Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ace
|
4 |
+
- af
|
5 |
+
- als
|
6 |
+
- am
|
7 |
+
- an
|
8 |
+
- ang
|
9 |
+
- ar
|
10 |
+
- arz
|
11 |
+
- as
|
12 |
+
- ast
|
13 |
+
- av
|
14 |
+
- ay
|
15 |
+
- az
|
16 |
+
- azb
|
17 |
+
- ba
|
18 |
+
- bar
|
19 |
+
- bcl
|
20 |
+
- be
|
21 |
+
- bg
|
22 |
+
- bho
|
23 |
+
- bjn
|
24 |
+
- bn
|
25 |
+
- bo
|
26 |
+
- bpy
|
27 |
+
- br
|
28 |
+
- bs
|
29 |
+
- bxr
|
30 |
+
- ca
|
31 |
+
- cbk
|
32 |
+
- cdo
|
33 |
+
- ce
|
34 |
+
- ceb
|
35 |
+
- chr
|
36 |
+
- ckb
|
37 |
+
- co
|
38 |
+
- crh
|
39 |
+
- cs
|
40 |
+
- csb
|
41 |
+
- cv
|
42 |
+
- cy
|
43 |
+
- da
|
44 |
+
- de
|
45 |
+
- diq
|
46 |
+
- dsb
|
47 |
+
- dty
|
48 |
+
- dv
|
49 |
+
- egl
|
50 |
+
- el
|
51 |
+
- en
|
52 |
+
- eo
|
53 |
+
- es
|
54 |
+
- et
|
55 |
+
- eu
|
56 |
+
- ext
|
57 |
+
- fa
|
58 |
+
- fi
|
59 |
+
- fo
|
60 |
+
- fr
|
61 |
+
- frp
|
62 |
+
- fur
|
63 |
+
- fy
|
64 |
+
- ga
|
65 |
+
- gag
|
66 |
+
- gd
|
67 |
+
- gl
|
68 |
+
- glk
|
69 |
+
- gn
|
70 |
+
- gu
|
71 |
+
- gv
|
72 |
+
- ha
|
73 |
+
- hak
|
74 |
+
- he
|
75 |
+
- hi
|
76 |
+
- hif
|
77 |
+
- hr
|
78 |
+
- hsb
|
79 |
+
- ht
|
80 |
+
- hu
|
81 |
+
- hy
|
82 |
+
- ia
|
83 |
+
- id
|
84 |
+
- ie
|
85 |
+
- ig
|
86 |
+
- ilo
|
87 |
+
- io
|
88 |
+
- is
|
89 |
+
- it
|
90 |
+
- ja
|
91 |
+
- jam
|
92 |
+
- jbo
|
93 |
+
- jv
|
94 |
+
- ka
|
95 |
+
- kaa
|
96 |
+
- kab
|
97 |
+
- kbd
|
98 |
+
- kk
|
99 |
+
- km
|
100 |
+
- kn
|
101 |
+
- ko
|
102 |
+
- koi
|
103 |
+
- kok
|
104 |
+
- krc
|
105 |
+
- ksh
|
106 |
+
- ku
|
107 |
+
- kv
|
108 |
+
- kw
|
109 |
+
- ky
|
110 |
+
- la
|
111 |
+
- lad
|
112 |
+
- lb
|
113 |
+
- lez
|
114 |
+
- lg
|
115 |
+
- li
|
116 |
+
- lij
|
117 |
+
- lmo
|
118 |
+
- ln
|
119 |
+
- lo
|
120 |
+
- lrc
|
121 |
+
- lt
|
122 |
+
- ltg
|
123 |
+
- lv
|
124 |
+
- lzh
|
125 |
+
- mai
|
126 |
+
- map
|
127 |
+
- mdf
|
128 |
+
- mg
|
129 |
+
- mhr
|
130 |
+
- mi
|
131 |
+
- min
|
132 |
+
- mk
|
133 |
+
- ml
|
134 |
+
- mn
|
135 |
+
- mr
|
136 |
+
- mrj
|
137 |
+
- ms
|
138 |
+
- mt
|
139 |
+
- mwl
|
140 |
+
- my
|
141 |
+
- myv
|
142 |
+
- mzn
|
143 |
+
- nan
|
144 |
+
- nap
|
145 |
+
- nb
|
146 |
+
- nci
|
147 |
+
- nds
|
148 |
+
- ne
|
149 |
+
- new
|
150 |
+
- nl
|
151 |
+
- nn
|
152 |
+
- nrm
|
153 |
+
- nso
|
154 |
+
- nv
|
155 |
+
- oc
|
156 |
+
- olo
|
157 |
+
- om
|
158 |
+
- or
|
159 |
+
- os
|
160 |
+
- pa
|
161 |
+
- pag
|
162 |
+
- pam
|
163 |
+
- pap
|
164 |
+
- pcd
|
165 |
+
- pdc
|
166 |
+
- pfl
|
167 |
+
- pl
|
168 |
+
- pnb
|
169 |
+
- ps
|
170 |
+
- pt
|
171 |
+
- qu
|
172 |
+
- rm
|
173 |
+
- ro
|
174 |
+
- roa
|
175 |
+
- ru
|
176 |
+
- rue
|
177 |
+
- rup
|
178 |
+
- rw
|
179 |
+
- sa
|
180 |
+
- sah
|
181 |
+
- sc
|
182 |
+
- scn
|
183 |
+
- sco
|
184 |
+
- sd
|
185 |
+
- sgs
|
186 |
+
- sh
|
187 |
+
- si
|
188 |
+
- sk
|
189 |
+
- sl
|
190 |
+
- sme
|
191 |
+
- sn
|
192 |
+
- so
|
193 |
+
- sq
|
194 |
+
- sr
|
195 |
+
- srn
|
196 |
+
- stq
|
197 |
+
- su
|
198 |
+
- sv
|
199 |
+
- sw
|
200 |
+
- szl
|
201 |
+
- ta
|
202 |
+
- tcy
|
203 |
+
- te
|
204 |
+
- tet
|
205 |
+
- tg
|
206 |
+
- th
|
207 |
+
- tk
|
208 |
+
- tl
|
209 |
+
- tn
|
210 |
+
- to
|
211 |
+
- tr
|
212 |
+
- tt
|
213 |
+
- tyv
|
214 |
+
- udm
|
215 |
+
- ug
|
216 |
+
- uk
|
217 |
+
- ur
|
218 |
+
- uz
|
219 |
+
- vec
|
220 |
+
- vep
|
221 |
+
- vi
|
222 |
+
- vls
|
223 |
+
- vo
|
224 |
+
- vro
|
225 |
+
- wa
|
226 |
+
- war
|
227 |
+
- wo
|
228 |
+
- wuu
|
229 |
+
- xh
|
230 |
+
- xmf
|
231 |
+
- yi
|
232 |
+
- yo
|
233 |
+
- zea
|
234 |
+
- zh
|
235 |
+
language_bcp47:
|
236 |
+
- be-tarask
|
237 |
+
- map-bms
|
238 |
+
- nds-nl
|
239 |
+
- roa-tara
|
240 |
+
- zh-yue
|
241 |
+
tags:
|
242 |
+
- Language Identification
|
243 |
+
license: "apache-2.0"
|
244 |
+
datasets:
|
245 |
+
- wili_2018
|
246 |
+
|
247 |
+
metrics:
|
248 |
+
- accuracy
|
249 |
+
- macro F1-score
|
250 |
+
---
|
251 |
+
# Canine for Language Identification
|
252 |
+
Canine model trained on WiLI-2018 dataset to identify the language of a text.
|
253 |
+
|
254 |
+
### Preprocessing
|
255 |
+
- 10% of train data stratified sampled as validation set
|
256 |
+
- max sequence length: 512
|
257 |
+
|
258 |
+
### Hyperparameters
|
259 |
+
- epochs: 4
|
260 |
+
- learning-rate: 3e-5
|
261 |
+
- batch size: 16
|
262 |
+
- gradient_accumulation: 4
|
263 |
+
- optimizer: AdamW with default settings
|
264 |
+
|
265 |
+
### Test Results
|
266 |
+
- Accuracy: 94,92%
|
267 |
+
- Macro F1-score: 94,91%
|
268 |
+
|
269 |
+
### Credit to
|
270 |
+
```
|
271 |
+
@article{clark-etal-2022-canine,
|
272 |
+
title = "Canine: Pre-training an Efficient Tokenization-Free Encoder for Language Representation",
|
273 |
+
author = "Clark, Jonathan H. and
|
274 |
+
Garrette, Dan and
|
275 |
+
Turc, Iulia and
|
276 |
+
Wieting, John",
|
277 |
+
journal = "Transactions of the Association for Computational Linguistics",
|
278 |
+
volume = "10",
|
279 |
+
year = "2022",
|
280 |
+
address = "Cambridge, MA",
|
281 |
+
publisher = "MIT Press",
|
282 |
+
url = "https://aclanthology.org/2022.tacl-1.5",
|
283 |
+
doi = "10.1162/tacl_a_00448",
|
284 |
+
pages = "73--91",
|
285 |
+
abstract = "Pipelined NLP systems have largely been superseded by end-to-end neural modeling, yet nearly all commonly used models still require an explicit tokenization step. While recent tokenization approaches based on data-derived subword lexicons are less brittle than manually engineered tokenizers, these techniques are not equally suited to all languages, and the use of any fixed vocabulary may limit a model{'}s ability to adapt. In this paper, we present Canine, a neural encoder that operates directly on character sequences{---}without explicit tokenization or vocabulary{---}and a pre-training strategy that operates either directly on characters or optionally uses subwords as a soft inductive bias. To use its finer-grained input effectively and efficiently, Canine combines downsampling, which reduces the input sequence length, with a deep transformer stack, which encodes context. Canine outperforms a comparable mBert model by 5.7 F1 on TyDi QA, a challenging multilingual benchmark, despite having fewer model parameters.",
|
286 |
+
}
|
287 |
+
@dataset{thoma_martin_2018_841984,
|
288 |
+
author = {Thoma, Martin},
|
289 |
+
title = {{WiLI-2018 - Wikipedia Language Identification
|
290 |
+
database}},
|
291 |
+
month = jan,
|
292 |
+
year = 2018,
|
293 |
+
publisher = {Zenodo},
|
294 |
+
version = {1.0.0},
|
295 |
+
doi = {10.5281/zenodo.841984},
|
296 |
+
url = {https://doi.org/10.5281/zenodo.841984}
|
297 |
+
}
|
298 |
+
```
|
299 |
+
|