Shariar433
commited on
Commit
•
0fe5da3
1
Parent(s):
bac50bb
update model card README.md
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
value: 0.9496802423426456
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,10 +44,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
- Recall: 0.9497
|
50 |
-
- F1: 0.
|
51 |
- Accuracy: 0.9863
|
52 |
|
53 |
## Model description
|
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9348906560636183
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
value: 0.9496802423426456
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9422274169310403
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.986342497203744
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0597
|
48 |
+
- Precision: 0.9349
|
49 |
- Recall: 0.9497
|
50 |
+
- F1: 0.9422
|
51 |
- Accuracy: 0.9863
|
52 |
|
53 |
## Model description
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0766 | 1.0 | 1756 | 0.0722 | 0.9131 | 0.9320 | 0.9225 | 0.9803 |
|
83 |
+
| 0.0415 | 2.0 | 3512 | 0.0580 | 0.9300 | 0.9487 | 0.9393 | 0.9858 |
|
84 |
+
| 0.0265 | 3.0 | 5268 | 0.0597 | 0.9349 | 0.9497 | 0.9422 | 0.9863 |
|
85 |
|
86 |
|
87 |
### Framework versions
|