File size: 2,080 Bytes
c0e38df a0c413f c0e38df a0c413f c0e38df a0c413f c0e38df a0c413f c0e38df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- fl_image_category_ds
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: project_name
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: fl_image_category_ds
type: fl_image_category_ds
config: default
split: train
args: default
metrics:
- type: accuracy
value: 0.6621621621621622
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# project_name
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the fl_image_category_ds dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9537
- Accuracy: 0.6622
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3368 | 1.0 | 88 | 1.2575 | 0.5448 |
| 1.1146 | 2.0 | 176 | 1.0928 | 0.6038 |
| 0.9667 | 3.0 | 264 | 1.0195 | 0.6223 |
| 0.9005 | 4.0 | 352 | 0.9832 | 0.6373 |
| 0.8432 | 5.0 | 440 | 0.9537 | 0.6622 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.13.2
|