Upload tokenization_chexagent.py
Browse files- tokenization_chexagent.py +646 -0
tokenization_chexagent.py
ADDED
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from functools import lru_cache
|
3 |
+
from typing import TYPE_CHECKING
|
4 |
+
|
5 |
+
import regex as re
|
6 |
+
from transformers.tokenization_utils_base import TextInput
|
7 |
+
from transformers.utils import is_tf_available, is_torch_available, to_py_obj
|
8 |
+
|
9 |
+
if TYPE_CHECKING:
|
10 |
+
if is_torch_available():
|
11 |
+
import torch
|
12 |
+
if is_tf_available():
|
13 |
+
import tensorflow as tf
|
14 |
+
|
15 |
+
import os
|
16 |
+
import random
|
17 |
+
from typing import Dict, List, Tuple, Union, Any, Callable, Optional
|
18 |
+
|
19 |
+
import matplotlib as mpl
|
20 |
+
import matplotlib.colors as mcolors
|
21 |
+
import matplotlib.colors as mplc
|
22 |
+
import matplotlib.figure as mplfigure
|
23 |
+
import numpy as np
|
24 |
+
import requests
|
25 |
+
import torch
|
26 |
+
from PIL import Image
|
27 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
28 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
VOCAB_FILES_NAMES = {
|
34 |
+
"vocab_file": "vocab.json",
|
35 |
+
"merges_file": "merges.txt",
|
36 |
+
}
|
37 |
+
|
38 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
39 |
+
"vocab_file": {
|
40 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
|
41 |
+
},
|
42 |
+
"merges_file": {
|
43 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
|
44 |
+
},
|
45 |
+
}
|
46 |
+
|
47 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
48 |
+
"Salesforce/codegen-350M-mono": 2048,
|
49 |
+
}
|
50 |
+
|
51 |
+
IMG_TOKEN_SPAN = 1024
|
52 |
+
|
53 |
+
DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['from'] == 'human' %}\n{{ '<|user|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'system' %}\n{{ '<|system|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'gpt' %}\n{{ '<|assistant|>\n' + message['value'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
|
54 |
+
|
55 |
+
|
56 |
+
@lru_cache()
|
57 |
+
def bytes_to_unicode():
|
58 |
+
"""
|
59 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
60 |
+
characters the bpe code barfs on.
|
61 |
+
|
62 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
63 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
64 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
65 |
+
tables between utf-8 bytes and unicode strings.
|
66 |
+
"""
|
67 |
+
bs = (
|
68 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(
|
69 |
+
range(ord("®"), ord("ÿ") + 1))
|
70 |
+
)
|
71 |
+
cs = bs[:]
|
72 |
+
n = 0
|
73 |
+
for b in range(2 ** 8):
|
74 |
+
if b not in bs:
|
75 |
+
bs.append(b)
|
76 |
+
cs.append(2 ** 8 + n)
|
77 |
+
n += 1
|
78 |
+
cs = [chr(n) for n in cs]
|
79 |
+
return dict(zip(bs, cs))
|
80 |
+
|
81 |
+
|
82 |
+
def get_pairs(word):
|
83 |
+
"""
|
84 |
+
Return set of symbol pairs in a word.
|
85 |
+
|
86 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
87 |
+
"""
|
88 |
+
pairs = set()
|
89 |
+
prev_char = word[0]
|
90 |
+
for char in word[1:]:
|
91 |
+
pairs.add((prev_char, char))
|
92 |
+
prev_char = char
|
93 |
+
return pairs
|
94 |
+
|
95 |
+
|
96 |
+
def _list_find(
|
97 |
+
input_list: List[Any],
|
98 |
+
candidates: Tuple[Any],
|
99 |
+
start: int = 0,
|
100 |
+
):
|
101 |
+
for i in range(start, len(input_list)):
|
102 |
+
if input_list[i] in candidates:
|
103 |
+
return i
|
104 |
+
return -1
|
105 |
+
|
106 |
+
|
107 |
+
def _replace_closed_tag(
|
108 |
+
input_tokens: List[Any],
|
109 |
+
start_tags: Union[Any, Tuple[Any]],
|
110 |
+
end_tags: Union[Any, Tuple[Any]],
|
111 |
+
inclusive_replace_func: Callable,
|
112 |
+
exclusive_replace_func: Callable = lambda x: x,
|
113 |
+
):
|
114 |
+
if isinstance(start_tags, (str, int)):
|
115 |
+
start_tags = (start_tags,)
|
116 |
+
if isinstance(end_tags, (str, int)):
|
117 |
+
end_tags = (end_tags,)
|
118 |
+
assert len(start_tags) == len(end_tags)
|
119 |
+
|
120 |
+
output_tokens = []
|
121 |
+
end = 0
|
122 |
+
while True:
|
123 |
+
start = _list_find(input_tokens, start_tags, end)
|
124 |
+
if start == -1:
|
125 |
+
break
|
126 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end: start]))
|
127 |
+
tag_idx = start_tags.index(input_tokens[start])
|
128 |
+
end = _list_find(input_tokens, (end_tags[tag_idx],), start)
|
129 |
+
if end == -1:
|
130 |
+
raise ValueError("Unclosed image token")
|
131 |
+
output_tokens.extend(inclusive_replace_func(input_tokens[start: end + 1]))
|
132 |
+
end += 1
|
133 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end:]))
|
134 |
+
return output_tokens
|
135 |
+
|
136 |
+
|
137 |
+
class CheXagentTokenizer(PreTrainedTokenizer):
|
138 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
139 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
140 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
141 |
+
model_input_names = ["input_ids", "attention_mask"]
|
142 |
+
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
vocab_file,
|
146 |
+
merges_file,
|
147 |
+
errors="replace",
|
148 |
+
unk_token="<|endoftext|>",
|
149 |
+
bos_token="<|endoftext|>",
|
150 |
+
eos_token="<|endoftext|>",
|
151 |
+
pad_token=None,
|
152 |
+
add_prefix_space=False,
|
153 |
+
add_bos_token=False,
|
154 |
+
image_start_tag='<|img|>',
|
155 |
+
image_end_tag='<|/img|>',
|
156 |
+
image_pad_tag='<|imgpad|>',
|
157 |
+
ref_start_tag='<|ref|>',
|
158 |
+
ref_end_tag='<|/ref|>',
|
159 |
+
box_start_tag='<|box|>',
|
160 |
+
box_end_tag='<|/box|>',
|
161 |
+
quad_start_tag='<|quad|>',
|
162 |
+
quad_end_tag='<|/quad|>',
|
163 |
+
**kwargs,
|
164 |
+
):
|
165 |
+
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
|
166 |
+
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
|
167 |
+
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
168 |
+
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
169 |
+
self.add_bos_token = add_bos_token
|
170 |
+
|
171 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
172 |
+
self.encoder = json.load(vocab_handle)
|
173 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
174 |
+
self.errors = errors # how to handle errors in decoding
|
175 |
+
self.byte_encoder = bytes_to_unicode()
|
176 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
177 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
178 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
179 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
180 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
181 |
+
self.cache = {}
|
182 |
+
self.add_prefix_space = add_prefix_space
|
183 |
+
|
184 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
185 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
186 |
+
super().__init__(
|
187 |
+
errors=errors,
|
188 |
+
unk_token=unk_token,
|
189 |
+
bos_token=bos_token,
|
190 |
+
eos_token=eos_token,
|
191 |
+
pad_token=pad_token,
|
192 |
+
add_prefix_space=add_prefix_space,
|
193 |
+
add_bos_token=add_bos_token,
|
194 |
+
**kwargs,
|
195 |
+
)
|
196 |
+
|
197 |
+
self.image_start_tag = image_start_tag
|
198 |
+
self.image_end_tag = image_end_tag
|
199 |
+
self.image_pad_tag = image_pad_tag
|
200 |
+
self.ref_start_tag = ref_start_tag
|
201 |
+
self.ref_end_tag = ref_end_tag
|
202 |
+
self.box_start_tag = box_start_tag
|
203 |
+
self.box_end_tag = box_end_tag
|
204 |
+
self.quad_start_tag = quad_start_tag
|
205 |
+
self.quad_end_tag = quad_end_tag
|
206 |
+
self.IMAGE_ST = (
|
207 |
+
image_start_tag, image_end_tag, image_pad_tag,
|
208 |
+
ref_start_tag, ref_end_tag, box_start_tag, box_end_tag,
|
209 |
+
quad_start_tag, quad_end_tag,
|
210 |
+
)
|
211 |
+
for special_token in self.IMAGE_ST:
|
212 |
+
if special_token not in self.get_vocab():
|
213 |
+
self.add_special_tokens({"additional_special_tokens": [special_token]})
|
214 |
+
for coordinate in range(10):
|
215 |
+
if f"<{coordinate}>" not in self.get_vocab():
|
216 |
+
self.add_special_tokens({"additional_special_tokens": [f"<|coord_{coordinate}|>"]})
|
217 |
+
if len(self) % 64 != 0:
|
218 |
+
for extra in range(((len(self) // 64) + 1) * 64 - len(self)):
|
219 |
+
if f"<extra_{extra}>" not in self.get_vocab():
|
220 |
+
self.add_special_tokens({"additional_special_tokens": [f"<|extra_{extra}|>"]})
|
221 |
+
self.img_start_id = self.convert_tokens_to_ids(self.image_start_tag)
|
222 |
+
self.img_end_id = self.convert_tokens_to_ids(self.image_end_tag)
|
223 |
+
self.img_pad_id = self.convert_tokens_to_ids(self.image_pad_tag)
|
224 |
+
self.ref_start_id = self.convert_tokens_to_ids(self.ref_start_tag)
|
225 |
+
self.ref_end_id = self.convert_tokens_to_ids(self.ref_end_tag)
|
226 |
+
self.box_start_id = self.convert_tokens_to_ids(self.box_start_tag)
|
227 |
+
self.box_end_id = self.convert_tokens_to_ids(self.box_end_tag)
|
228 |
+
self.quad_start_id = self.convert_tokens_to_ids(self.quad_start_tag)
|
229 |
+
self.quad_end_id = self.convert_tokens_to_ids(self.quad_end_tag)
|
230 |
+
self.chat_template = DEFAULT_CHAT_TEMPLATE
|
231 |
+
|
232 |
+
@property
|
233 |
+
def vocab_size(self):
|
234 |
+
return len(self.encoder)
|
235 |
+
|
236 |
+
def get_vocab(self):
|
237 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
238 |
+
|
239 |
+
def bpe(self, token):
|
240 |
+
if token in self.cache:
|
241 |
+
return self.cache[token]
|
242 |
+
word = tuple(token)
|
243 |
+
pairs = get_pairs(word)
|
244 |
+
|
245 |
+
if not pairs:
|
246 |
+
return token
|
247 |
+
|
248 |
+
while True:
|
249 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
250 |
+
if bigram not in self.bpe_ranks:
|
251 |
+
break
|
252 |
+
first, second = bigram
|
253 |
+
new_word = []
|
254 |
+
i = 0
|
255 |
+
while i < len(word):
|
256 |
+
try:
|
257 |
+
j = word.index(first, i)
|
258 |
+
except ValueError:
|
259 |
+
new_word.extend(word[i:])
|
260 |
+
break
|
261 |
+
else:
|
262 |
+
new_word.extend(word[i:j])
|
263 |
+
i = j
|
264 |
+
|
265 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
266 |
+
new_word.append(first + second)
|
267 |
+
i += 2
|
268 |
+
else:
|
269 |
+
new_word.append(word[i])
|
270 |
+
i += 1
|
271 |
+
new_word = tuple(new_word)
|
272 |
+
word = new_word
|
273 |
+
if len(word) == 1:
|
274 |
+
break
|
275 |
+
else:
|
276 |
+
pairs = get_pairs(word)
|
277 |
+
word = " ".join(word)
|
278 |
+
self.cache[token] = word
|
279 |
+
return word
|
280 |
+
|
281 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
282 |
+
if self.add_bos_token:
|
283 |
+
bos_token_ids = [self.bos_token_id]
|
284 |
+
else:
|
285 |
+
bos_token_ids = []
|
286 |
+
|
287 |
+
output = bos_token_ids + token_ids_0
|
288 |
+
|
289 |
+
if token_ids_1 is None:
|
290 |
+
return output
|
291 |
+
|
292 |
+
return output + bos_token_ids + token_ids_1
|
293 |
+
|
294 |
+
def tokenize(self, text: TextInput, **kwargs) -> List[str]:
|
295 |
+
def _encode_imgurl(img_tokens):
|
296 |
+
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
|
297 |
+
img_tokens = img_tokens[1:-1]
|
298 |
+
img_url = ''.join(img_tokens)
|
299 |
+
out_img_tokens = list(img_url)
|
300 |
+
if len(out_img_tokens) > IMG_TOKEN_SPAN:
|
301 |
+
raise ValueError("The content in {}..{} is too long".format(self.image_start_tag, self.image_end_tag))
|
302 |
+
out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
|
303 |
+
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
|
304 |
+
return out_img_tokens
|
305 |
+
|
306 |
+
tokens = super().tokenize(text, **kwargs)
|
307 |
+
tokens = _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
|
308 |
+
return tokens
|
309 |
+
|
310 |
+
def _tokenize(self, text):
|
311 |
+
"""Tokenize a string."""
|
312 |
+
|
313 |
+
bpe_tokens = []
|
314 |
+
for token in re.findall(self.pat, text):
|
315 |
+
token = "".join(
|
316 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
317 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
318 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
319 |
+
return bpe_tokens
|
320 |
+
|
321 |
+
def _convert_token_to_id(self, token):
|
322 |
+
"""Converts a token (str) in an id using the vocab."""
|
323 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
324 |
+
|
325 |
+
def _convert_id_to_token(self, index):
|
326 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
327 |
+
return self.decoder.get(index)
|
328 |
+
|
329 |
+
def convert_tokens_to_string(self, tokens):
|
330 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
331 |
+
text = "".join(tokens)
|
332 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
333 |
+
return text
|
334 |
+
|
335 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
336 |
+
if not os.path.isdir(save_directory):
|
337 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
338 |
+
return
|
339 |
+
vocab_file = os.path.join(
|
340 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
341 |
+
)
|
342 |
+
merge_file = os.path.join(
|
343 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
344 |
+
)
|
345 |
+
|
346 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
347 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
348 |
+
|
349 |
+
index = 0
|
350 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
351 |
+
writer.write("#version: 0.2\n")
|
352 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
353 |
+
if index != token_index:
|
354 |
+
logger.warning(
|
355 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
356 |
+
" Please check that the tokenizer is not corrupted!"
|
357 |
+
)
|
358 |
+
index = token_index
|
359 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
360 |
+
index += 1
|
361 |
+
|
362 |
+
return vocab_file, merge_file
|
363 |
+
|
364 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
365 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
366 |
+
if is_split_into_words or add_prefix_space:
|
367 |
+
text = " " + text
|
368 |
+
return (text, kwargs)
|
369 |
+
|
370 |
+
def decode(
|
371 |
+
self,
|
372 |
+
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
373 |
+
skip_special_tokens: bool = False,
|
374 |
+
clean_up_tokenization_spaces: bool = None,
|
375 |
+
truncate_before_pattern: Optional[List[str]] = None,
|
376 |
+
**kwargs,
|
377 |
+
) -> str:
|
378 |
+
"""
|
379 |
+
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
380 |
+
tokens and clean up tokenization spaces.
|
381 |
+
|
382 |
+
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
|
383 |
+
|
384 |
+
Args:
|
385 |
+
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
386 |
+
List of tokenized input ids. Can be obtained using the `__call__` method.
|
387 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
388 |
+
Whether or not to remove special tokens in the decoding.
|
389 |
+
clean_up_tokenization_spaces (`bool`, *optional*):
|
390 |
+
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
391 |
+
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
|
392 |
+
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
|
393 |
+
A list of regular expression strings that will be used to truncate the returned string. This can be
|
394 |
+
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
|
395 |
+
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
|
396 |
+
kwargs (additional keyword arguments, *optional*):
|
397 |
+
Will be passed to the underlying model specific decode method.
|
398 |
+
|
399 |
+
Returns:
|
400 |
+
`str`: The decoded sentence.
|
401 |
+
"""
|
402 |
+
|
403 |
+
token_ids = to_py_obj(token_ids)
|
404 |
+
|
405 |
+
decoded_text = self._decode(
|
406 |
+
token_ids=token_ids,
|
407 |
+
skip_special_tokens=skip_special_tokens,
|
408 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
409 |
+
**kwargs,
|
410 |
+
)
|
411 |
+
|
412 |
+
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
|
413 |
+
decoded_text = self.truncate(decoded_text, truncate_before_pattern)
|
414 |
+
|
415 |
+
return decoded_text
|
416 |
+
|
417 |
+
def _decode(
|
418 |
+
self,
|
419 |
+
token_ids: List[int],
|
420 |
+
skip_special_tokens: bool = False,
|
421 |
+
clean_up_tokenization_spaces: bool = None,
|
422 |
+
spaces_between_special_tokens: bool = True,
|
423 |
+
**kwargs,
|
424 |
+
) -> str:
|
425 |
+
|
426 |
+
def _decode_imgurl(img_token_ids):
|
427 |
+
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
|
428 |
+
img_token_ids = img_token_ids[1:-1]
|
429 |
+
img_token_ids = img_token_ids[: img_token_ids.index(self.img_pad_id)]
|
430 |
+
return [self.img_start_id] + img_token_ids + [self.img_end_id]
|
431 |
+
|
432 |
+
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
|
433 |
+
|
434 |
+
return super()._decode(
|
435 |
+
token_ids, skip_special_tokens, clean_up_tokenization_spaces, spaces_between_special_tokens, **kwargs
|
436 |
+
)
|
437 |
+
|
438 |
+
def truncate(self, completion, truncate_before_pattern):
|
439 |
+
def find_re(string, pattern, start_pos):
|
440 |
+
m = pattern.search(string, start_pos)
|
441 |
+
return m.start() if m else -1
|
442 |
+
|
443 |
+
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
|
444 |
+
|
445 |
+
prints = list(re.finditer("^print", completion, re.MULTILINE))
|
446 |
+
|
447 |
+
if len(prints) > 1:
|
448 |
+
completion = completion[: prints[1].start()]
|
449 |
+
|
450 |
+
defs = list(re.finditer("^def", completion, re.MULTILINE))
|
451 |
+
|
452 |
+
if len(defs) > 1:
|
453 |
+
completion = completion[: defs[1].start()]
|
454 |
+
|
455 |
+
start_pos = 0
|
456 |
+
|
457 |
+
terminals_pos = [
|
458 |
+
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
|
459 |
+
]
|
460 |
+
|
461 |
+
if len(terminals_pos) > 0:
|
462 |
+
return completion[: min(terminals_pos)]
|
463 |
+
else:
|
464 |
+
return completion
|
465 |
+
|
466 |
+
def from_list_format(self, list_format: List[Dict]):
|
467 |
+
text = ''
|
468 |
+
num_images = 0
|
469 |
+
for ele in list_format:
|
470 |
+
if 'image' in ele:
|
471 |
+
num_images += 1
|
472 |
+
text += f'Picture {num_images}:'
|
473 |
+
text += self.image_start_tag + ele['image'] + self.image_end_tag
|
474 |
+
text += '\n'
|
475 |
+
elif 'text' in ele:
|
476 |
+
text += ele['text']
|
477 |
+
elif 'box' in ele:
|
478 |
+
if 'ref' in ele:
|
479 |
+
text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
|
480 |
+
for box in ele['box']:
|
481 |
+
text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
|
482 |
+
else:
|
483 |
+
raise ValueError("Unsupport element: " + str(ele))
|
484 |
+
return text
|
485 |
+
|
486 |
+
def _fetch_latest_picture(self, response, history):
|
487 |
+
if history is None:
|
488 |
+
history = []
|
489 |
+
_history = history + [(response, None)]
|
490 |
+
for q, r in _history[::-1]:
|
491 |
+
for ele in self.to_list_format(q)[::-1]:
|
492 |
+
if 'image' in ele:
|
493 |
+
return ele['image']
|
494 |
+
return None
|
495 |
+
|
496 |
+
def _fetch_all_box_with_ref(self, text):
|
497 |
+
list_format = self.to_list_format(text)
|
498 |
+
output = []
|
499 |
+
for i, ele in enumerate(list_format):
|
500 |
+
if 'box' in ele:
|
501 |
+
bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
|
502 |
+
assert len(bbox) == 4
|
503 |
+
output.append({'box': bbox})
|
504 |
+
if i > 0 and 'ref' in list_format[i - 1]:
|
505 |
+
output[-1]['ref'] = list_format[i - 1]['ref'].strip()
|
506 |
+
return output
|
507 |
+
|
508 |
+
def draw_bbox_on_latest_picture(
|
509 |
+
self,
|
510 |
+
response,
|
511 |
+
history=None,
|
512 |
+
) -> Optional[Image.Image]:
|
513 |
+
image = self._fetch_latest_picture(response, history)
|
514 |
+
if image is None:
|
515 |
+
return None
|
516 |
+
if image.startswith("http://") or image.startswith("https://"):
|
517 |
+
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
518 |
+
h, w = image.height, image.width
|
519 |
+
else:
|
520 |
+
image = np.asarray(Image.open(image).convert("RGB"))
|
521 |
+
h, w = image.shape[0], image.shape[1]
|
522 |
+
visualizer = Visualizer(image)
|
523 |
+
|
524 |
+
boxes = self._fetch_all_box_with_ref(response)
|
525 |
+
if not boxes:
|
526 |
+
return None
|
527 |
+
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
|
528 |
+
for box in boxes:
|
529 |
+
if 'ref' in box: # random new color for new refexps
|
530 |
+
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
|
531 |
+
x1, y1, x2, y2 = box['box']
|
532 |
+
x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
|
533 |
+
visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
|
534 |
+
if 'ref' in box:
|
535 |
+
visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
|
536 |
+
return visualizer.output
|
537 |
+
|
538 |
+
|
539 |
+
class VisImage:
|
540 |
+
def __init__(self, img, scale=1.0):
|
541 |
+
self.img = img
|
542 |
+
self.scale = scale
|
543 |
+
self.width, self.height = img.shape[1], img.shape[0]
|
544 |
+
self._setup_figure(img)
|
545 |
+
|
546 |
+
def _setup_figure(self, img):
|
547 |
+
fig = mplfigure.Figure(frameon=False)
|
548 |
+
self.dpi = fig.get_dpi()
|
549 |
+
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation
|
550 |
+
# (https://github.com/matplotlib/matplotlib/issues/15363)
|
551 |
+
fig.set_size_inches(
|
552 |
+
(self.width * self.scale + 1e-2) / self.dpi,
|
553 |
+
(self.height * self.scale + 1e-2) / self.dpi,
|
554 |
+
)
|
555 |
+
self.canvas = FigureCanvasAgg(fig)
|
556 |
+
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
|
557 |
+
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
|
558 |
+
ax.axis("off")
|
559 |
+
self.fig = fig
|
560 |
+
self.ax = ax
|
561 |
+
self.reset_image(img)
|
562 |
+
|
563 |
+
def reset_image(self, img):
|
564 |
+
img = img.astype("uint8")
|
565 |
+
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
|
566 |
+
|
567 |
+
def save(self, filepath):
|
568 |
+
self.fig.savefig(filepath)
|
569 |
+
|
570 |
+
def get_image(self):
|
571 |
+
canvas = self.canvas
|
572 |
+
s, (width, height) = canvas.print_to_buffer()
|
573 |
+
|
574 |
+
buffer = np.frombuffer(s, dtype="uint8")
|
575 |
+
|
576 |
+
img_rgba = buffer.reshape(height, width, 4)
|
577 |
+
rgb, alpha = np.split(img_rgba, [3], axis=2)
|
578 |
+
return rgb.astype("uint8")
|
579 |
+
|
580 |
+
|
581 |
+
class Visualizer:
|
582 |
+
def __init__(self, img_rgb, metadata=None, scale=1.0):
|
583 |
+
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
|
584 |
+
self.output = VisImage(self.img, scale=scale)
|
585 |
+
self.cpu_device = torch.device("cpu")
|
586 |
+
|
587 |
+
# too small texts are useless, therefore clamp to 14
|
588 |
+
self._default_font_size = max(
|
589 |
+
np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
|
590 |
+
)
|
591 |
+
|
592 |
+
def draw_text(
|
593 |
+
self,
|
594 |
+
text,
|
595 |
+
position,
|
596 |
+
*,
|
597 |
+
font_size=None,
|
598 |
+
color="g",
|
599 |
+
horizontal_alignment="center",
|
600 |
+
rotation=0,
|
601 |
+
):
|
602 |
+
if not font_size:
|
603 |
+
font_size = self._default_font_size
|
604 |
+
|
605 |
+
# since the text background is dark, we don't want the text to be dark
|
606 |
+
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
|
607 |
+
color[np.argmax(color)] = max(0.8, np.max(color))
|
608 |
+
|
609 |
+
x, y = position
|
610 |
+
self.output.ax.text(
|
611 |
+
x,
|
612 |
+
y,
|
613 |
+
text,
|
614 |
+
size=font_size * self.output.scale,
|
615 |
+
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
|
616 |
+
verticalalignment="top",
|
617 |
+
horizontalalignment=horizontal_alignment,
|
618 |
+
color=color,
|
619 |
+
zorder=10,
|
620 |
+
rotation=rotation,
|
621 |
+
)
|
622 |
+
return self.output
|
623 |
+
|
624 |
+
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
|
625 |
+
x0, y0, x1, y1 = box_coord
|
626 |
+
width = x1 - x0
|
627 |
+
height = y1 - y0
|
628 |
+
|
629 |
+
linewidth = max(self._default_font_size / 4, 1)
|
630 |
+
|
631 |
+
self.output.ax.add_patch(
|
632 |
+
mpl.patches.Rectangle(
|
633 |
+
(x0, y0),
|
634 |
+
width,
|
635 |
+
height,
|
636 |
+
fill=False,
|
637 |
+
edgecolor=edge_color,
|
638 |
+
linewidth=linewidth * self.output.scale,
|
639 |
+
alpha=alpha,
|
640 |
+
linestyle=line_style,
|
641 |
+
)
|
642 |
+
)
|
643 |
+
return self.output
|
644 |
+
|
645 |
+
def get_output(self):
|
646 |
+
return self.output
|