Shariar433 commited on
Commit
0fe5da3
1 Parent(s): bac50bb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9314955430835259
29
  - name: Recall
30
  type: recall
31
  value: 0.9496802423426456
32
  - name: F1
33
  type: f1
34
- value: 0.9404999999999999
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9862836286572084
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,10 +44,10 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0581
48
- - Precision: 0.9315
49
  - Recall: 0.9497
50
- - F1: 0.9405
51
  - Accuracy: 0.9863
52
 
53
  ## Model description
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0768 | 1.0 | 1756 | 0.0701 | 0.9052 | 0.9332 | 0.9190 | 0.9804 |
83
- | 0.04 | 2.0 | 3512 | 0.0557 | 0.9277 | 0.9483 | 0.9379 | 0.9862 |
84
- | 0.0258 | 3.0 | 5268 | 0.0581 | 0.9315 | 0.9497 | 0.9405 | 0.9863 |
85
 
86
 
87
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9348906560636183
29
  - name: Recall
30
  type: recall
31
  value: 0.9496802423426456
32
  - name: F1
33
  type: f1
34
+ value: 0.9422274169310403
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.986342497203744
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0597
48
+ - Precision: 0.9349
49
  - Recall: 0.9497
50
+ - F1: 0.9422
51
  - Accuracy: 0.9863
52
 
53
  ## Model description
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0766 | 1.0 | 1756 | 0.0722 | 0.9131 | 0.9320 | 0.9225 | 0.9803 |
83
+ | 0.0415 | 2.0 | 3512 | 0.0580 | 0.9300 | 0.9487 | 0.9393 | 0.9858 |
84
+ | 0.0265 | 3.0 | 5268 | 0.0597 | 0.9349 | 0.9497 | 0.9422 | 0.9863 |
85
 
86
 
87
  ### Framework versions