Image Classification
vision
Andy1621 commited on
Commit
e0b2c80
1 Parent(s): 7834ea4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md CHANGED
@@ -1,3 +1,99 @@
1
  ---
2
  license: mit
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - vision
5
+ - image-classification
6
+ datasets:
7
+ - imagenet
8
  ---
9
+
10
+ # UniFormer (image model)
11
+
12
+ UniFormer models are trained on ImageNet at resolution 224x224.
13
+ It was introduced in the paper [UniFormer: Unifying Convolution and Self-attention for Visual Recognition](https://arxiv.org/abs/2201.09450) by Li et al,
14
+ and first released in [this repository](https://github.com/Sense-X/UniFormer).
15
+
16
+
17
+ ## Model description
18
+
19
+ The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format.
20
+ It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.
21
+
22
+ Without any extra training data,
23
+ UniFormer achieves **86.3** top-1 accuracy on ImageNet-1K classification.
24
+ With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks.
25
+ UniFormer obtains **82.9/84.8** top-1 accuracy on Kinetics-400/600,
26
+ and **60.9/71.2** top-1 accuracy on Something-Something V1/V2 video classification tasks.
27
+ It also achieves **53.8** box AP and **46.4** mask AP on COCO object detection task,
28
+ **50.8** mIoU on ADE20K semantic segmentation task,
29
+ and **77.4** AP on COCO pose estimation task.
30
+
31
+ ![teaser](framework.png)
32
+
33
+ [Source](https://paperswithcode.com/paper/uniformer-unifying-convolution-and-self)
34
+
35
+ ## Intended uses & limitations
36
+
37
+ You can use the raw model for image classification.
38
+ We now only upload the models trained without Token Labeling and Layer Scale.
39
+ More powerful models can be found in [the model hub](https://github.com/Sense-X/UniFormer/tree/main/image_classification).
40
+
41
+ ### ImageNet
42
+ | Model | Pretrain | Resolution | Top-1 | #Param. | FLOPs |
43
+ | --------------- | ----------- | ---------- | ----- | ------- | ----- |
44
+ | UniFormer-S | ImageNet-1K | 224x224 | 82.9 | 22M | 3.6G |
45
+ | UniFormer-S† | ImageNet-1K | 224x224 | 83.4 | 24M | 4.2G |
46
+ | UniFormer-B | ImageNet-1K | 224x224 | 83.8 | 50M | 8.3G |
47
+
48
+
49
+ ### How to use
50
+
51
+ You can followed our [demo](https://huggingface.co/spaces/Sense-X/uniformer_image_demo/tree/main) to use our models.
52
+
53
+ ```python
54
+ from uniformer import uniformer_small
55
+ from imagenet_class_index import imagenet_classnames
56
+
57
+
58
+ model = uniformer_small()
59
+ # load state
60
+ model_path = hf_hub_download(repo_id="Sense-X/uniformer_image", filename="uniformer_small_in1k.pth")
61
+ state_dict = torch.load(model_path, map_location='cpu')
62
+ model.load_state_dict(state_dict)
63
+ # set to eval mode
64
+ model = model.to(device)
65
+ model = model.eval()
66
+
67
+ # process image
68
+ image = img
69
+ image_transform = T.Compose(
70
+ [
71
+ T.Resize(224),
72
+ T.CenterCrop(224),
73
+ T.ToTensor(),
74
+ T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
75
+ ]
76
+ )
77
+ image = image_transform(image)
78
+ image = image.unsqueeze(0)
79
+
80
+
81
+ # model predicts one of the 1000 ImageNet classes
82
+ prediction = model(image)
83
+ predicted_class_idx = prediction.flatten().argmax(-1).item()
84
+ print("Predicted class:", imagenet_classnames[str(predicted_class_idx)][1])
85
+ ```
86
+
87
+
88
+ ### BibTeX entry and citation info
89
+
90
+ ```bibtex
91
+ @misc{li2022uniformer,
92
+ title={UniFormer: Unifying Convolution and Self-attention for Visual Recognition},
93
+ author={Kunchang Li and Yali Wang and Junhao Zhang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
94
+ year={2022},
95
+ eprint={2201.09450},
96
+ archivePrefix={arXiv},
97
+ primaryClass={cs.CV}
98
+ }
99
+ ```