--- language: - cn license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Svetlana0303/my_CN_ds metrics: - wer model-index: - name: Whisper Small CN - my voice results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: my_CN_ds type: Svetlana0303/my_CN_ds args: 'split: test' metrics: - name: Wer type: wer value: 100.0 --- # Whisper Small CN - my voice This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the my_CN_ds dataset. It achieves the following results on the evaluation set: - Loss: 0.7879 - Wer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 0.0 | 100.0 | 100 | 0.7750 | 100.0 | | 0.0 | 200.0 | 200 | 0.7819 | 100.0 | | 0.0 | 300.0 | 300 | 0.7860 | 100.0 | | 0.0 | 400.0 | 400 | 0.7879 | 100.0 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1