @@ inference: false
20
  </div>
21
  <p align="center">
22
  <a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README_zh.md">📄 中文阅读</a> |
 
23
  <a href="https://github.com/THUDM/CogVideo">🌐 Github </a> |
24
  <a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
25
  </p>
@@ -85,22 +86,91 @@ inference: false
85
 
86
  ## Model Introduction
87
 
88
- CogVideoX is an open-source video generation model that shares the same origins as [清影](https://chatglm.cn/video).
89
- The table below provides a list of the video generation models we currently offer, along with their basic information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
- | Model Name | CogVideoX-2B |
92
- |-------------------------------------------|--------------------------------------|
93
- | Prompt Language | English |
94
- | Single GPU Inference (FP16) | 23.9GB |
95
- | Multi GPUs Inference (FP16) | 20GB minimum per GPU using diffusers |
96
- | GPU Memory Required for Fine-tuning(bs=1) | 40GB |
97
- | Prompt Max Length | 226 Tokens |
98
- | Video Length | 6 seconds |
99
- | Frames Per Second | 8 frames |
100
- | Resolution | 720 * 480 |
101
- | Quantized Inference | Not Supported |
102
 
103
- **Note** Using [SAT](https://github.com/THUDM/SwissArmyTransformer) model cost 18GB for inference. Check our github.
104
 
105
  ## Quick Start 🤗
106
 
@@ -112,7 +182,11 @@ optimizations and conversions to get a better experience.**
112
  1. Install the required dependencies
113
 
114
  ```shell
115
- pip install --upgrade opencv-python transformers diffusers # Must using diffusers>=0.30.0
 
 
 
 
116
  ```
117
 
118
  2. Run the code
@@ -130,30 +204,20 @@ pipe = CogVideoXPipeline.from_pretrained(
130
  )
131
 
132
  pipe.enable_model_cpu_offload()
 
133
 
134
- prompt_embeds, _ = pipe.encode_prompt(
135
  prompt=prompt,
136
- do_classifier_free_guidance=True,
137
  num_videos_per_prompt=1,
138
- max_sequence_length=226,
139
- device="cuda",
140
- dtype=torch.float16,
141
- )
142
-
143
- video = pipe(
144
  num_inference_steps=50,
 
145
  guidance_scale=6,
146
- prompt_embeds=prompt_embeds,
147
  ).frames[0]
148
 
149
  export_to_video(video, "output.mp4", fps=8)
150
  ```
151
 
152
- **Using a single A100 GPU, generating a video with the above configuration takes approximately 90 seconds**
153
-
154
- If the generated model appears “all green” and not viewable in the default MAC player, it is a normal phenomenon (due to
155
- OpenCV saving video issues). Simply use a different player to view the video.
156
-
157
  ## Explore the Model
158
 
159
  Welcome to our [github](https://github.com/THUDM/CogVideo), where you will find:
@@ -163,11 +227,21 @@ Welcome to our [github](https://github.com/THUDM/CogVideo), where you will find:
163
  3. Reasoning and fine-tuning of SAT version models, and even pre-release.
164
  4. Project update log dynamics, more interactive opportunities.
165
  5. CogVideoX toolchain to help you better use the model.
 
166
 
167
  ## Model License
168
 
169
- This model is released under the [CogVideoX LICENSE](LICENSE).
 
 
170
 
171
  ## Citation
172
 
173
- The technical report is still being written, stay tuned.
 
 
 
 
 
 
 
 
20
  </div>
21
  <p align="center">
22
  <a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README_zh.md">📄 中文阅读</a> |
23
+ <a href="https://huggingface.co/spaces/THUDM/CogVideoX-2B-Space">🤗 Huggingface Space</a> |
24
  <a href="https://github.com/THUDM/CogVideo">🌐 Github </a> |
25
  <a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
26
  </p>
 
86
 
87
  ## Model Introduction
88
 
89
+ CogVideoX is an open-source version of the video generation model originating from [QingYing](https://chatglm.cn/video?fr=osm_cogvideo). The table below displays the list of video generation models we currently offer, along with their foundational information.
90
+
91
+ <table style="border-collapse: collapse; width: 100%;">
92
+ <tr>
93
+ <th style="text-align: center;">Model Name</th>
94
+ <th style="text-align: center;">CogVideoX-2B (This Repository)</th>
95
+ <th style="text-align: center;">CogVideoX-5B </th>
96
+ </tr>
97
+ <tr>
98
+ <td style="text-align: center;">Model Description</td>
99
+ <td style="text-align: center;">Entry-level model, balancing compatibility. Low cost for running and secondary development.</td>
100
+ <td style="text-align: center;">Larger model with higher video generation quality and better visual effects.</td>
101
+ </tr>
102
+ <tr>
103
+ <td style="text-align: center;">Inference Precision</td>
104
+ <td style="text-align: center;"><b>FP16* (Recommended)</b>, BF16, FP32, FP8*, INT8, no support for INT4</td>
105
+ <td style="text-align: center;"><b>BF16 (Recommended)</b>, FP16, FP32, FP8*, INT8, no support for INT4</td>
106
+ </tr>
107
+ <tr>
108
+ <td style="text-align: center;">Single GPU VRAM Consumption</td>
109
+ <td style="text-align: center;">FP16: 18GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> / <b>12.5GB* using diffusers</b><br><b>INT8: 7.8GB* using diffusers</b></td>
110
+ <td style="text-align: center;">BF16: 26GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> / <b>20.7GB* using diffusers</b><br><b>INT8: 11.4GB* using diffusers</b></td>
111
+ </tr>
112
+ <tr>
113
+ <td style="text-align: center;">Multi-GPU Inference VRAM Consumption</td>
114
+ <td style="text-align: center;"><b>FP16: 10GB* using diffusers</b></td>
115
+ <td style="text-align: center;"><b>BF16: 15GB* using diffusers</b></td>
116
+ </tr>
117
+ <tr>
118
+ <td style="text-align: center;">Inference Speed<br>(Step = 50, FP/BF16)</td>
119
+ <td style="text-align: center;">Single A100: ~90 seconds<br>Single H100: ~45 seconds</td>
120
+ <td style="text-align: center;">Single A100: ~180 seconds<br>Single H100: ~90 seconds</td>
121
+ </tr>
122
+ <tr>
123
+ <td style="text-align: center;">Fine-tuning Precision</td>
124
+ <td style="text-align: center;"><b>FP16</b></td>
125
+ <td style="text-align: center;"><b>BF16</b></td>
126
+ </tr>
127
+ <tr>
128
+ <td style="text-align: center;">Fine-tuning VRAM Consumption (per GPU)</td>
129
+ <td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td>
130
+ <td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)</td>
131
+ </tr>
132
+ <tr>
133
+ <td style="text-align: center;">Prompt Language</td>
134
+ <td colspan="2" style="text-align: center;">English*</td>
135
+ </tr>
136
+ <tr>
137
+ <td style="text-align: center;">Prompt Length Limit</td>
138
+ <td colspan="2" style="text-align: center;">226 Tokens</td>
139
+ </tr>
140
+ <tr>
141
+ <td style="text-align: center;">Video Length</td>
142
+ <td colspan="2" style="text-align: center;">6 Seconds</td>
143
+ </tr>
144
+ <tr>
145
+ <td style="text-align: center;">Frame Rate</td>
146
+ <td colspan="2" style="text-align: center;">8 Frames per Second</td>
147
+ </tr>
148
+ <tr>
149
+ <td style="text-align: center;">Video Resolution</td>
150
+ <td colspan="2" style="text-align: center;">720 x 480, no support for other resolutions (including fine-tuning)</td>
151
+ </tr>
152
+ <tr>
153
+ <td style="text-align: center;">Positional Encoding</td>
154
+ <td style="text-align: center;">3d_sincos_pos_embed</td>
155
+ <td style="text-align: center;">3d_rope_pos_embed</td>
156
+ </tr>
157
+ </table>
158
+
159
+ **Data Explanation**
160
+
161
+ + When testing with the diffusers library, the `enable_model_cpu_offload()` option and `pipe.vae.enable_tiling()` optimization were enabled. This solution has not been tested on devices other than **NVIDIA A100 / H100**. Typically, this solution is adaptable to all devices above the **NVIDIA Ampere architecture**. If the optimization is disabled, memory usage will increase significantly, with peak memory being about 3 times the table value.
162
+ + The CogVideoX-2B model was trained using `FP16` precision, so it is recommended to use `FP16` for inference.
163
+ + For multi-GPU inference, the `enable_model_cpu_offload()` optimization needs to be disabled.
164
+ + Using the INT8 model will lead to reduced inference speed. This is done to allow low-memory GPUs to perform inference while maintaining minimal video quality loss, though the inference speed will be significantly reduced.
165
+ + Inference speed tests also used the memory optimization mentioned above. Without memory optimization, inference speed increases by approximately 10%. Only the `diffusers` version of the model supports quantization.
166
+ + The model only supports English input; other languages can be translated to English for refinement by large models.
167
+
168
+ **Note**
169
+
170
+ + Using [SAT](https://github.com/THUDM/SwissArmyTransformer) for inference and fine-tuning of SAT version
171
+ models. Feel free to visit our GitHub for more information.
172
 
 
 
 
 
 
 
 
 
 
 
 
173
 
 
174
 
175
  ## Quick Start 🤗
176
 
 
182
  1. Install the required dependencies
183
 
184
  ```shell
185
+ # diffusers>=0.30.1
186
+ # transformers>=0.44.0
187
+ # accelerate>=0.33.0 (suggest install from source)
188
+ # imageio-ffmpeg>=0.5.1
189
+ pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
190
  ```
191
 
192
  2. Run the code
 
204
  )
205
 
206
  pipe.enable_model_cpu_offload()
207
+ pipe.vae.enable_tiling()
208
 
209
+ video = pipe(
210
  prompt=prompt,
 
211
  num_videos_per_prompt=1,
 
 
 
 
 
 
212
  num_inference_steps=50,
213
+ num_frames=49,
214
  guidance_scale=6,
215
+ generator=torch.Generator(device="cuda").manual_seed(42),
216
  ).frames[0]
217
 
218
  export_to_video(video, "output.mp4", fps=8)
219
  ```
220
 
 
 
 
 
 
221
  ## Explore the Model
222
 
223
  Welcome to our [github](https://github.com/THUDM/CogVideo), where you will find:
 
227
  3. Reasoning and fine-tuning of SAT version models, and even pre-release.
228
  4. Project update log dynamics, more interactive opportunities.
229
  5. CogVideoX toolchain to help you better use the model.
230
+ 6. INT8 model inference code support.
231
 
232
  ## Model License
233
 
234
+ The CogVideoX-2B model (including its corresponding Transformers module and VAE module) is released under the [Apache 2.0 License](LICENSE).
235
+
236
+ The CogVideoX-5B model (Transformers module) is released under the [CogVideoX LICENSE](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE).
237
 
238
  ## Citation
239
 
240
+ ```
241
+ @article{yang2024cogvideox,
242
+ title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
243
+ author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
244
+ journal={arXiv preprint arXiv:2408.06072},
245
+ year={2024}
246
+ }
247
+ ```
README_zh.md CHANGED
@@ -6,8 +6,9 @@
6
  </div>
7
  <p align="center">
8
  <a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README.md">📄 Read in English</a> |
9
- <a href="https://github.com/THUDM/CogVideo">🌐 Github(包含PDF论文)</a> |
10
- <a href="#">📜 arxiv (即将发布) </a>
 
11
  </p>
12
 
13
  ## 作品案例
@@ -71,21 +72,91 @@
71
 
72
  ## 模型介绍
73
 
74
- CogVideoX是 [清影](https://chatglm.cn/video) 同源的开源版本视频生成模型。下表展示目前我们提供的视频生成模型列表,以及相关基础信息。
75
-
76
- | 模型名 | CogVideoX-2B |
77
- |---------------------|--------------------------------------|
78
- | 提示词语言 | English |
79
- | 单GPU推理 (FP-16) 显存消耗 | 23.9GB |
80
- | 多GPU推理 (FP-16) 显存消耗 | 20GB minimum per GPU using diffusers |
81
- | 微调显存消耗 (bs=1) | 42GB |
82
- | 提示词长度上限 | 226 Tokens |
83
- | 视频长度 | 6 seconds |
84
- | 帧率(每秒) | 8 frames |
85
- | 视频分辨率 | 720 * 480 |
86
- | 量化推理 | 不支持 |
87
-
88
- **Note** 使用 [SAT](https://github.com/THUDM/SwissArmyTransformer) 推理SAT版本模型仅需18G显存。欢迎前往我们的github查看。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  ## 快速上手 🤗
91
 
@@ -96,10 +167,14 @@ CogVideoX是 [清影](https://chatglm.cn/video) 同源的开源版本视频生
96
  1. 安装对应的依赖
97
 
98
  ```shell
99
- pip install --upgrade opencv-python transformers accelerate diffusers # Must using diffusers>=0.30.0
 
 
 
 
100
  ```
101
 
102
- 2. 运行代码
103
 
104
  ```python
105
  import torch
@@ -114,29 +189,20 @@ pipe = CogVideoXPipeline.from_pretrained(
114
  )
115
 
116
  pipe.enable_model_cpu_offload()
 
117
 
118
- prompt_embeds, _ = pipe.encode_prompt(
119
  prompt=prompt,
120
- do_classifier_free_guidance=True,
121
  num_videos_per_prompt=1,
122
- max_sequence_length=226,
123
- device="cuda",
124
- dtype=torch.float16,
125
- )
126
-
127
- video = pipe(
128
  num_inference_steps=50,
 
129
  guidance_scale=6,
130
- prompt_embeds=prompt_embeds,
131
  ).frames[0]
132
 
133
  export_to_video(video, "output.mp4", fps=8)
134
  ```
135
 
136
- **使用单卡A100按照上述配置生成一次视频大约需要90秒**。
137
-
138
- 如果您生成的模型在 MAC 默认播放器上表现为 "全绿" 无法正常观看,属于正常现象 (OpenCV保存视频问题),仅需更换一个播放器观看。
139
-
140
  ## 深入研究
141
 
142
  欢迎进入我们的 [github](https://github.com/THUDM/CogVideo),你将获得:
@@ -146,11 +212,22 @@ export_to_video(video, "output.mp4", fps=8)
146
  3. SAT版本模型进行推理和微调,甚至预发布。
147
  4. 项目更新日志动态,更多互动机会。
148
  5. CogVideoX 工具链,帮助您更好的使用模型。
 
149
 
150
  ## 模型协议
151
 
152
- 该模型根据 [CogVideoX LICENSE](LICENSE) 许可证发布。
 
 
 
153
 
154
  ## 引用
155
 
156
- 技术报告仍在撰写中,敬请期待
 
 
 
 
 
 
 
 
6
  </div>
7
  <p align="center">
8
  <a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README.md">📄 Read in English</a> |
9
+ <a href="https://huggingface.co/spaces/THUDM/CogVideoX-2B-Space">🤗 Huggingface Space</a> |
10
+ <a href="https://github.com/THUDM/CogVideo">🌐 Github </a> |
11
+ <a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
12
  </p>
13
 
14
  ## 作品案例
 
72
 
73
  ## 模型介绍
74
 
75
+ CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideo) 同源的开源版本视频生成模型。下表展示目前我们提供的视频生成模型列表,以及相关基础信息。
76
+
77
+ <table style="border-collapse: collapse; width: 100%;">
78
+ <tr>
79
+ <th style="text-align: center;">模型名</th>
80
+ <th style="text-align: center;">CogVideoX-2B (本仓库)</th>
81
+ <th style="text-align: center;">CogVideoX-5B </th>
82
+ </tr>
83
+ <tr>
84
+ <td style="text-align: center;">模型介绍</td>
85
+ <td style="text-align: center;">入门级模型,兼顾兼容性。运行,二次开发成本低。</td>
86
+ <td style="text-align: center;">视频生成质量更高,视觉效果更好的更大尺寸模型。</td>
87
+ </tr>
88
+ <tr>
89
+ <td style="text-align: center;">推理精度</td>
90
+ <td style="text-align: center;"><b>FP16*(推荐)</b>, BF16, FP32,FP8*,INT8,不支持INT4</td>
91
+ <td style="text-align: center;"><b>BF16(推荐)</b>, FP16, FP32,FP8*,INT8,不支持INT4</td>
92
+ </tr>
93
+ <tr>
94
+ <td style="text-align: center;">单GPU显存消耗<br></td>
95
+ <td style="text-align: center;">FP16: 18GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> / <b>12.5GB* using diffusers</b><br><b>INT8: 7.8GB* using diffusers</b></td>
96
+ <td style="text-align: center;">BF16: 26GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> / <b>20.7GB* using diffusers</b><br><b>INT8: 11.4GB* using diffusers</b></td>
97
+ </tr>
98
+ <tr>
99
+ <td style="text-align: center;">多GPU推理显存消耗</td>
100
+ <td style="text-align: center;"><b>FP16: 10GB* using diffusers</b><br></td>
101
+ <td style="text-align: center;"><b>BF16: 15GB* using diffusers</b><br></td>
102
+ </tr>
103
+ <tr>
104
+ <td style="text-align: center;">推理速度<br>(Step = 50, FP/BF16)</td>
105
+ <td style="text-align: center;">单卡A100: ~90秒<br>单卡H100: ~45秒</td>
106
+ <td style="text-align: center;">单卡A100: ~180秒<br>单卡H100: ~90秒</td>
107
+ </tr>
108
+ <tr>
109
+ <td style="text-align: center;">微调精度</td>
110
+ <td style="text-align: center;"><b>FP16</b></td>
111
+ <td style="text-align: center;"><b>BF16</b></td>
112
+ </tr>
113
+ <tr>
114
+ <td style="text-align: center;">微调显存消耗(每卡)</td>
115
+ <td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td>
116
+ <td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)<br></td>
117
+ </tr>
118
+ <tr>
119
+ <td style="text-align: center;">提示词语言</td>
120
+ <td colspan="2" style="text-align: center;">English*</td>
121
+ </tr>
122
+ <tr>
123
+ <td style="text-align: center;">提示词长度上限</td>
124
+ <td colspan="2" style="text-align: center;">226 Tokens</td>
125
+ </tr>
126
+ <tr>
127
+ <td style="text-align: center;">视频长度</td>
128
+ <td colspan="2" style="text-align: center;">6 秒</td>
129
+ </tr>
130
+ <tr>
131
+ <td style="text-align: center;">帧率</td>
132
+ <td colspan="2" style="text-align: center;">8 帧 / 秒 </td>
133
+ </tr>
134
+ <tr>
135
+ <td style="text-align: center;">视频分辨率</td>
136
+ <td colspan="2" style="text-align: center;">720 * 480,不支持其他分辨率(含微调)</td>
137
+ </tr>
138
+ <tr>
139
+ <td style="text-align: center;">位置编码</td>
140
+ <td style="text-align: center;">3d_sincos_pos_embed</td>
141
+ <td style="text-align: center;">3d_rope_pos_embed<br></td>
142
+ </tr>
143
+ </table>
144
+
145
+ **数据解释**
146
+
147
+ + 使用 diffusers 库进行测试时,启用了 `enable_model_cpu_offload()` 选项 和 `pipe.vae.enable_tiling()` 优化,该方案未测试在非
148
+ **NVIDIA A100 / H100** 外的设备上的实际显存 / 内存占用。通常,该方案可以适配于所有 **NVIDIA 安培架构**
149
+ 以上的设备。若关闭优化,显存占用会成倍增加,峰值显存约为表格的3倍。
150
+ + 多GPU推理时,需要关闭 `enable_model_cpu_offload()` 优化。
151
+ + 使用 INT8 模型会导致推理速度降低,此举是为了满足显存较低的显卡能正常推理并保持较少的视频质量损失,推理速度大幅降低。
152
+ + 2B 模型采用 `FP16` 精度训练, 5B模型采用 `BF16` 精度训练。我们推荐使用模型训练的精度进行推理。
153
+ + `FP8` 精度必须在`NVIDIA H100` 及以上的设备上使用,需要源代码安装`torch`,`torchao`,`diffusers`,`accelerate` python包,推荐使用 `CUDA 12.4`。
154
+ + 推理速度测试同样采用了上述显存优化方案,不采用显存优化的情况下,推理速度提升约10%。 只有`diffusers`版本模型支持量化。
155
+ + 模型仅支持英语输入,其他语言可以通过大模型润色时翻译为英语。
156
+
157
+ **提醒**
158
+
159
+ + 使用 [SAT](https://github.com/THUDM/SwissArmyTransformer) 推理和微调SAT版本模型。欢迎前往我们的github查看。
160
 
161
  ## 快速上手 🤗
162
 
 
167
  1. 安装对应的依赖
168
 
169
  ```shell
170
+ # diffusers>=0.30.1
171
+ # transformers>=0.44.0
172
+ # accelerate>=0.33.0 (suggest install from source)
173
+ # imageio-ffmpeg>=0.5.1
174
+ pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
175
  ```
176
 
177
+ 2. 运行代码 (BF16 / FP16)
178
 
179
  ```python
180
  import torch
 
189
  )
190
 
191
  pipe.enable_model_cpu_offload()
192
+ pipe.vae.enable_tiling()
193
 
194
+ video = pipe(
195
  prompt=prompt,
 
196
  num_videos_per_prompt=1,
 
 
 
 
 
 
197
  num_inference_steps=50,
198
+ num_frames=49,
199
  guidance_scale=6,
200
+ generator=torch.Generator(device="cuda").manual_seed(42),
201
  ).frames[0]
202
 
203
  export_to_video(video, "output.mp4", fps=8)
204
  ```
205
 
 
 
 
 
206
  ## 深入研究
207
 
208
  欢迎进入我们的 [github](https://github.com/THUDM/CogVideo),你将获得:
 
212
  3. SAT版本模型进行推理和微调,甚至预发布。
213
  4. 项目更新日志动态,更多互动机会。
214
  5. CogVideoX 工具链,帮助您更好的使用模型。
215
+ 6. INT8 模型推理代码。
216
 
217
  ## 模型协议
218
 
219
+ CogVideoX-2B 模型 (包括其对应的Transformers模块,VAE模块) 根据 [Apache 2.0 License](LICENSE) 许可证发布。
220
+
221
+ CogVideoX-5B 模型 (Transformers 模块) 根据 [CogVideoX LICENSE](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE)
222
+ 许可证发布。
223
 
224
  ## 引用
225
 
226
+ ```
227
+ @article{yang2024cogvideox,
228
+ title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
229
+ author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
230
+ journal={arXiv preprint arXiv:2408.06072},
231
+ year={2024}
232
+ }
233
+ ```
text_encoder/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/share/home/zyx/Models/t5-v1_1-xxl_1",
3
  "architectures": [
4
  "T5EncoderModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "google/t5-v1_1-xxl_1",
3
  "architectures": [
4
  "T5EncoderModel"
5
  ],