Update README.md
Browse files
README.md
CHANGED
@@ -57,9 +57,46 @@ install the latest version of DeepSpeed to get all of these required features:
|
|
57 |
pip install "deepspeed>=0.14.2"
|
58 |
```
|
59 |
|
60 |
-
### Inference
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
* Example with pure-HF: https://github.com/Snowflake-Labs/snowflake-arctic/blob/main/inference
|
65 |
* Tutorial using vLLM: https://github.com/Snowflake-Labs/snowflake-arctic/tree/main/inference/vllm
|
|
|
57 |
pip install "deepspeed>=0.14.2"
|
58 |
```
|
59 |
|
60 |
+
### Inference examples
|
61 |
|
62 |
+
Due to the model size we recommend using a single 8xH100 instance from your
|
63 |
+
favorite cloud provider such as: AWS [p5.48xlarge](https://aws.amazon.com/ec2/instance-types/p5/),
|
64 |
+
Azure [ND96isr_H100_v5](https://learn.microsoft.com/en-us/azure/virtual-machines/nd-h100-v5-series), etc.
|
65 |
+
|
66 |
+
In this example we are using FP8 quantization provided by DeepSpeed in the backend, we can also use FP6
|
67 |
+
quantization by specifying `q_bits=6` in the `ArcticQuantizationConfig` config. The `"150GiB"` setting
|
68 |
+
for max_memory is required until we can get DeepSpeed's FP quantization supported natively as a [HFQuantizer](https://huggingface.co/docs/transformers/main/en/hf_quantizer#build-a-new-hfquantizer-class) which we
|
69 |
+
are actively working on.
|
70 |
+
|
71 |
+
```python
|
72 |
+
import os
|
73 |
+
# enable hf_transfer for faster ckpt download
|
74 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
75 |
+
|
76 |
+
import torch
|
77 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
78 |
+
from transformers.models.arctic.configuration_arctic import ArcticQuantizationConfig
|
79 |
+
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained("Snowflake/snowflake-arctic-instruct")
|
81 |
+
|
82 |
+
quant_config = ArcticQuantizationConfig(q_bits=8)
|
83 |
+
|
84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
85 |
+
"Snowflake/snowflake-arctic-instruct",
|
86 |
+
low_cpu_mem_usage=True,
|
87 |
+
device_map="auto",
|
88 |
+
ds_quantization_config=quant_config,
|
89 |
+
max_memory={i: "150GiB" for i in range(8)},
|
90 |
+
torch_dtype=torch.bfloat16)
|
91 |
+
|
92 |
+
messages = [{"role": "user", "content": "What is 1 + 1 "}]
|
93 |
+
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
94 |
+
|
95 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=20)
|
96 |
+
print(tokenizer.decode(outputs[0]))
|
97 |
+
```
|
98 |
+
|
99 |
+
The Arctic github page has additional code snippets and examples around running inference:
|
100 |
|
101 |
* Example with pure-HF: https://github.com/Snowflake-Labs/snowflake-arctic/blob/main/inference
|
102 |
* Tutorial using vLLM: https://github.com/Snowflake-Labs/snowflake-arctic/tree/main/inference/vllm
|