import json from functools import lru_cache from typing import TYPE_CHECKING import regex as re from transformers.tokenization_utils_base import TextInput from transformers.utils import is_tf_available, is_torch_available, to_py_obj if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf import os import random from typing import Dict, List, Tuple, Union, Any, Callable, Optional import matplotlib as mpl import matplotlib.colors as mcolors import matplotlib.colors as mplc import matplotlib.figure as mplfigure import numpy as np import requests import torch from PIL import Image from matplotlib.backends.backend_agg import FigureCanvasAgg from transformers import PreTrainedTokenizer, AddedToken from transformers.utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "Salesforce/codegen-350M-mono": 2048, } IMG_TOKEN_SPAN = 1024 DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['from'] == 'human' %}\n{{ '<|user|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'system' %}\n{{ '<|system|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'gpt' %}\n{{ '<|assistant|>\n' + message['value'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}" @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list( range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2 ** 8): if b not in bs: bs.append(b) cs.append(2 ** 8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def _list_find( input_list: List[Any], candidates: Tuple[Any], start: int = 0, ): for i in range(start, len(input_list)): if input_list[i] in candidates: return i return -1 def _replace_closed_tag( input_tokens: List[Any], start_tags: Union[Any, Tuple[Any]], end_tags: Union[Any, Tuple[Any]], inclusive_replace_func: Callable, exclusive_replace_func: Callable = lambda x: x, ): if isinstance(start_tags, (str, int)): start_tags = (start_tags,) if isinstance(end_tags, (str, int)): end_tags = (end_tags,) assert len(start_tags) == len(end_tags) output_tokens = [] end = 0 while True: start = _list_find(input_tokens, start_tags, end) if start == -1: break output_tokens.extend(exclusive_replace_func(input_tokens[end: start])) tag_idx = start_tags.index(input_tokens[start]) end = _list_find(input_tokens, (end_tags[tag_idx],), start) if end == -1: raise ValueError("Unclosed image token") output_tokens.extend(inclusive_replace_func(input_tokens[start: end + 1])) end += 1 output_tokens.extend(exclusive_replace_func(input_tokens[end:])) return output_tokens class CheXagentTokenizer(PreTrainedTokenizer): vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", pad_token=None, add_prefix_space=False, add_bos_token=False, image_start_tag='<|img|>', image_end_tag='<|/img|>', image_pad_tag='<|imgpad|>', ref_start_tag='<|ref|>', ref_end_tag='<|/ref|>', box_start_tag='<|box|>', box_end_tag='<|/box|>', quad_start_tag='<|quad|>', quad_end_tag='<|/quad|>', **kwargs, ): bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token self.add_bos_token = add_bos_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") super().__init__( errors=errors, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, add_prefix_space=add_prefix_space, add_bos_token=add_bos_token, **kwargs, ) self.image_start_tag = image_start_tag self.image_end_tag = image_end_tag self.image_pad_tag = image_pad_tag self.ref_start_tag = ref_start_tag self.ref_end_tag = ref_end_tag self.box_start_tag = box_start_tag self.box_end_tag = box_end_tag self.quad_start_tag = quad_start_tag self.quad_end_tag = quad_end_tag self.IMAGE_ST = ( image_start_tag, image_end_tag, image_pad_tag, ref_start_tag, ref_end_tag, box_start_tag, box_end_tag, quad_start_tag, quad_end_tag, ) for special_token in self.IMAGE_ST: if special_token not in self.get_vocab(): self.add_special_tokens({"additional_special_tokens": [special_token]}) for coordinate in range(10): if f"<{coordinate}>" not in self.get_vocab(): self.add_special_tokens({"additional_special_tokens": [f"<|coord_{coordinate}|>"]}) if len(self) % 64 != 0: for extra in range(((len(self) // 64) + 1) * 64 - len(self)): if f"" not in self.get_vocab(): self.add_special_tokens({"additional_special_tokens": [f"<|extra_{extra}|>"]}) self.img_start_id = self.convert_tokens_to_ids(self.image_start_tag) self.img_end_id = self.convert_tokens_to_ids(self.image_end_tag) self.img_pad_id = self.convert_tokens_to_ids(self.image_pad_tag) self.ref_start_id = self.convert_tokens_to_ids(self.ref_start_tag) self.ref_end_id = self.convert_tokens_to_ids(self.ref_end_tag) self.box_start_id = self.convert_tokens_to_ids(self.box_start_tag) self.box_end_id = self.convert_tokens_to_ids(self.box_end_tag) self.quad_start_id = self.convert_tokens_to_ids(self.quad_start_tag) self.quad_end_id = self.convert_tokens_to_ids(self.quad_end_tag) self.chat_template = DEFAULT_CHAT_TEMPLATE @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): if self.add_bos_token: bos_token_ids = [self.bos_token_id] else: bos_token_ids = [] output = bos_token_ids + token_ids_0 if token_ids_1 is None: return output return output + bos_token_ids + token_ids_1 def tokenize(self, text: TextInput, **kwargs) -> List[str]: def _encode_imgurl(img_tokens): assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag img_tokens = img_tokens[1:-1] img_url = ''.join(img_tokens) out_img_tokens = list(img_url) if len(out_img_tokens) > IMG_TOKEN_SPAN: raise ValueError("The content in {}..{} is too long".format(self.image_start_tag, self.image_end_tag)) out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens))) out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag] return out_img_tokens tokens = super().tokenize(text, **kwargs) tokens = _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl) return tokens def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, truncate_before_pattern: Optional[List[str]] = None, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): A list of regular expression strings that will be used to truncate the returned string. This can be used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ token_ids = to_py_obj(token_ids) decoded_text = self._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: decoded_text = self.truncate(decoded_text, truncate_before_pattern) return decoded_text def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, spaces_between_special_tokens: bool = True, **kwargs, ) -> str: def _decode_imgurl(img_token_ids): assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id img_token_ids = img_token_ids[1:-1] img_token_ids = img_token_ids[: img_token_ids.index(self.img_pad_id)] return [self.img_start_id] + img_token_ids + [self.img_end_id] token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl) return super()._decode( token_ids, skip_special_tokens, clean_up_tokenization_spaces, spaces_between_special_tokens, **kwargs ) def truncate(self, completion, truncate_before_pattern): def find_re(string, pattern, start_pos): m = pattern.search(string, start_pos) return m.start() if m else -1 terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] prints = list(re.finditer("^print", completion, re.MULTILINE)) if len(prints) > 1: completion = completion[: prints[1].start()] defs = list(re.finditer("^def", completion, re.MULTILINE)) if len(defs) > 1: completion = completion[: defs[1].start()] start_pos = 0 terminals_pos = [ pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 ] if len(terminals_pos) > 0: return completion[: min(terminals_pos)] else: return completion def from_list_format(self, list_format: List[Dict]): text = '' num_images = 0 for ele in list_format: if 'image' in ele: num_images += 1 text += f'Picture {num_images}:' text += self.image_start_tag + ele['image'] + self.image_end_tag text += '\n' elif 'text' in ele: text += ele['text'] elif 'box' in ele: if 'ref' in ele: text += self.ref_start_tag + ele['ref'] + self.ref_end_tag for box in ele['box']: text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag else: raise ValueError("Unsupport element: " + str(ele)) return text def _fetch_latest_picture(self, response, history): if history is None: history = [] _history = history + [(response, None)] for q, r in _history[::-1]: for ele in self.to_list_format(q)[::-1]: if 'image' in ele: return ele['image'] return None def _fetch_all_box_with_ref(self, text): list_format = self.to_list_format(text) output = [] for i, ele in enumerate(list_format): if 'box' in ele: bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(','))) assert len(bbox) == 4 output.append({'box': bbox}) if i > 0 and 'ref' in list_format[i - 1]: output[-1]['ref'] = list_format[i - 1]['ref'].strip() return output def draw_bbox_on_latest_picture( self, response, history=None, ) -> Optional[Image.Image]: image = self._fetch_latest_picture(response, history) if image is None: return None if image.startswith("http://") or image.startswith("https://"): image = Image.open(requests.get(image, stream=True).raw).convert("RGB") h, w = image.height, image.width else: image = np.asarray(Image.open(image).convert("RGB")) h, w = image.shape[0], image.shape[1] visualizer = Visualizer(image) boxes = self._fetch_all_box_with_ref(response) if not boxes: return None color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color for box in boxes: if 'ref' in box: # random new color for new refexps color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) x1, y1, x2, y2 = box['box'] x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h)) visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color) if 'ref' in box: visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left") return visualizer.output class VisImage: def __init__(self, img, scale=1.0): self.img = img self.scale = scale self.width, self.height = img.shape[1], img.shape[0] self._setup_figure(img) def _setup_figure(self, img): fig = mplfigure.Figure(frameon=False) self.dpi = fig.get_dpi() # add a small 1e-2 to avoid precision lost due to matplotlib's truncation # (https://github.com/matplotlib/matplotlib/issues/15363) fig.set_size_inches( (self.width * self.scale + 1e-2) / self.dpi, (self.height * self.scale + 1e-2) / self.dpi, ) self.canvas = FigureCanvasAgg(fig) # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig) ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) ax.axis("off") self.fig = fig self.ax = ax self.reset_image(img) def reset_image(self, img): img = img.astype("uint8") self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest") def save(self, filepath): self.fig.savefig(filepath) def get_image(self): canvas = self.canvas s, (width, height) = canvas.print_to_buffer() buffer = np.frombuffer(s, dtype="uint8") img_rgba = buffer.reshape(height, width, 4) rgb, alpha = np.split(img_rgba, [3], axis=2) return rgb.astype("uint8") class Visualizer: def __init__(self, img_rgb, metadata=None, scale=1.0): self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8) self.output = VisImage(self.img, scale=scale) self.cpu_device = torch.device("cpu") # too small texts are useless, therefore clamp to 14 self._default_font_size = max( np.sqrt(self.output.height * self.output.width) // 30, 15 // scale ) def draw_text( self, text, position, *, font_size=None, color="g", horizontal_alignment="center", rotation=0, ): if not font_size: font_size = self._default_font_size # since the text background is dark, we don't want the text to be dark color = np.maximum(list(mplc.to_rgb(color)), 0.2) color[np.argmax(color)] = max(0.8, np.max(color)) x, y = position self.output.ax.text( x, y, text, size=font_size * self.output.scale, bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}, verticalalignment="top", horizontalalignment=horizontal_alignment, color=color, zorder=10, rotation=rotation, ) return self.output def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"): x0, y0, x1, y1 = box_coord width = x1 - x0 height = y1 - y0 linewidth = max(self._default_font_size / 4, 1) self.output.ax.add_patch( mpl.patches.Rectangle( (x0, y0), width, height, fill=False, edgecolor=edge_color, linewidth=linewidth * self.output.scale, alpha=alpha, linestyle=line_style, ) ) return self.output def get_output(self): return self.output