|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Arctic model configuration""" |
|
|
|
from dataclasses import asdict, dataclass |
|
from typing import Any, Dict |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"arctic": "https://huggingface.co/Snowflake/snowflake-arctic-instruct/tree/main/config.json", |
|
} |
|
|
|
|
|
@dataclass |
|
class ArcticLoraConfig: |
|
lora_r: int = 64 |
|
lora_alpha: float = 16 |
|
shard_base_weights: bool = False |
|
|
|
|
|
@dataclass |
|
class ArcticQuantizationConfig: |
|
q_bits: int = 8 |
|
rounding: str = "nearest" |
|
mantissa_bits: int = 3 |
|
group_size: int = 512 |
|
|
|
|
|
class ArcticConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ArcticModel`]. It is used to instantiate an |
|
Arctic model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the #TODO(rsamdani): add what model has the default config.. |
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`ArcticModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): |
|
The maximum sequence length that this model might ever be used with. Arctic's sliding window attention |
|
allows sequence of up to 4096*32 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 1000000.0): |
|
The base period of the RoPE embeddings. |
|
sliding_window (`int`, *optional*): |
|
Sliding window attention window size. If not specified, will default to `4096`. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
num_experts_per_tok (`int`, *optional*, defaults to 2): |
|
The number of experts to root per-token, can be also interpreted as the `top-p` routing |
|
parameter |
|
num_local_experts (`int`, *optional*, defaults to 8): |
|
Number of experts per Sparse MLP layer. |
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): |
|
The aux loss factor for the total loss. |
|
|
|
```python |
|
>>> from transformers import ArcticModel, ArcticConfig |
|
|
|
>>> # Initializing a Arctic 7B style configuration TODO(rsamdani): verify which model does the default configuration correspond to. |
|
>>> configuration = ArcticConfig() |
|
|
|
>>> # Initializing a model from the Arctic 7B style configuration |
|
>>> model = ArcticModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "arctic" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
rope_theta=1e6, |
|
sliding_window=None, |
|
attention_dropout=0.0, |
|
num_experts_per_tok=1, |
|
num_local_experts=8, |
|
router_aux_loss_coef=0.001, |
|
moe_layer_frequency=2, |
|
parallel_attn_mlp_res=False, |
|
moe_train_capacity_factor=1, |
|
moe_eval_capacity_factor=1, |
|
enable_expert_tensor_parallelism=False, |
|
moe_min_capacity=0, |
|
moe_token_dropping=True, |
|
quantization=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
|
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.num_local_experts = num_local_experts |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
self.moe_layer_frequency = moe_layer_frequency |
|
self.moe_train_capacity_factor = moe_train_capacity_factor |
|
self.moe_eval_capacity_factor = moe_eval_capacity_factor |
|
self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism |
|
self.moe_min_capacity = moe_min_capacity |
|
self.moe_token_dropping = moe_token_dropping |
|
self.parallel_attn_mlp_res = parallel_attn_mlp_res |
|
if isinstance(quantization, dict): |
|
self.quantization = ArcticQuantizationConfig(**quantization) |
|
else: |
|
self.quantization = quantization |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
@classmethod |
|
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "ArcticConfig": |
|
result = super().from_dict(config_dict, **kwargs) |
|
if isinstance(result, tuple): |
|
config = result[0] |
|
else: |
|
config = result |
|
if isinstance(config.quantization, dict): |
|
config.quantization = ArcticQuantizationConfig(**config.quantization) |
|
return result |
|
|
|
def to_dict(self) -> Dict[str, Any]: |
|
ret = super().to_dict() |
|
if isinstance(ret["quantization"], ArcticQuantizationConfig): |
|
ret["quantization"] = asdict(ret["quantization"]) |
|
return ret |
|
|