Upload 4 files
Browse files- demo.py +189 -0
- pipeline_PowerPaint.py +1243 -0
- pipeline_PowerPaint_ControlNet.py +1775 -0
- power_paint_tokenizer.py +513 -0
demo.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageFilter, ImageOps
|
5 |
+
from pipeline_PowerPaint import StableDiffusionInpaintPipeline as Pipeline
|
6 |
+
from power_paint_tokenizer import PowerPaintTokenizer
|
7 |
+
from diffusers.utils import load_image
|
8 |
+
|
9 |
+
|
10 |
+
def add_task_to_prompt(prompt, negative_prompt, task):
|
11 |
+
if task == "object-removal":
|
12 |
+
promptA = prompt + " P_ctxt"
|
13 |
+
promptB = prompt + " P_ctxt"
|
14 |
+
negative_promptA = negative_prompt + " P_obj"
|
15 |
+
negative_promptB = negative_prompt + " P_obj"
|
16 |
+
elif task == "shape-guided":
|
17 |
+
promptA = prompt + " P_shape"
|
18 |
+
promptB = prompt + " P_ctxt"
|
19 |
+
negative_promptA = negative_prompt
|
20 |
+
negative_promptB = negative_prompt
|
21 |
+
elif task == "image-outpainting":
|
22 |
+
promptA = prompt + " P_ctxt"
|
23 |
+
promptB = prompt + " P_ctxt"
|
24 |
+
negative_promptA = negative_prompt + " P_obj"
|
25 |
+
negative_promptB = negative_prompt + " P_obj"
|
26 |
+
else:
|
27 |
+
promptA = prompt + " P_obj"
|
28 |
+
promptB = prompt + " P_obj"
|
29 |
+
negative_promptA = negative_prompt
|
30 |
+
negative_promptB = negative_prompt
|
31 |
+
|
32 |
+
return promptA, promptB, negative_promptA, negative_promptB
|
33 |
+
|
34 |
+
|
35 |
+
@torch.inference_mode()
|
36 |
+
def predict(
|
37 |
+
pipe,
|
38 |
+
input_image,
|
39 |
+
prompt,
|
40 |
+
fitting_degree,
|
41 |
+
ddim_steps,
|
42 |
+
scale,
|
43 |
+
negative_prompt,
|
44 |
+
task,
|
45 |
+
):
|
46 |
+
width, height = input_image["image"].convert("RGB").size
|
47 |
+
|
48 |
+
if width < height:
|
49 |
+
input_image["image"] = (
|
50 |
+
input_image["image"].convert("RGB").resize((640, int(height / width * 640)))
|
51 |
+
)
|
52 |
+
else:
|
53 |
+
input_image["image"] = (
|
54 |
+
input_image["image"].convert("RGB").resize((int(width / height * 640), 640))
|
55 |
+
)
|
56 |
+
|
57 |
+
promptA, promptB, negative_promptA, negative_promptB = add_task_to_prompt(
|
58 |
+
prompt, negative_prompt, task
|
59 |
+
)
|
60 |
+
print(promptA, promptB, negative_promptA, negative_promptB)
|
61 |
+
img = np.array(input_image["image"].convert("RGB"))
|
62 |
+
|
63 |
+
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
64 |
+
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
65 |
+
input_image["image"] = input_image["image"].resize((H, W))
|
66 |
+
input_image["mask"] = input_image["mask"].resize((H, W))
|
67 |
+
result = pipe(
|
68 |
+
promptA=promptA,
|
69 |
+
promptB=promptB,
|
70 |
+
tradoff=fitting_degree,
|
71 |
+
tradoff_nag=fitting_degree,
|
72 |
+
negative_promptA=negative_promptA,
|
73 |
+
negative_promptB=negative_promptB,
|
74 |
+
image=input_image["image"].convert("RGB"),
|
75 |
+
mask_image=input_image["mask"].convert("RGB"),
|
76 |
+
width=H,
|
77 |
+
height=W,
|
78 |
+
guidance_scale=scale,
|
79 |
+
num_inference_steps=ddim_steps,
|
80 |
+
).images[0]
|
81 |
+
mask_np = np.array(input_image["mask"].convert("RGB"))
|
82 |
+
red = np.array(result).astype("float") * 1
|
83 |
+
red[:, :, 0] = 180.0
|
84 |
+
red[:, :, 2] = 0
|
85 |
+
red[:, :, 1] = 0
|
86 |
+
result_m = np.array(result)
|
87 |
+
result_m = Image.fromarray(
|
88 |
+
(
|
89 |
+
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0)
|
90 |
+
+ mask_np.astype("float") / 512.0 * red
|
91 |
+
).astype("uint8")
|
92 |
+
)
|
93 |
+
m_img = (
|
94 |
+
input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3))
|
95 |
+
)
|
96 |
+
m_img = np.asarray(m_img) / 255.0
|
97 |
+
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
|
98 |
+
ours_np = np.asarray(result) / 255.0
|
99 |
+
ours_np = ours_np * m_img + (1 - m_img) * img_np
|
100 |
+
result_paste = Image.fromarray(np.uint8(ours_np * 255))
|
101 |
+
|
102 |
+
dict_res = [input_image["mask"].convert("RGB"), result_m]
|
103 |
+
|
104 |
+
dict_out = [input_image["image"].convert("RGB"), result_paste]
|
105 |
+
|
106 |
+
return dict_out, dict_res
|
107 |
+
|
108 |
+
|
109 |
+
pipe = Pipeline.from_pretrained(
|
110 |
+
"Sanster/PowerPaint-V1-stable-diffusion-inpainting",
|
111 |
+
torch_dtype=torch.float16,
|
112 |
+
safety_checker=None,
|
113 |
+
variant="fp16",
|
114 |
+
)
|
115 |
+
pipe.tokenizer = PowerPaintTokenizer(pipe.tokenizer)
|
116 |
+
pipe = pipe.to("mps")
|
117 |
+
|
118 |
+
|
119 |
+
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
120 |
+
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
121 |
+
image = load_image(img_url).convert("RGB")
|
122 |
+
mask = load_image(mask_url).convert("RGB")
|
123 |
+
|
124 |
+
input_image = {"image": image, "mask": mask}
|
125 |
+
prompt = "Face of a fox sitting on a bench"
|
126 |
+
negative_prompt = "out of frame, lowres, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, disfigured, gross proportions, malformed limbs, watermark, signature"
|
127 |
+
fitting_degree = 1
|
128 |
+
ddim_steps = 30
|
129 |
+
tasks = [
|
130 |
+
{
|
131 |
+
"task": "object-removal",
|
132 |
+
"guidance_scale": 12,
|
133 |
+
"prompt": "",
|
134 |
+
"negative_prompt": "",
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"task": "shape-guided",
|
138 |
+
"guidance_scale": 7.5,
|
139 |
+
"prompt": prompt,
|
140 |
+
"negative_prompt": negative_prompt,
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"task": "inpaint",
|
144 |
+
"guidance_scale": 7.5,
|
145 |
+
"prompt": prompt,
|
146 |
+
"negative_prompt": negative_prompt,
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"task": "image-outpainting",
|
150 |
+
"guidance_scale": 7.5,
|
151 |
+
"prompt": "A dog seitting on a bench",
|
152 |
+
"negative_prompt": negative_prompt,
|
153 |
+
},
|
154 |
+
]
|
155 |
+
|
156 |
+
for task in tasks:
|
157 |
+
if task["task"] == "image-outpainting":
|
158 |
+
margin = 128
|
159 |
+
input_image["image"] = ImageOps.expand(
|
160 |
+
input_image["image"],
|
161 |
+
border=(margin, margin, margin, margin),
|
162 |
+
fill=(127, 127, 127),
|
163 |
+
)
|
164 |
+
outpaint_mask = np.zeros_like(np.asarray(input_image["mask"]))
|
165 |
+
input_image["mask"] = Image.fromarray(
|
166 |
+
cv2.copyMakeBorder(
|
167 |
+
outpaint_mask,
|
168 |
+
margin,
|
169 |
+
margin,
|
170 |
+
margin,
|
171 |
+
margin,
|
172 |
+
cv2.BORDER_CONSTANT,
|
173 |
+
value=(255, 255, 255),
|
174 |
+
)
|
175 |
+
)
|
176 |
+
|
177 |
+
dict_out, dict_res = predict(
|
178 |
+
pipe,
|
179 |
+
input_image,
|
180 |
+
task["prompt"],
|
181 |
+
fitting_degree,
|
182 |
+
ddim_steps,
|
183 |
+
task["guidance_scale"],
|
184 |
+
task["negative_prompt"],
|
185 |
+
task,
|
186 |
+
)
|
187 |
+
|
188 |
+
result_image = dict_out[1]
|
189 |
+
result_image.save(f"{task['task']}_result.png")
|
pipeline_PowerPaint.py
ADDED
@@ -0,0 +1,1243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import PIL
|
20 |
+
import torch
|
21 |
+
from packaging import version
|
22 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
23 |
+
from diffusers.configuration_utils import FrozenDict
|
24 |
+
from diffusers.image_processor import VaeImageProcessor
|
25 |
+
from diffusers.loaders import (
|
26 |
+
FromSingleFileMixin,
|
27 |
+
LoraLoaderMixin,
|
28 |
+
TextualInversionLoaderMixin,
|
29 |
+
)
|
30 |
+
from diffusers.models import (
|
31 |
+
AsymmetricAutoencoderKL,
|
32 |
+
AutoencoderKL,
|
33 |
+
UNet2DConditionModel,
|
34 |
+
)
|
35 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
36 |
+
from diffusers.utils import (
|
37 |
+
deprecate,
|
38 |
+
is_accelerate_available,
|
39 |
+
is_accelerate_version,
|
40 |
+
logging,
|
41 |
+
)
|
42 |
+
from diffusers.utils.torch_utils import randn_tensor
|
43 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
44 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
45 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
46 |
+
StableDiffusionSafetyChecker,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51 |
+
|
52 |
+
|
53 |
+
def prepare_mask_and_masked_image(
|
54 |
+
image, mask, height, width, return_image: bool = False
|
55 |
+
):
|
56 |
+
"""
|
57 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
58 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
59 |
+
``image`` and ``1`` for the ``mask``.
|
60 |
+
|
61 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
62 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
66 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
67 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
68 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
69 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
70 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
71 |
+
|
72 |
+
|
73 |
+
Raises:
|
74 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
75 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
76 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
77 |
+
(ot the other way around).
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
81 |
+
dimensions: ``batch x channels x height x width``.
|
82 |
+
"""
|
83 |
+
|
84 |
+
if image is None:
|
85 |
+
raise ValueError("`image` input cannot be undefined.")
|
86 |
+
|
87 |
+
if mask is None:
|
88 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
89 |
+
|
90 |
+
if isinstance(image, torch.Tensor):
|
91 |
+
if not isinstance(mask, torch.Tensor):
|
92 |
+
raise TypeError(
|
93 |
+
f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not"
|
94 |
+
)
|
95 |
+
|
96 |
+
# Batch single image
|
97 |
+
if image.ndim == 3:
|
98 |
+
assert (
|
99 |
+
image.shape[0] == 3
|
100 |
+
), "Image outside a batch should be of shape (3, H, W)"
|
101 |
+
image = image.unsqueeze(0)
|
102 |
+
|
103 |
+
# Batch and add channel dim for single mask
|
104 |
+
if mask.ndim == 2:
|
105 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
106 |
+
|
107 |
+
# Batch single mask or add channel dim
|
108 |
+
if mask.ndim == 3:
|
109 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
110 |
+
if mask.shape[0] == 1:
|
111 |
+
mask = mask.unsqueeze(0)
|
112 |
+
|
113 |
+
# Batched masks no channel dim
|
114 |
+
else:
|
115 |
+
mask = mask.unsqueeze(1)
|
116 |
+
|
117 |
+
assert (
|
118 |
+
image.ndim == 4 and mask.ndim == 4
|
119 |
+
), "Image and Mask must have 4 dimensions"
|
120 |
+
assert (
|
121 |
+
image.shape[-2:] == mask.shape[-2:]
|
122 |
+
), "Image and Mask must have the same spatial dimensions"
|
123 |
+
assert (
|
124 |
+
image.shape[0] == mask.shape[0]
|
125 |
+
), "Image and Mask must have the same batch size"
|
126 |
+
|
127 |
+
# Check image is in [-1, 1]
|
128 |
+
if image.min() < -1 or image.max() > 1:
|
129 |
+
raise ValueError("Image should be in [-1, 1] range")
|
130 |
+
|
131 |
+
# Check mask is in [0, 1]
|
132 |
+
if mask.min() < 0 or mask.max() > 1:
|
133 |
+
raise ValueError("Mask should be in [0, 1] range")
|
134 |
+
|
135 |
+
# Binarize mask
|
136 |
+
mask[mask < 0.5] = 0
|
137 |
+
mask[mask >= 0.5] = 1
|
138 |
+
|
139 |
+
# Image as float32
|
140 |
+
image = image.to(dtype=torch.float32)
|
141 |
+
elif isinstance(mask, torch.Tensor):
|
142 |
+
raise TypeError(
|
143 |
+
f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not"
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
# preprocess image
|
147 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
148 |
+
image = [image]
|
149 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
150 |
+
# resize all images w.r.t passed height an width
|
151 |
+
image = [
|
152 |
+
i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image
|
153 |
+
]
|
154 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
155 |
+
image = np.concatenate(image, axis=0)
|
156 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
157 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
158 |
+
|
159 |
+
image = image.transpose(0, 3, 1, 2)
|
160 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
161 |
+
|
162 |
+
# preprocess mask
|
163 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
164 |
+
mask = [mask]
|
165 |
+
|
166 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
167 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
168 |
+
mask = np.concatenate(
|
169 |
+
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
|
170 |
+
)
|
171 |
+
mask = mask.astype(np.float32) / 255.0
|
172 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
173 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
174 |
+
|
175 |
+
mask[mask < 0.5] = 0
|
176 |
+
mask[mask >= 0.5] = 1
|
177 |
+
mask = torch.from_numpy(mask)
|
178 |
+
|
179 |
+
masked_image = image * (mask < 0.5)
|
180 |
+
|
181 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
182 |
+
if return_image:
|
183 |
+
return mask, masked_image, image
|
184 |
+
|
185 |
+
return mask, masked_image
|
186 |
+
|
187 |
+
|
188 |
+
class StableDiffusionInpaintPipeline(
|
189 |
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
190 |
+
):
|
191 |
+
r"""
|
192 |
+
Pipeline for text-guided image inpainting using Stable Diffusion.
|
193 |
+
|
194 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
195 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
196 |
+
|
197 |
+
The pipeline also inherits the following loading methods:
|
198 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
199 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
200 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
201 |
+
|
202 |
+
Args:
|
203 |
+
vae ([`AutoencoderKL`, `AsymmetricAutoencoderKL`]):
|
204 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
205 |
+
text_encoder ([`CLIPTextModel`]):
|
206 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
207 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
208 |
+
A `CLIPTokenizer` to tokenize text.
|
209 |
+
unet ([`UNet2DConditionModel`]):
|
210 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
211 |
+
scheduler ([`SchedulerMixin`]):
|
212 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
213 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
214 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
215 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
216 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
217 |
+
about a model's potential harms.
|
218 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
219 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
220 |
+
"""
|
221 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
222 |
+
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
vae: Union[AutoencoderKL, AsymmetricAutoencoderKL],
|
226 |
+
text_encoder: CLIPTextModel,
|
227 |
+
tokenizer: CLIPTokenizer,
|
228 |
+
unet: UNet2DConditionModel,
|
229 |
+
scheduler: KarrasDiffusionSchedulers,
|
230 |
+
safety_checker: StableDiffusionSafetyChecker,
|
231 |
+
feature_extractor: CLIPImageProcessor,
|
232 |
+
requires_safety_checker: bool = True,
|
233 |
+
):
|
234 |
+
super().__init__()
|
235 |
+
|
236 |
+
if (
|
237 |
+
hasattr(scheduler.config, "steps_offset")
|
238 |
+
and scheduler.config.steps_offset != 1
|
239 |
+
):
|
240 |
+
deprecation_message = (
|
241 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
242 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
243 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
244 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
245 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
246 |
+
" file"
|
247 |
+
)
|
248 |
+
deprecate(
|
249 |
+
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
|
250 |
+
)
|
251 |
+
new_config = dict(scheduler.config)
|
252 |
+
new_config["steps_offset"] = 1
|
253 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
254 |
+
|
255 |
+
if (
|
256 |
+
hasattr(scheduler.config, "skip_prk_steps")
|
257 |
+
and scheduler.config.skip_prk_steps is False
|
258 |
+
):
|
259 |
+
deprecation_message = (
|
260 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
|
261 |
+
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
|
262 |
+
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
|
263 |
+
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
|
264 |
+
" Hub, it would be very nice if you could open a Pull request for the"
|
265 |
+
" `scheduler/scheduler_config.json` file"
|
266 |
+
)
|
267 |
+
deprecate(
|
268 |
+
"skip_prk_steps not set",
|
269 |
+
"1.0.0",
|
270 |
+
deprecation_message,
|
271 |
+
standard_warn=False,
|
272 |
+
)
|
273 |
+
new_config = dict(scheduler.config)
|
274 |
+
new_config["skip_prk_steps"] = True
|
275 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
276 |
+
|
277 |
+
if safety_checker is None and requires_safety_checker:
|
278 |
+
logger.warning(
|
279 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
280 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
281 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
282 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
283 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
284 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
285 |
+
)
|
286 |
+
|
287 |
+
if safety_checker is not None and feature_extractor is None:
|
288 |
+
raise ValueError(
|
289 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
290 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
291 |
+
)
|
292 |
+
|
293 |
+
is_unet_version_less_0_9_0 = hasattr(
|
294 |
+
unet.config, "_diffusers_version"
|
295 |
+
) and version.parse(
|
296 |
+
version.parse(unet.config._diffusers_version).base_version
|
297 |
+
) < version.parse(
|
298 |
+
"0.9.0.dev0"
|
299 |
+
)
|
300 |
+
is_unet_sample_size_less_64 = (
|
301 |
+
hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
302 |
+
)
|
303 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
304 |
+
deprecation_message = (
|
305 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
306 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
307 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
308 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
309 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
310 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
311 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
312 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
313 |
+
" the `unet/config.json` file"
|
314 |
+
)
|
315 |
+
deprecate(
|
316 |
+
"sample_size<64", "1.0.0", deprecation_message, standard_warn=False
|
317 |
+
)
|
318 |
+
new_config = dict(unet.config)
|
319 |
+
new_config["sample_size"] = 64
|
320 |
+
unet._internal_dict = FrozenDict(new_config)
|
321 |
+
|
322 |
+
# Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4
|
323 |
+
if unet.config.in_channels != 9:
|
324 |
+
logger.info(
|
325 |
+
f"You have loaded a UNet with {unet.config.in_channels} input channels which."
|
326 |
+
)
|
327 |
+
|
328 |
+
self.register_modules(
|
329 |
+
vae=vae,
|
330 |
+
text_encoder=text_encoder,
|
331 |
+
tokenizer=tokenizer,
|
332 |
+
unet=unet,
|
333 |
+
scheduler=scheduler,
|
334 |
+
safety_checker=safety_checker,
|
335 |
+
feature_extractor=feature_extractor,
|
336 |
+
)
|
337 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
338 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
339 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
340 |
+
|
341 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload
|
342 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
343 |
+
r"""
|
344 |
+
Offload all models to CPU to reduce memory usage with a low impact on performance. Moves one whole model at a
|
345 |
+
time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs.
|
346 |
+
Memory savings are lower than using `enable_sequential_cpu_offload`, but performance is much better due to the
|
347 |
+
iterative execution of the `unet`.
|
348 |
+
"""
|
349 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
350 |
+
from accelerate import cpu_offload_with_hook
|
351 |
+
else:
|
352 |
+
raise ImportError(
|
353 |
+
"`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher."
|
354 |
+
)
|
355 |
+
|
356 |
+
device = torch.device(f"cuda:{gpu_id}")
|
357 |
+
|
358 |
+
if self.device.type != "cpu":
|
359 |
+
self.to("cpu", silence_dtype_warnings=True)
|
360 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
361 |
+
|
362 |
+
hook = None
|
363 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
364 |
+
_, hook = cpu_offload_with_hook(
|
365 |
+
cpu_offloaded_model, device, prev_module_hook=hook
|
366 |
+
)
|
367 |
+
|
368 |
+
if self.safety_checker is not None:
|
369 |
+
_, hook = cpu_offload_with_hook(
|
370 |
+
self.safety_checker, device, prev_module_hook=hook
|
371 |
+
)
|
372 |
+
|
373 |
+
# We'll offload the last model manually.
|
374 |
+
self.final_offload_hook = hook
|
375 |
+
|
376 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
377 |
+
def _encode_prompt(
|
378 |
+
self,
|
379 |
+
promptA,
|
380 |
+
promptB,
|
381 |
+
t,
|
382 |
+
device,
|
383 |
+
num_images_per_prompt,
|
384 |
+
do_classifier_free_guidance,
|
385 |
+
negative_promptA=None,
|
386 |
+
negative_promptB=None,
|
387 |
+
t_nag=None,
|
388 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
389 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
390 |
+
lora_scale: Optional[float] = None,
|
391 |
+
):
|
392 |
+
r"""
|
393 |
+
Encodes the prompt into text encoder hidden states.
|
394 |
+
|
395 |
+
Args:
|
396 |
+
prompt (`str` or `List[str]`, *optional*):
|
397 |
+
prompt to be encoded
|
398 |
+
device: (`torch.device`):
|
399 |
+
torch device
|
400 |
+
num_images_per_prompt (`int`):
|
401 |
+
number of images that should be generated per prompt
|
402 |
+
do_classifier_free_guidance (`bool`):
|
403 |
+
whether to use classifier free guidance or not
|
404 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
405 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
406 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
407 |
+
less than `1`).
|
408 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
409 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
410 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
411 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
412 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
413 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
414 |
+
argument.
|
415 |
+
lora_scale (`float`, *optional*):
|
416 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
417 |
+
"""
|
418 |
+
# set lora scale so that monkey patched LoRA
|
419 |
+
# function of text encoder can correctly access it
|
420 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
421 |
+
self._lora_scale = lora_scale
|
422 |
+
|
423 |
+
prompt = promptA
|
424 |
+
negative_prompt = negative_promptA
|
425 |
+
|
426 |
+
if promptA is not None and isinstance(promptA, str):
|
427 |
+
batch_size = 1
|
428 |
+
elif promptA is not None and isinstance(promptA, list):
|
429 |
+
batch_size = len(promptA)
|
430 |
+
else:
|
431 |
+
batch_size = prompt_embeds.shape[0]
|
432 |
+
|
433 |
+
if prompt_embeds is None:
|
434 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
435 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
436 |
+
promptA = self.maybe_convert_prompt(promptA, self.tokenizer)
|
437 |
+
|
438 |
+
text_inputsA = self.tokenizer(
|
439 |
+
promptA,
|
440 |
+
padding="max_length",
|
441 |
+
max_length=self.tokenizer.model_max_length,
|
442 |
+
truncation=True,
|
443 |
+
return_tensors="pt",
|
444 |
+
)
|
445 |
+
text_inputsB = self.tokenizer(
|
446 |
+
promptB,
|
447 |
+
padding="max_length",
|
448 |
+
max_length=self.tokenizer.model_max_length,
|
449 |
+
truncation=True,
|
450 |
+
return_tensors="pt",
|
451 |
+
)
|
452 |
+
text_input_idsA = text_inputsA.input_ids
|
453 |
+
text_input_idsB = text_inputsB.input_ids
|
454 |
+
untruncated_ids = self.tokenizer(
|
455 |
+
promptA, padding="longest", return_tensors="pt"
|
456 |
+
).input_ids
|
457 |
+
|
458 |
+
if untruncated_ids.shape[-1] >= text_input_idsA.shape[
|
459 |
+
-1
|
460 |
+
] and not torch.equal(text_input_idsA, untruncated_ids):
|
461 |
+
removed_text = self.tokenizer.batch_decode(
|
462 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
463 |
+
)
|
464 |
+
logger.warning(
|
465 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
466 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
467 |
+
)
|
468 |
+
|
469 |
+
if (
|
470 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
471 |
+
and self.text_encoder.config.use_attention_mask
|
472 |
+
):
|
473 |
+
attention_mask = text_inputsA.attention_mask.to(device)
|
474 |
+
else:
|
475 |
+
attention_mask = None
|
476 |
+
|
477 |
+
# print("text_input_idsA: ",text_input_idsA)
|
478 |
+
# print("text_input_idsB: ",text_input_idsB)
|
479 |
+
# print('t: ',t)
|
480 |
+
|
481 |
+
prompt_embedsA = self.text_encoder(
|
482 |
+
text_input_idsA.to(device),
|
483 |
+
attention_mask=attention_mask,
|
484 |
+
)
|
485 |
+
prompt_embedsA = prompt_embedsA[0]
|
486 |
+
|
487 |
+
prompt_embedsB = self.text_encoder(
|
488 |
+
text_input_idsB.to(device),
|
489 |
+
attention_mask=attention_mask,
|
490 |
+
)
|
491 |
+
prompt_embedsB = prompt_embedsB[0]
|
492 |
+
prompt_embeds = prompt_embedsA * (t) + (1 - t) * prompt_embedsB
|
493 |
+
# print("prompt_embeds: ",prompt_embeds)
|
494 |
+
|
495 |
+
if self.text_encoder is not None:
|
496 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
497 |
+
elif self.unet is not None:
|
498 |
+
prompt_embeds_dtype = self.unet.dtype
|
499 |
+
else:
|
500 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
501 |
+
|
502 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
503 |
+
|
504 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
505 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
506 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
507 |
+
prompt_embeds = prompt_embeds.view(
|
508 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
509 |
+
)
|
510 |
+
|
511 |
+
# get unconditional embeddings for classifier free guidance
|
512 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
513 |
+
uncond_tokensA: List[str]
|
514 |
+
uncond_tokensB: List[str]
|
515 |
+
if negative_prompt is None:
|
516 |
+
uncond_tokensA = [""] * batch_size
|
517 |
+
uncond_tokensB = [""] * batch_size
|
518 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
519 |
+
raise TypeError(
|
520 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
521 |
+
f" {type(prompt)}."
|
522 |
+
)
|
523 |
+
elif isinstance(negative_prompt, str):
|
524 |
+
uncond_tokensA = [negative_promptA]
|
525 |
+
uncond_tokensB = [negative_promptB]
|
526 |
+
elif batch_size != len(negative_prompt):
|
527 |
+
raise ValueError(
|
528 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
529 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
530 |
+
" the batch size of `prompt`."
|
531 |
+
)
|
532 |
+
else:
|
533 |
+
uncond_tokensA = negative_promptA
|
534 |
+
uncond_tokensB = negative_promptB
|
535 |
+
|
536 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
537 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
538 |
+
uncond_tokensA = self.maybe_convert_prompt(
|
539 |
+
uncond_tokensA, self.tokenizer
|
540 |
+
)
|
541 |
+
uncond_tokensB = self.maybe_convert_prompt(
|
542 |
+
uncond_tokensB, self.tokenizer
|
543 |
+
)
|
544 |
+
|
545 |
+
max_length = prompt_embeds.shape[1]
|
546 |
+
uncond_inputA = self.tokenizer(
|
547 |
+
uncond_tokensA,
|
548 |
+
padding="max_length",
|
549 |
+
max_length=max_length,
|
550 |
+
truncation=True,
|
551 |
+
return_tensors="pt",
|
552 |
+
)
|
553 |
+
uncond_inputB = self.tokenizer(
|
554 |
+
uncond_tokensB,
|
555 |
+
padding="max_length",
|
556 |
+
max_length=max_length,
|
557 |
+
truncation=True,
|
558 |
+
return_tensors="pt",
|
559 |
+
)
|
560 |
+
|
561 |
+
if (
|
562 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
563 |
+
and self.text_encoder.config.use_attention_mask
|
564 |
+
):
|
565 |
+
attention_mask = uncond_inputA.attention_mask.to(device)
|
566 |
+
else:
|
567 |
+
attention_mask = None
|
568 |
+
|
569 |
+
negative_prompt_embedsA = self.text_encoder(
|
570 |
+
uncond_inputA.input_ids.to(device),
|
571 |
+
attention_mask=attention_mask,
|
572 |
+
)
|
573 |
+
negative_prompt_embedsB = self.text_encoder(
|
574 |
+
uncond_inputB.input_ids.to(device),
|
575 |
+
attention_mask=attention_mask,
|
576 |
+
)
|
577 |
+
negative_prompt_embeds = (
|
578 |
+
negative_prompt_embedsA[0] * (t_nag)
|
579 |
+
+ (1 - t_nag) * negative_prompt_embedsB[0]
|
580 |
+
)
|
581 |
+
|
582 |
+
# negative_prompt_embeds = negative_prompt_embeds[0]
|
583 |
+
|
584 |
+
if do_classifier_free_guidance:
|
585 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
586 |
+
seq_len = negative_prompt_embeds.shape[1]
|
587 |
+
|
588 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
589 |
+
dtype=prompt_embeds_dtype, device=device
|
590 |
+
)
|
591 |
+
|
592 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
593 |
+
1, num_images_per_prompt, 1
|
594 |
+
)
|
595 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
596 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
597 |
+
)
|
598 |
+
|
599 |
+
# For classifier free guidance, we need to do two forward passes.
|
600 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
601 |
+
# to avoid doing two forward passes
|
602 |
+
# print("prompt_embeds: ",prompt_embeds)
|
603 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
604 |
+
|
605 |
+
return prompt_embeds
|
606 |
+
|
607 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
608 |
+
def run_safety_checker(self, image, device, dtype):
|
609 |
+
if self.safety_checker is None:
|
610 |
+
has_nsfw_concept = None
|
611 |
+
else:
|
612 |
+
if torch.is_tensor(image):
|
613 |
+
feature_extractor_input = self.image_processor.postprocess(
|
614 |
+
image, output_type="pil"
|
615 |
+
)
|
616 |
+
else:
|
617 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
618 |
+
safety_checker_input = self.feature_extractor(
|
619 |
+
feature_extractor_input, return_tensors="pt"
|
620 |
+
).to(device)
|
621 |
+
image, has_nsfw_concept = self.safety_checker(
|
622 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
623 |
+
)
|
624 |
+
return image, has_nsfw_concept
|
625 |
+
|
626 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
627 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
628 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
629 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
630 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
631 |
+
# and should be between [0, 1]
|
632 |
+
|
633 |
+
accepts_eta = "eta" in set(
|
634 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
635 |
+
)
|
636 |
+
extra_step_kwargs = {}
|
637 |
+
if accepts_eta:
|
638 |
+
extra_step_kwargs["eta"] = eta
|
639 |
+
|
640 |
+
# check if the scheduler accepts generator
|
641 |
+
accepts_generator = "generator" in set(
|
642 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
643 |
+
)
|
644 |
+
if accepts_generator:
|
645 |
+
extra_step_kwargs["generator"] = generator
|
646 |
+
return extra_step_kwargs
|
647 |
+
|
648 |
+
def check_inputs(
|
649 |
+
self,
|
650 |
+
prompt,
|
651 |
+
height,
|
652 |
+
width,
|
653 |
+
strength,
|
654 |
+
callback_steps,
|
655 |
+
negative_prompt=None,
|
656 |
+
prompt_embeds=None,
|
657 |
+
negative_prompt_embeds=None,
|
658 |
+
):
|
659 |
+
if strength < 0 or strength > 1:
|
660 |
+
raise ValueError(
|
661 |
+
f"The value of strength should in [0.0, 1.0] but is {strength}"
|
662 |
+
)
|
663 |
+
|
664 |
+
if height % 8 != 0 or width % 8 != 0:
|
665 |
+
raise ValueError(
|
666 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
667 |
+
)
|
668 |
+
|
669 |
+
if (callback_steps is None) or (
|
670 |
+
callback_steps is not None
|
671 |
+
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
672 |
+
):
|
673 |
+
raise ValueError(
|
674 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
675 |
+
f" {type(callback_steps)}."
|
676 |
+
)
|
677 |
+
|
678 |
+
if prompt is not None and prompt_embeds is not None:
|
679 |
+
raise ValueError(
|
680 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
681 |
+
" only forward one of the two."
|
682 |
+
)
|
683 |
+
elif prompt is None and prompt_embeds is None:
|
684 |
+
raise ValueError(
|
685 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
686 |
+
)
|
687 |
+
elif prompt is not None and (
|
688 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
689 |
+
):
|
690 |
+
raise ValueError(
|
691 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
692 |
+
)
|
693 |
+
|
694 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
695 |
+
raise ValueError(
|
696 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
697 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
698 |
+
)
|
699 |
+
|
700 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
701 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
702 |
+
raise ValueError(
|
703 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
704 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
705 |
+
f" {negative_prompt_embeds.shape}."
|
706 |
+
)
|
707 |
+
|
708 |
+
def prepare_latents(
|
709 |
+
self,
|
710 |
+
batch_size,
|
711 |
+
num_channels_latents,
|
712 |
+
height,
|
713 |
+
width,
|
714 |
+
dtype,
|
715 |
+
device,
|
716 |
+
generator,
|
717 |
+
latents=None,
|
718 |
+
image=None,
|
719 |
+
timestep=None,
|
720 |
+
is_strength_max=True,
|
721 |
+
return_noise=False,
|
722 |
+
return_image_latents=False,
|
723 |
+
):
|
724 |
+
shape = (
|
725 |
+
batch_size,
|
726 |
+
num_channels_latents,
|
727 |
+
height // self.vae_scale_factor,
|
728 |
+
width // self.vae_scale_factor,
|
729 |
+
)
|
730 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
731 |
+
raise ValueError(
|
732 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
733 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
734 |
+
)
|
735 |
+
|
736 |
+
if (image is None or timestep is None) and not is_strength_max:
|
737 |
+
raise ValueError(
|
738 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
739 |
+
"However, either the image or the noise timestep has not been provided."
|
740 |
+
)
|
741 |
+
|
742 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
743 |
+
image = image.to(device=device, dtype=dtype)
|
744 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
745 |
+
|
746 |
+
if latents is None:
|
747 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
748 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
749 |
+
latents = (
|
750 |
+
noise
|
751 |
+
if is_strength_max
|
752 |
+
else self.scheduler.add_noise(image_latents, noise, timestep)
|
753 |
+
)
|
754 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
755 |
+
latents = (
|
756 |
+
latents * self.scheduler.init_noise_sigma
|
757 |
+
if is_strength_max
|
758 |
+
else latents
|
759 |
+
)
|
760 |
+
else:
|
761 |
+
noise = latents.to(device)
|
762 |
+
latents = noise * self.scheduler.init_noise_sigma
|
763 |
+
|
764 |
+
outputs = (latents,)
|
765 |
+
|
766 |
+
if return_noise:
|
767 |
+
outputs += (noise,)
|
768 |
+
|
769 |
+
if return_image_latents:
|
770 |
+
outputs += (image_latents,)
|
771 |
+
|
772 |
+
return outputs
|
773 |
+
|
774 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
775 |
+
if isinstance(generator, list):
|
776 |
+
image_latents = [
|
777 |
+
self.vae.encode(image[i : i + 1]).latent_dist.sample(
|
778 |
+
generator=generator[i]
|
779 |
+
)
|
780 |
+
for i in range(image.shape[0])
|
781 |
+
]
|
782 |
+
image_latents = torch.cat(image_latents, dim=0)
|
783 |
+
else:
|
784 |
+
image_latents = self.vae.encode(image).latent_dist.sample(
|
785 |
+
generator=generator
|
786 |
+
)
|
787 |
+
|
788 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
789 |
+
|
790 |
+
return image_latents
|
791 |
+
|
792 |
+
def prepare_mask_latents(
|
793 |
+
self,
|
794 |
+
mask,
|
795 |
+
masked_image,
|
796 |
+
batch_size,
|
797 |
+
height,
|
798 |
+
width,
|
799 |
+
dtype,
|
800 |
+
device,
|
801 |
+
generator,
|
802 |
+
do_classifier_free_guidance,
|
803 |
+
):
|
804 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
805 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
806 |
+
# and half precision
|
807 |
+
mask = torch.nn.functional.interpolate(
|
808 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
809 |
+
)
|
810 |
+
mask = mask.to(device=device, dtype=dtype)
|
811 |
+
|
812 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
813 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
814 |
+
|
815 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
816 |
+
if mask.shape[0] < batch_size:
|
817 |
+
if not batch_size % mask.shape[0] == 0:
|
818 |
+
raise ValueError(
|
819 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
820 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
821 |
+
" of masks that you pass is divisible by the total requested batch size."
|
822 |
+
)
|
823 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
824 |
+
if masked_image_latents.shape[0] < batch_size:
|
825 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
826 |
+
raise ValueError(
|
827 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
828 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
829 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
830 |
+
)
|
831 |
+
masked_image_latents = masked_image_latents.repeat(
|
832 |
+
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
833 |
+
)
|
834 |
+
|
835 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
836 |
+
masked_image_latents = (
|
837 |
+
torch.cat([masked_image_latents] * 2)
|
838 |
+
if do_classifier_free_guidance
|
839 |
+
else masked_image_latents
|
840 |
+
)
|
841 |
+
|
842 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
843 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
844 |
+
return mask, masked_image_latents
|
845 |
+
|
846 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
847 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
848 |
+
# get the original timestep using init_timestep
|
849 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
850 |
+
|
851 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
852 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
853 |
+
|
854 |
+
return timesteps, num_inference_steps - t_start
|
855 |
+
|
856 |
+
@torch.no_grad()
|
857 |
+
def __call__(
|
858 |
+
self,
|
859 |
+
promptA: Union[str, List[str]] = None,
|
860 |
+
promptB: Union[str, List[str]] = None,
|
861 |
+
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
862 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
863 |
+
height: Optional[int] = None,
|
864 |
+
width: Optional[int] = None,
|
865 |
+
strength: float = 1.0,
|
866 |
+
tradoff: float = 1.0,
|
867 |
+
tradoff_nag: float = 1.0,
|
868 |
+
num_inference_steps: int = 50,
|
869 |
+
guidance_scale: float = 7.5,
|
870 |
+
negative_promptA: Optional[Union[str, List[str]]] = None,
|
871 |
+
negative_promptB: Optional[Union[str, List[str]]] = None,
|
872 |
+
num_images_per_prompt: Optional[int] = 1,
|
873 |
+
eta: float = 0.0,
|
874 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
875 |
+
latents: Optional[torch.FloatTensor] = None,
|
876 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
877 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
878 |
+
output_type: Optional[str] = "pil",
|
879 |
+
return_dict: bool = True,
|
880 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
881 |
+
callback_steps: int = 1,
|
882 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
883 |
+
task_class: Union[torch.Tensor, float, int] = None,
|
884 |
+
):
|
885 |
+
r"""
|
886 |
+
The call function to the pipeline for generation.
|
887 |
+
|
888 |
+
Args:
|
889 |
+
prompt (`str` or `List[str]`, *optional*):
|
890 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
891 |
+
image (`PIL.Image.Image`):
|
892 |
+
`Image` or tensor representing an image batch to be inpainted (which parts of the image to be masked
|
893 |
+
out with `mask_image` and repainted according to `prompt`).
|
894 |
+
mask_image (`PIL.Image.Image`):
|
895 |
+
`Image` or tensor representing an image batch to mask `image`. White pixels in the mask are repainted
|
896 |
+
while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a single channel
|
897 |
+
(luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the
|
898 |
+
expected shape would be `(B, H, W, 1)`.
|
899 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
900 |
+
The height in pixels of the generated image.
|
901 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
902 |
+
The width in pixels of the generated image.
|
903 |
+
strength (`float`, *optional*, defaults to 1.0):
|
904 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
905 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
906 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
907 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
908 |
+
essentially ignores `image`.
|
909 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
910 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
911 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
912 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
913 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
914 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
915 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
916 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
917 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
918 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
919 |
+
The number of images to generate per prompt.
|
920 |
+
eta (`float`, *optional*, defaults to 0.0):
|
921 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
922 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
923 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
924 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
925 |
+
generation deterministic.
|
926 |
+
latents (`torch.FloatTensor`, *optional*):
|
927 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
928 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
929 |
+
tensor is generated by sampling using the supplied random `generator`.
|
930 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
931 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
932 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
933 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
934 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
935 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
936 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
937 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
938 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
939 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
940 |
+
plain tuple.
|
941 |
+
callback (`Callable`, *optional*):
|
942 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
943 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
944 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
945 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
946 |
+
every step.
|
947 |
+
cross_attention_kwargs (`dict`, *optional*):
|
948 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
949 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
950 |
+
|
951 |
+
Examples:
|
952 |
+
|
953 |
+
```py
|
954 |
+
>>> import PIL
|
955 |
+
>>> import requests
|
956 |
+
>>> import torch
|
957 |
+
>>> from io import BytesIO
|
958 |
+
|
959 |
+
>>> from diffusers import StableDiffusionInpaintPipeline
|
960 |
+
|
961 |
+
|
962 |
+
>>> def download_image(url):
|
963 |
+
... response = requests.get(url)
|
964 |
+
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
965 |
+
|
966 |
+
|
967 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
968 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
969 |
+
|
970 |
+
>>> init_image = download_image(img_url).resize((512, 512))
|
971 |
+
>>> mask_image = download_image(mask_url).resize((512, 512))
|
972 |
+
|
973 |
+
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
974 |
+
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
975 |
+
... )
|
976 |
+
>>> pipe = pipe.to("cuda")
|
977 |
+
|
978 |
+
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
979 |
+
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
|
980 |
+
```
|
981 |
+
|
982 |
+
Returns:
|
983 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
984 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
985 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
986 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
987 |
+
"not-safe-for-work" (nsfw) content.
|
988 |
+
"""
|
989 |
+
# 0. Default height and width to unet
|
990 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
991 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
992 |
+
prompt = promptA
|
993 |
+
negative_prompt = negative_promptA
|
994 |
+
# 1. Check inputs
|
995 |
+
self.check_inputs(
|
996 |
+
prompt,
|
997 |
+
height,
|
998 |
+
width,
|
999 |
+
strength,
|
1000 |
+
callback_steps,
|
1001 |
+
negative_prompt,
|
1002 |
+
prompt_embeds,
|
1003 |
+
negative_prompt_embeds,
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
# 2. Define call parameters
|
1007 |
+
if prompt is not None and isinstance(prompt, str):
|
1008 |
+
batch_size = 1
|
1009 |
+
elif prompt is not None and isinstance(prompt, list):
|
1010 |
+
batch_size = len(prompt)
|
1011 |
+
else:
|
1012 |
+
batch_size = prompt_embeds.shape[0]
|
1013 |
+
|
1014 |
+
device = self._execution_device
|
1015 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1016 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1017 |
+
# corresponds to doing no classifier free guidance.
|
1018 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1019 |
+
|
1020 |
+
# 3. Encode input prompt
|
1021 |
+
text_encoder_lora_scale = (
|
1022 |
+
cross_attention_kwargs.get("scale", None)
|
1023 |
+
if cross_attention_kwargs is not None
|
1024 |
+
else None
|
1025 |
+
)
|
1026 |
+
prompt_embeds = self._encode_prompt(
|
1027 |
+
promptA,
|
1028 |
+
promptB,
|
1029 |
+
tradoff,
|
1030 |
+
device,
|
1031 |
+
num_images_per_prompt,
|
1032 |
+
do_classifier_free_guidance,
|
1033 |
+
negative_promptA,
|
1034 |
+
negative_promptB,
|
1035 |
+
tradoff_nag,
|
1036 |
+
prompt_embeds=prompt_embeds,
|
1037 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1038 |
+
lora_scale=text_encoder_lora_scale,
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
# 4. set timesteps
|
1042 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1043 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1044 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
1045 |
+
)
|
1046 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
1047 |
+
if num_inference_steps < 1:
|
1048 |
+
raise ValueError(
|
1049 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
1050 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
1051 |
+
)
|
1052 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1053 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1054 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1055 |
+
is_strength_max = strength == 1.0
|
1056 |
+
|
1057 |
+
# 5. Preprocess mask and image
|
1058 |
+
mask, masked_image, init_image = prepare_mask_and_masked_image(
|
1059 |
+
image, mask_image, height, width, return_image=True
|
1060 |
+
)
|
1061 |
+
mask_condition = mask.clone()
|
1062 |
+
|
1063 |
+
# 6. Prepare latent variables
|
1064 |
+
num_channels_latents = self.vae.config.latent_channels
|
1065 |
+
num_channels_unet = self.unet.config.in_channels
|
1066 |
+
return_image_latents = num_channels_unet == 4
|
1067 |
+
|
1068 |
+
latents_outputs = self.prepare_latents(
|
1069 |
+
batch_size * num_images_per_prompt,
|
1070 |
+
num_channels_latents,
|
1071 |
+
height,
|
1072 |
+
width,
|
1073 |
+
prompt_embeds.dtype,
|
1074 |
+
device,
|
1075 |
+
generator,
|
1076 |
+
latents,
|
1077 |
+
image=init_image,
|
1078 |
+
timestep=latent_timestep,
|
1079 |
+
is_strength_max=is_strength_max,
|
1080 |
+
return_noise=True,
|
1081 |
+
return_image_latents=return_image_latents,
|
1082 |
+
)
|
1083 |
+
|
1084 |
+
if return_image_latents:
|
1085 |
+
latents, noise, image_latents = latents_outputs
|
1086 |
+
else:
|
1087 |
+
latents, noise = latents_outputs
|
1088 |
+
|
1089 |
+
# 7. Prepare mask latent variables
|
1090 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1091 |
+
mask,
|
1092 |
+
masked_image,
|
1093 |
+
batch_size * num_images_per_prompt,
|
1094 |
+
height,
|
1095 |
+
width,
|
1096 |
+
prompt_embeds.dtype,
|
1097 |
+
device,
|
1098 |
+
generator,
|
1099 |
+
do_classifier_free_guidance,
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
# 8. Check that sizes of mask, masked image and latents match
|
1103 |
+
if num_channels_unet == 9:
|
1104 |
+
# default case for runwayml/stable-diffusion-inpainting
|
1105 |
+
num_channels_mask = mask.shape[1]
|
1106 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
1107 |
+
if (
|
1108 |
+
num_channels_latents + num_channels_mask + num_channels_masked_image
|
1109 |
+
!= self.unet.config.in_channels
|
1110 |
+
):
|
1111 |
+
raise ValueError(
|
1112 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
1113 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1114 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1115 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1116 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
1117 |
+
)
|
1118 |
+
elif num_channels_unet != 4:
|
1119 |
+
raise ValueError(
|
1120 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
1121 |
+
)
|
1122 |
+
|
1123 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1124 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1125 |
+
|
1126 |
+
# 10. Denoising loop
|
1127 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1128 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1129 |
+
for i, t in enumerate(timesteps):
|
1130 |
+
# expand the latents if we are doing classifier free guidance
|
1131 |
+
latent_model_input = (
|
1132 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
1136 |
+
latent_model_input = self.scheduler.scale_model_input(
|
1137 |
+
latent_model_input, t
|
1138 |
+
)
|
1139 |
+
|
1140 |
+
if num_channels_unet == 9:
|
1141 |
+
latent_model_input = torch.cat(
|
1142 |
+
[latent_model_input, mask, masked_image_latents], dim=1
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
# predict the noise residual
|
1146 |
+
if task_class is not None:
|
1147 |
+
noise_pred = self.unet(
|
1148 |
+
sample=latent_model_input,
|
1149 |
+
timestep=t,
|
1150 |
+
encoder_hidden_states=prompt_embeds,
|
1151 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1152 |
+
return_dict=False,
|
1153 |
+
task_class=task_class,
|
1154 |
+
)[0]
|
1155 |
+
else:
|
1156 |
+
noise_pred = self.unet(
|
1157 |
+
latent_model_input,
|
1158 |
+
t,
|
1159 |
+
encoder_hidden_states=prompt_embeds,
|
1160 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1161 |
+
return_dict=False,
|
1162 |
+
)[0]
|
1163 |
+
|
1164 |
+
# perform guidance
|
1165 |
+
if do_classifier_free_guidance:
|
1166 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1167 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
1168 |
+
noise_pred_text - noise_pred_uncond
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1172 |
+
latents = self.scheduler.step(
|
1173 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
1174 |
+
)[0]
|
1175 |
+
|
1176 |
+
if num_channels_unet == 4:
|
1177 |
+
init_latents_proper = image_latents[:1]
|
1178 |
+
init_mask = mask[:1]
|
1179 |
+
|
1180 |
+
if i < len(timesteps) - 1:
|
1181 |
+
noise_timestep = timesteps[i + 1]
|
1182 |
+
init_latents_proper = self.scheduler.add_noise(
|
1183 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
latents = (
|
1187 |
+
1 - init_mask
|
1188 |
+
) * init_latents_proper + init_mask * latents
|
1189 |
+
|
1190 |
+
# call the callback, if provided
|
1191 |
+
if i == len(timesteps) - 1 or (
|
1192 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
1193 |
+
):
|
1194 |
+
progress_bar.update()
|
1195 |
+
if callback is not None and i % callback_steps == 0:
|
1196 |
+
callback(i, t, latents)
|
1197 |
+
|
1198 |
+
if not output_type == "latent":
|
1199 |
+
condition_kwargs = {}
|
1200 |
+
if isinstance(self.vae, AsymmetricAutoencoderKL):
|
1201 |
+
init_image = init_image.to(
|
1202 |
+
device=device, dtype=masked_image_latents.dtype
|
1203 |
+
)
|
1204 |
+
init_image_condition = init_image.clone()
|
1205 |
+
init_image = self._encode_vae_image(init_image, generator=generator)
|
1206 |
+
mask_condition = mask_condition.to(
|
1207 |
+
device=device, dtype=masked_image_latents.dtype
|
1208 |
+
)
|
1209 |
+
condition_kwargs = {
|
1210 |
+
"image": init_image_condition,
|
1211 |
+
"mask": mask_condition,
|
1212 |
+
}
|
1213 |
+
image = self.vae.decode(
|
1214 |
+
latents / self.vae.config.scaling_factor,
|
1215 |
+
return_dict=False,
|
1216 |
+
**condition_kwargs,
|
1217 |
+
)[0]
|
1218 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
1219 |
+
image, device, prompt_embeds.dtype
|
1220 |
+
)
|
1221 |
+
else:
|
1222 |
+
image = latents
|
1223 |
+
has_nsfw_concept = None
|
1224 |
+
|
1225 |
+
if has_nsfw_concept is None:
|
1226 |
+
do_denormalize = [True] * image.shape[0]
|
1227 |
+
else:
|
1228 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1229 |
+
|
1230 |
+
image = self.image_processor.postprocess(
|
1231 |
+
image, output_type=output_type, do_denormalize=do_denormalize
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
# Offload last model to CPU
|
1235 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1236 |
+
self.final_offload_hook.offload()
|
1237 |
+
|
1238 |
+
if not return_dict:
|
1239 |
+
return (image, has_nsfw_concept)
|
1240 |
+
|
1241 |
+
return StableDiffusionPipelineOutput(
|
1242 |
+
images=image, nsfw_content_detected=has_nsfw_concept
|
1243 |
+
)
|
pipeline_PowerPaint_ControlNet.py
ADDED
@@ -0,0 +1,1775 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
|
16 |
+
|
17 |
+
import inspect
|
18 |
+
import warnings
|
19 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import PIL.Image
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
26 |
+
|
27 |
+
from diffusers.image_processor import VaeImageProcessor
|
28 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
29 |
+
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
30 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
31 |
+
from diffusers.utils import (
|
32 |
+
is_accelerate_available,
|
33 |
+
is_accelerate_version,
|
34 |
+
logging,
|
35 |
+
replace_example_docstring,
|
36 |
+
)
|
37 |
+
from diffusers.utils.torch_utils import randn_tensor,is_compiled_module
|
38 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
39 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
40 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
41 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
47 |
+
|
48 |
+
|
49 |
+
EXAMPLE_DOC_STRING = """
|
50 |
+
Examples:
|
51 |
+
```py
|
52 |
+
>>> # !pip install transformers accelerate
|
53 |
+
>>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
|
54 |
+
>>> from diffusers.utils import load_image
|
55 |
+
>>> import numpy as np
|
56 |
+
>>> import torch
|
57 |
+
|
58 |
+
>>> init_image = load_image(
|
59 |
+
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
|
60 |
+
... )
|
61 |
+
>>> init_image = init_image.resize((512, 512))
|
62 |
+
|
63 |
+
>>> generator = torch.Generator(device="cpu").manual_seed(1)
|
64 |
+
|
65 |
+
>>> mask_image = load_image(
|
66 |
+
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
|
67 |
+
... )
|
68 |
+
>>> mask_image = mask_image.resize((512, 512))
|
69 |
+
|
70 |
+
|
71 |
+
>>> def make_inpaint_condition(image, image_mask):
|
72 |
+
... image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
73 |
+
... image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
|
74 |
+
|
75 |
+
... assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
76 |
+
... image[image_mask > 0.5] = -1.0 # set as masked pixel
|
77 |
+
... image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
78 |
+
... image = torch.from_numpy(image)
|
79 |
+
... return image
|
80 |
+
|
81 |
+
|
82 |
+
>>> control_image = make_inpaint_condition(init_image, mask_image)
|
83 |
+
|
84 |
+
>>> controlnet = ControlNetModel.from_pretrained(
|
85 |
+
... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
|
86 |
+
... )
|
87 |
+
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
88 |
+
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
89 |
+
... )
|
90 |
+
|
91 |
+
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
92 |
+
>>> pipe.enable_model_cpu_offload()
|
93 |
+
|
94 |
+
>>> # generate image
|
95 |
+
>>> image = pipe(
|
96 |
+
... "a handsome man with ray-ban sunglasses",
|
97 |
+
... num_inference_steps=20,
|
98 |
+
... generator=generator,
|
99 |
+
... eta=1.0,
|
100 |
+
... image=init_image,
|
101 |
+
... mask_image=mask_image,
|
102 |
+
... control_image=control_image,
|
103 |
+
... ).images[0]
|
104 |
+
```
|
105 |
+
"""
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.prepare_mask_and_masked_image
|
109 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image=False):
|
110 |
+
"""
|
111 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
112 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
113 |
+
``image`` and ``1`` for the ``mask``.
|
114 |
+
|
115 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
116 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
120 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
121 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
122 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
123 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
124 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
125 |
+
|
126 |
+
|
127 |
+
Raises:
|
128 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
129 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
130 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
131 |
+
(ot the other way around).
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
135 |
+
dimensions: ``batch x channels x height x width``.
|
136 |
+
"""
|
137 |
+
|
138 |
+
if image is None:
|
139 |
+
raise ValueError("`image` input cannot be undefined.")
|
140 |
+
|
141 |
+
if mask is None:
|
142 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
143 |
+
|
144 |
+
if isinstance(image, torch.Tensor):
|
145 |
+
if not isinstance(mask, torch.Tensor):
|
146 |
+
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
147 |
+
|
148 |
+
# Batch single image
|
149 |
+
if image.ndim == 3:
|
150 |
+
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
151 |
+
image = image.unsqueeze(0)
|
152 |
+
|
153 |
+
# Batch and add channel dim for single mask
|
154 |
+
if mask.ndim == 2:
|
155 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
156 |
+
|
157 |
+
# Batch single mask or add channel dim
|
158 |
+
if mask.ndim == 3:
|
159 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
160 |
+
if mask.shape[0] == 1:
|
161 |
+
mask = mask.unsqueeze(0)
|
162 |
+
|
163 |
+
# Batched masks no channel dim
|
164 |
+
else:
|
165 |
+
mask = mask.unsqueeze(1)
|
166 |
+
|
167 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
168 |
+
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
169 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
170 |
+
|
171 |
+
# Check image is in [-1, 1]
|
172 |
+
if image.min() < -1 or image.max() > 1:
|
173 |
+
raise ValueError("Image should be in [-1, 1] range")
|
174 |
+
|
175 |
+
# Check mask is in [0, 1]
|
176 |
+
if mask.min() < 0 or mask.max() > 1:
|
177 |
+
raise ValueError("Mask should be in [0, 1] range")
|
178 |
+
|
179 |
+
# Binarize mask
|
180 |
+
mask[mask < 0.5] = 0
|
181 |
+
mask[mask >= 0.5] = 1
|
182 |
+
|
183 |
+
# Image as float32
|
184 |
+
image = image.to(dtype=torch.float32)
|
185 |
+
elif isinstance(mask, torch.Tensor):
|
186 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
187 |
+
else:
|
188 |
+
# preprocess image
|
189 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
190 |
+
image = [image]
|
191 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
192 |
+
# resize all images w.r.t passed height an width
|
193 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
194 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
195 |
+
image = np.concatenate(image, axis=0)
|
196 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
197 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
198 |
+
|
199 |
+
image = image.transpose(0, 3, 1, 2)
|
200 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
201 |
+
|
202 |
+
# preprocess mask
|
203 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
204 |
+
mask = [mask]
|
205 |
+
|
206 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
207 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
208 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
209 |
+
mask = mask.astype(np.float32) / 255.0
|
210 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
211 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
212 |
+
|
213 |
+
mask[mask < 0.5] = 0
|
214 |
+
mask[mask >= 0.5] = 1
|
215 |
+
mask = torch.from_numpy(mask)
|
216 |
+
|
217 |
+
masked_image = image * (mask < 0.5)
|
218 |
+
|
219 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
220 |
+
if return_image:
|
221 |
+
return mask, masked_image, image
|
222 |
+
|
223 |
+
return mask, masked_image
|
224 |
+
|
225 |
+
|
226 |
+
class StableDiffusionControlNetInpaintPipeline(
|
227 |
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
228 |
+
):
|
229 |
+
r"""
|
230 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
231 |
+
|
232 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
233 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
234 |
+
|
235 |
+
In addition the pipeline inherits the following loading methods:
|
236 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
237 |
+
|
238 |
+
<Tip>
|
239 |
+
|
240 |
+
This pipeline can be used both with checkpoints that have been specifically fine-tuned for inpainting, such as
|
241 |
+
[runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)
|
242 |
+
as well as default text-to-image stable diffusion checkpoints, such as
|
243 |
+
[runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
|
244 |
+
Default text-to-image stable diffusion checkpoints might be preferable for controlnets that have been fine-tuned on
|
245 |
+
those, such as [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
|
246 |
+
|
247 |
+
</Tip>
|
248 |
+
|
249 |
+
Args:
|
250 |
+
vae ([`AutoencoderKL`]):
|
251 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
252 |
+
text_encoder ([`CLIPTextModel`]):
|
253 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
254 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
255 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
256 |
+
tokenizer (`CLIPTokenizer`):
|
257 |
+
Tokenizer of class
|
258 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
259 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
260 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
261 |
+
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
262 |
+
as a list, the outputs from each ControlNet are added together to create one combined additional
|
263 |
+
conditioning.
|
264 |
+
scheduler ([`SchedulerMixin`]):
|
265 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
266 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
267 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
268 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
269 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
270 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
271 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
272 |
+
"""
|
273 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
274 |
+
|
275 |
+
def __init__(
|
276 |
+
self,
|
277 |
+
vae: AutoencoderKL,
|
278 |
+
text_encoder: CLIPTextModel,
|
279 |
+
tokenizer: CLIPTokenizer,
|
280 |
+
unet: UNet2DConditionModel,
|
281 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
282 |
+
scheduler: KarrasDiffusionSchedulers,
|
283 |
+
safety_checker: StableDiffusionSafetyChecker,
|
284 |
+
feature_extractor: CLIPImageProcessor,
|
285 |
+
requires_safety_checker: bool = True,
|
286 |
+
):
|
287 |
+
super().__init__()
|
288 |
+
|
289 |
+
if safety_checker is None and requires_safety_checker:
|
290 |
+
logger.warning(
|
291 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
292 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
293 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
294 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
295 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
296 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
297 |
+
)
|
298 |
+
|
299 |
+
if safety_checker is not None and feature_extractor is None:
|
300 |
+
raise ValueError(
|
301 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
302 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
303 |
+
)
|
304 |
+
|
305 |
+
if isinstance(controlnet, (list, tuple)):
|
306 |
+
controlnet = MultiControlNetModel(controlnet)
|
307 |
+
|
308 |
+
self.register_modules(
|
309 |
+
vae=vae,
|
310 |
+
text_encoder=text_encoder,
|
311 |
+
tokenizer=tokenizer,
|
312 |
+
unet=unet,
|
313 |
+
controlnet=controlnet,
|
314 |
+
scheduler=scheduler,
|
315 |
+
safety_checker=safety_checker,
|
316 |
+
feature_extractor=feature_extractor,
|
317 |
+
)
|
318 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
319 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
320 |
+
self.control_image_processor = VaeImageProcessor(
|
321 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
322 |
+
)
|
323 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
324 |
+
|
325 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
326 |
+
def enable_vae_slicing(self):
|
327 |
+
r"""
|
328 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
329 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
330 |
+
"""
|
331 |
+
self.vae.enable_slicing()
|
332 |
+
|
333 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
334 |
+
def disable_vae_slicing(self):
|
335 |
+
r"""
|
336 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
337 |
+
computing decoding in one step.
|
338 |
+
"""
|
339 |
+
self.vae.disable_slicing()
|
340 |
+
|
341 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
342 |
+
def enable_vae_tiling(self):
|
343 |
+
r"""
|
344 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
345 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
346 |
+
processing larger images.
|
347 |
+
"""
|
348 |
+
self.vae.enable_tiling()
|
349 |
+
|
350 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
351 |
+
def disable_vae_tiling(self):
|
352 |
+
r"""
|
353 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
354 |
+
computing decoding in one step.
|
355 |
+
"""
|
356 |
+
self.vae.disable_tiling()
|
357 |
+
|
358 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
359 |
+
r"""
|
360 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
361 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
362 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
363 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
364 |
+
"""
|
365 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
366 |
+
from accelerate import cpu_offload_with_hook
|
367 |
+
else:
|
368 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
369 |
+
|
370 |
+
device = torch.device(f"cuda:{gpu_id}")
|
371 |
+
|
372 |
+
hook = None
|
373 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
374 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
375 |
+
|
376 |
+
if self.safety_checker is not None:
|
377 |
+
# the safety checker can offload the vae again
|
378 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
379 |
+
|
380 |
+
# control net hook has be manually offloaded as it alternates with unet
|
381 |
+
cpu_offload_with_hook(self.controlnet, device)
|
382 |
+
|
383 |
+
# We'll offload the last model manually.
|
384 |
+
self.final_offload_hook = hook
|
385 |
+
|
386 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
387 |
+
def _encode_prompt(
|
388 |
+
self,
|
389 |
+
promptA,
|
390 |
+
promptB,
|
391 |
+
t,
|
392 |
+
device,
|
393 |
+
num_images_per_prompt,
|
394 |
+
do_classifier_free_guidance,
|
395 |
+
negative_promptA=None,
|
396 |
+
negative_promptB=None,
|
397 |
+
t_nag = None,
|
398 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
399 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
400 |
+
lora_scale: Optional[float] = None,
|
401 |
+
):
|
402 |
+
r"""
|
403 |
+
Encodes the prompt into text encoder hidden states.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
prompt (`str` or `List[str]`, *optional*):
|
407 |
+
prompt to be encoded
|
408 |
+
device: (`torch.device`):
|
409 |
+
torch device
|
410 |
+
num_images_per_prompt (`int`):
|
411 |
+
number of images that should be generated per prompt
|
412 |
+
do_classifier_free_guidance (`bool`):
|
413 |
+
whether to use classifier free guidance or not
|
414 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
415 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
416 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
417 |
+
less than `1`).
|
418 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
419 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
420 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
421 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
422 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
423 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
424 |
+
argument.
|
425 |
+
lora_scale (`float`, *optional*):
|
426 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
427 |
+
"""
|
428 |
+
# set lora scale so that monkey patched LoRA
|
429 |
+
# function of text encoder can correctly access it
|
430 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
431 |
+
self._lora_scale = lora_scale
|
432 |
+
|
433 |
+
prompt = promptA
|
434 |
+
negative_prompt = negative_promptA
|
435 |
+
|
436 |
+
if promptA is not None and isinstance(promptA, str):
|
437 |
+
batch_size = 1
|
438 |
+
elif promptA is not None and isinstance(promptA, list):
|
439 |
+
batch_size = len(promptA)
|
440 |
+
else:
|
441 |
+
batch_size = prompt_embeds.shape[0]
|
442 |
+
|
443 |
+
if prompt_embeds is None:
|
444 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
445 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
446 |
+
promptA = self.maybe_convert_prompt(promptA, self.tokenizer)
|
447 |
+
|
448 |
+
text_inputsA = self.tokenizer(
|
449 |
+
promptA,
|
450 |
+
padding="max_length",
|
451 |
+
max_length=self.tokenizer.model_max_length,
|
452 |
+
truncation=True,
|
453 |
+
return_tensors="pt",
|
454 |
+
)
|
455 |
+
text_inputsB = self.tokenizer(
|
456 |
+
promptB,
|
457 |
+
padding="max_length",
|
458 |
+
max_length=self.tokenizer.model_max_length,
|
459 |
+
truncation=True,
|
460 |
+
return_tensors="pt",
|
461 |
+
)
|
462 |
+
text_input_idsA = text_inputsA.input_ids
|
463 |
+
text_input_idsB = text_inputsB.input_ids
|
464 |
+
untruncated_ids = self.tokenizer(promptA, padding="longest", return_tensors="pt").input_ids
|
465 |
+
|
466 |
+
if untruncated_ids.shape[-1] >= text_input_idsA.shape[-1] and not torch.equal(
|
467 |
+
text_input_idsA, untruncated_ids
|
468 |
+
):
|
469 |
+
removed_text = self.tokenizer.batch_decode(
|
470 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
471 |
+
)
|
472 |
+
logger.warning(
|
473 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
474 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
475 |
+
)
|
476 |
+
|
477 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
478 |
+
attention_mask = text_inputsA.attention_mask.to(device)
|
479 |
+
else:
|
480 |
+
attention_mask = None
|
481 |
+
|
482 |
+
# print("text_input_idsA: ",text_input_idsA)
|
483 |
+
# print("text_input_idsB: ",text_input_idsB)
|
484 |
+
# print('t: ',t)
|
485 |
+
|
486 |
+
prompt_embedsA = self.text_encoder(
|
487 |
+
text_input_idsA.to(device),
|
488 |
+
attention_mask=attention_mask,
|
489 |
+
)
|
490 |
+
prompt_embedsA = prompt_embedsA[0]
|
491 |
+
|
492 |
+
prompt_embedsB = self.text_encoder(
|
493 |
+
text_input_idsB.to(device),
|
494 |
+
attention_mask=attention_mask,
|
495 |
+
)
|
496 |
+
prompt_embedsB = prompt_embedsB[0]
|
497 |
+
prompt_embeds = prompt_embedsA*(t)+(1-t)*prompt_embedsB
|
498 |
+
# print("prompt_embeds: ",prompt_embeds)
|
499 |
+
|
500 |
+
if self.text_encoder is not None:
|
501 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
502 |
+
elif self.unet is not None:
|
503 |
+
prompt_embeds_dtype = self.unet.dtype
|
504 |
+
else:
|
505 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
506 |
+
|
507 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
508 |
+
|
509 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
510 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
511 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
512 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
513 |
+
|
514 |
+
# get unconditional embeddings for classifier free guidance
|
515 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
516 |
+
uncond_tokensA: List[str]
|
517 |
+
uncond_tokensB: List[str]
|
518 |
+
if negative_prompt is None:
|
519 |
+
uncond_tokensA = [""] * batch_size
|
520 |
+
uncond_tokensB = [""] * batch_size
|
521 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
522 |
+
raise TypeError(
|
523 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
524 |
+
f" {type(prompt)}."
|
525 |
+
)
|
526 |
+
elif isinstance(negative_prompt, str):
|
527 |
+
uncond_tokensA = [negative_promptA]
|
528 |
+
uncond_tokensB = [negative_promptB]
|
529 |
+
elif batch_size != len(negative_prompt):
|
530 |
+
raise ValueError(
|
531 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
532 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
533 |
+
" the batch size of `prompt`."
|
534 |
+
)
|
535 |
+
else:
|
536 |
+
uncond_tokensA = negative_promptA
|
537 |
+
uncond_tokensB = negative_promptB
|
538 |
+
|
539 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
540 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
541 |
+
uncond_tokensA = self.maybe_convert_prompt(uncond_tokensA, self.tokenizer)
|
542 |
+
uncond_tokensB = self.maybe_convert_prompt(uncond_tokensB, self.tokenizer)
|
543 |
+
|
544 |
+
max_length = prompt_embeds.shape[1]
|
545 |
+
uncond_inputA = self.tokenizer(
|
546 |
+
uncond_tokensA,
|
547 |
+
padding="max_length",
|
548 |
+
max_length=max_length,
|
549 |
+
truncation=True,
|
550 |
+
return_tensors="pt",
|
551 |
+
)
|
552 |
+
uncond_inputB = self.tokenizer(
|
553 |
+
uncond_tokensB,
|
554 |
+
padding="max_length",
|
555 |
+
max_length=max_length,
|
556 |
+
truncation=True,
|
557 |
+
return_tensors="pt",
|
558 |
+
)
|
559 |
+
|
560 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
561 |
+
attention_mask = uncond_inputA.attention_mask.to(device)
|
562 |
+
else:
|
563 |
+
attention_mask = None
|
564 |
+
|
565 |
+
negative_prompt_embedsA = self.text_encoder(
|
566 |
+
uncond_inputA.input_ids.to(device),
|
567 |
+
attention_mask=attention_mask,
|
568 |
+
)
|
569 |
+
negative_prompt_embedsB = self.text_encoder(
|
570 |
+
uncond_inputB.input_ids.to(device),
|
571 |
+
attention_mask=attention_mask,
|
572 |
+
)
|
573 |
+
negative_prompt_embeds = negative_prompt_embedsA[0]*(t_nag)+(1-t_nag)*negative_prompt_embedsB[0]
|
574 |
+
|
575 |
+
# negative_prompt_embeds = negative_prompt_embeds[0]
|
576 |
+
|
577 |
+
if do_classifier_free_guidance:
|
578 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
579 |
+
seq_len = negative_prompt_embeds.shape[1]
|
580 |
+
|
581 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
582 |
+
|
583 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
584 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
585 |
+
|
586 |
+
# For classifier free guidance, we need to do two forward passes.
|
587 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
588 |
+
# to avoid doing two forward passes
|
589 |
+
# print("prompt_embeds: ",prompt_embeds)
|
590 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
591 |
+
|
592 |
+
return prompt_embeds
|
593 |
+
|
594 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
595 |
+
def run_safety_checker(self, image, device, dtype):
|
596 |
+
if self.safety_checker is None:
|
597 |
+
has_nsfw_concept = None
|
598 |
+
else:
|
599 |
+
if torch.is_tensor(image):
|
600 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
601 |
+
else:
|
602 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
603 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
604 |
+
image, has_nsfw_concept = self.safety_checker(
|
605 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
606 |
+
)
|
607 |
+
return image, has_nsfw_concept
|
608 |
+
|
609 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
610 |
+
def decode_latents(self, latents):
|
611 |
+
warnings.warn(
|
612 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
613 |
+
" use VaeImageProcessor instead",
|
614 |
+
FutureWarning,
|
615 |
+
)
|
616 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
617 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
618 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
619 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
620 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
621 |
+
return image
|
622 |
+
|
623 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
624 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
625 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
626 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
627 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
628 |
+
# and should be between [0, 1]
|
629 |
+
|
630 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
631 |
+
extra_step_kwargs = {}
|
632 |
+
if accepts_eta:
|
633 |
+
extra_step_kwargs["eta"] = eta
|
634 |
+
|
635 |
+
# check if the scheduler accepts generator
|
636 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
637 |
+
if accepts_generator:
|
638 |
+
extra_step_kwargs["generator"] = generator
|
639 |
+
return extra_step_kwargs
|
640 |
+
|
641 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
642 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
643 |
+
# get the original timestep using init_timestep
|
644 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
645 |
+
|
646 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
647 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
648 |
+
|
649 |
+
return timesteps, num_inference_steps - t_start
|
650 |
+
|
651 |
+
def check_inputs(
|
652 |
+
self,
|
653 |
+
prompt,
|
654 |
+
image,
|
655 |
+
height,
|
656 |
+
width,
|
657 |
+
callback_steps,
|
658 |
+
negative_prompt=None,
|
659 |
+
prompt_embeds=None,
|
660 |
+
negative_prompt_embeds=None,
|
661 |
+
controlnet_conditioning_scale=1.0,
|
662 |
+
control_guidance_start=0.0,
|
663 |
+
control_guidance_end=1.0,
|
664 |
+
):
|
665 |
+
if height % 8 != 0 or width % 8 != 0:
|
666 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
667 |
+
|
668 |
+
if (callback_steps is None) or (
|
669 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
670 |
+
):
|
671 |
+
raise ValueError(
|
672 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
673 |
+
f" {type(callback_steps)}."
|
674 |
+
)
|
675 |
+
|
676 |
+
if prompt is not None and prompt_embeds is not None:
|
677 |
+
raise ValueError(
|
678 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
679 |
+
" only forward one of the two."
|
680 |
+
)
|
681 |
+
elif prompt is None and prompt_embeds is None:
|
682 |
+
raise ValueError(
|
683 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
684 |
+
)
|
685 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
686 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
687 |
+
|
688 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
689 |
+
raise ValueError(
|
690 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
691 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
692 |
+
)
|
693 |
+
|
694 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
695 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
696 |
+
raise ValueError(
|
697 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
698 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
699 |
+
f" {negative_prompt_embeds.shape}."
|
700 |
+
)
|
701 |
+
|
702 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
703 |
+
# conditionings.
|
704 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
705 |
+
if isinstance(prompt, list):
|
706 |
+
logger.warning(
|
707 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
708 |
+
" prompts. The conditionings will be fixed across the prompts."
|
709 |
+
)
|
710 |
+
|
711 |
+
# Check `image`
|
712 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
713 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
714 |
+
)
|
715 |
+
|
716 |
+
if (
|
717 |
+
isinstance(self.controlnet, ControlNetModel)
|
718 |
+
or is_compiled
|
719 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
720 |
+
):
|
721 |
+
self.check_image(image, prompt, prompt_embeds)
|
722 |
+
elif (
|
723 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
724 |
+
or is_compiled
|
725 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
726 |
+
):
|
727 |
+
if not isinstance(image, list):
|
728 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
729 |
+
|
730 |
+
# When `image` is a nested list:
|
731 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
732 |
+
elif any(isinstance(i, list) for i in image):
|
733 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
734 |
+
elif len(image) != len(self.controlnet.nets):
|
735 |
+
raise ValueError(
|
736 |
+
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
737 |
+
)
|
738 |
+
|
739 |
+
for image_ in image:
|
740 |
+
self.check_image(image_, prompt, prompt_embeds)
|
741 |
+
else:
|
742 |
+
assert False
|
743 |
+
|
744 |
+
# Check `controlnet_conditioning_scale`
|
745 |
+
if (
|
746 |
+
isinstance(self.controlnet, ControlNetModel)
|
747 |
+
or is_compiled
|
748 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
749 |
+
):
|
750 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
751 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
752 |
+
elif (
|
753 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
754 |
+
or is_compiled
|
755 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
756 |
+
):
|
757 |
+
if isinstance(controlnet_conditioning_scale, list):
|
758 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
759 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
760 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
761 |
+
self.controlnet.nets
|
762 |
+
):
|
763 |
+
raise ValueError(
|
764 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
765 |
+
" the same length as the number of controlnets"
|
766 |
+
)
|
767 |
+
else:
|
768 |
+
assert False
|
769 |
+
|
770 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
771 |
+
raise ValueError(
|
772 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
773 |
+
)
|
774 |
+
|
775 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
776 |
+
if len(control_guidance_start) != len(self.controlnet.nets):
|
777 |
+
raise ValueError(
|
778 |
+
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
779 |
+
)
|
780 |
+
|
781 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
782 |
+
if start >= end:
|
783 |
+
raise ValueError(
|
784 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
785 |
+
)
|
786 |
+
if start < 0.0:
|
787 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
788 |
+
if end > 1.0:
|
789 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
790 |
+
|
791 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
792 |
+
def check_image(self, image, prompt, prompt_embeds):
|
793 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
794 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
795 |
+
image_is_np = isinstance(image, np.ndarray)
|
796 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
797 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
798 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
799 |
+
|
800 |
+
if (
|
801 |
+
not image_is_pil
|
802 |
+
and not image_is_tensor
|
803 |
+
and not image_is_np
|
804 |
+
and not image_is_pil_list
|
805 |
+
and not image_is_tensor_list
|
806 |
+
and not image_is_np_list
|
807 |
+
):
|
808 |
+
raise TypeError(
|
809 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
810 |
+
)
|
811 |
+
|
812 |
+
if image_is_pil:
|
813 |
+
image_batch_size = 1
|
814 |
+
else:
|
815 |
+
image_batch_size = len(image)
|
816 |
+
|
817 |
+
if prompt is not None and isinstance(prompt, str):
|
818 |
+
prompt_batch_size = 1
|
819 |
+
elif prompt is not None and isinstance(prompt, list):
|
820 |
+
prompt_batch_size = len(prompt)
|
821 |
+
elif prompt_embeds is not None:
|
822 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
823 |
+
|
824 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
825 |
+
raise ValueError(
|
826 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
827 |
+
)
|
828 |
+
|
829 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
830 |
+
def prepare_control_image(
|
831 |
+
self,
|
832 |
+
image,
|
833 |
+
width,
|
834 |
+
height,
|
835 |
+
batch_size,
|
836 |
+
num_images_per_prompt,
|
837 |
+
device,
|
838 |
+
dtype,
|
839 |
+
do_classifier_free_guidance=False,
|
840 |
+
guess_mode=False,
|
841 |
+
):
|
842 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
843 |
+
image_batch_size = image.shape[0]
|
844 |
+
|
845 |
+
if image_batch_size == 1:
|
846 |
+
repeat_by = batch_size
|
847 |
+
else:
|
848 |
+
# image batch size is the same as prompt batch size
|
849 |
+
repeat_by = num_images_per_prompt
|
850 |
+
|
851 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
852 |
+
|
853 |
+
image = image.to(device=device, dtype=dtype)
|
854 |
+
|
855 |
+
if do_classifier_free_guidance and not guess_mode:
|
856 |
+
image = torch.cat([image] * 2)
|
857 |
+
|
858 |
+
return image
|
859 |
+
|
860 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
|
861 |
+
def prepare_latents(
|
862 |
+
self,
|
863 |
+
batch_size,
|
864 |
+
num_channels_latents,
|
865 |
+
height,
|
866 |
+
width,
|
867 |
+
dtype,
|
868 |
+
device,
|
869 |
+
generator,
|
870 |
+
latents=None,
|
871 |
+
image=None,
|
872 |
+
timestep=None,
|
873 |
+
is_strength_max=True,
|
874 |
+
return_noise=False,
|
875 |
+
return_image_latents=False,
|
876 |
+
):
|
877 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
878 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
879 |
+
raise ValueError(
|
880 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
881 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
882 |
+
)
|
883 |
+
|
884 |
+
if (image is None or timestep is None) and not is_strength_max:
|
885 |
+
raise ValueError(
|
886 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
887 |
+
"However, either the image or the noise timestep has not been provided."
|
888 |
+
)
|
889 |
+
|
890 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
891 |
+
image = image.to(device=device, dtype=dtype)
|
892 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
893 |
+
|
894 |
+
if latents is None:
|
895 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
896 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
897 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
898 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
899 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
900 |
+
else:
|
901 |
+
noise = latents.to(device)
|
902 |
+
latents = noise * self.scheduler.init_noise_sigma
|
903 |
+
|
904 |
+
outputs = (latents,)
|
905 |
+
|
906 |
+
if return_noise:
|
907 |
+
outputs += (noise,)
|
908 |
+
|
909 |
+
if return_image_latents:
|
910 |
+
outputs += (image_latents,)
|
911 |
+
|
912 |
+
return outputs
|
913 |
+
|
914 |
+
def _default_height_width(self, height, width, image):
|
915 |
+
# NOTE: It is possible that a list of images have different
|
916 |
+
# dimensions for each image, so just checking the first image
|
917 |
+
# is not _exactly_ correct, but it is simple.
|
918 |
+
while isinstance(image, list):
|
919 |
+
image = image[0]
|
920 |
+
|
921 |
+
if height is None:
|
922 |
+
if isinstance(image, PIL.Image.Image):
|
923 |
+
height = image.height
|
924 |
+
elif isinstance(image, torch.Tensor):
|
925 |
+
height = image.shape[2]
|
926 |
+
|
927 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
928 |
+
|
929 |
+
if width is None:
|
930 |
+
if isinstance(image, PIL.Image.Image):
|
931 |
+
width = image.width
|
932 |
+
elif isinstance(image, torch.Tensor):
|
933 |
+
width = image.shape[3]
|
934 |
+
|
935 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
936 |
+
|
937 |
+
return height, width
|
938 |
+
|
939 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
|
940 |
+
def prepare_mask_latents(
|
941 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
942 |
+
):
|
943 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
944 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
945 |
+
# and half precision
|
946 |
+
mask = torch.nn.functional.interpolate(
|
947 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
948 |
+
)
|
949 |
+
mask = mask.to(device=device, dtype=dtype)
|
950 |
+
|
951 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
952 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
953 |
+
|
954 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
955 |
+
if mask.shape[0] < batch_size:
|
956 |
+
if not batch_size % mask.shape[0] == 0:
|
957 |
+
raise ValueError(
|
958 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
959 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
960 |
+
" of masks that you pass is divisible by the total requested batch size."
|
961 |
+
)
|
962 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
963 |
+
if masked_image_latents.shape[0] < batch_size:
|
964 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
965 |
+
raise ValueError(
|
966 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
967 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
968 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
969 |
+
)
|
970 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
971 |
+
|
972 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
973 |
+
masked_image_latents = (
|
974 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
975 |
+
)
|
976 |
+
|
977 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
978 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
979 |
+
return mask, masked_image_latents
|
980 |
+
|
981 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
|
982 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
983 |
+
if isinstance(generator, list):
|
984 |
+
image_latents = [
|
985 |
+
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
986 |
+
for i in range(image.shape[0])
|
987 |
+
]
|
988 |
+
image_latents = torch.cat(image_latents, dim=0)
|
989 |
+
else:
|
990 |
+
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
|
991 |
+
|
992 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
993 |
+
|
994 |
+
return image_latents
|
995 |
+
|
996 |
+
@torch.no_grad()
|
997 |
+
def predict_woControl(
|
998 |
+
self,
|
999 |
+
promptA: Union[str, List[str]] = None,
|
1000 |
+
promptB: Union[str, List[str]] = None,
|
1001 |
+
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
1002 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
1003 |
+
height: Optional[int] = None,
|
1004 |
+
width: Optional[int] = None,
|
1005 |
+
strength: float = 1.0,
|
1006 |
+
tradoff: float = 1.0,
|
1007 |
+
tradoff_nag: float = 1.0,
|
1008 |
+
num_inference_steps: int = 50,
|
1009 |
+
guidance_scale: float = 7.5,
|
1010 |
+
negative_promptA: Optional[Union[str, List[str]]] = None,
|
1011 |
+
negative_promptB: Optional[Union[str, List[str]]] = None,
|
1012 |
+
num_images_per_prompt: Optional[int] = 1,
|
1013 |
+
eta: float = 0.0,
|
1014 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1015 |
+
latents: Optional[torch.FloatTensor] = None,
|
1016 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1017 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1018 |
+
output_type: Optional[str] = "pil",
|
1019 |
+
return_dict: bool = True,
|
1020 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
1021 |
+
callback_steps: int = 1,
|
1022 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1023 |
+
task_class: Union[torch.Tensor, float, int] = None,
|
1024 |
+
):
|
1025 |
+
r"""
|
1026 |
+
The call function to the pipeline for generation.
|
1027 |
+
|
1028 |
+
Args:
|
1029 |
+
prompt (`str` or `List[str]`, *optional*):
|
1030 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1031 |
+
image (`PIL.Image.Image`):
|
1032 |
+
`Image` or tensor representing an image batch to be inpainted (which parts of the image to be masked
|
1033 |
+
out with `mask_image` and repainted according to `prompt`).
|
1034 |
+
mask_image (`PIL.Image.Image`):
|
1035 |
+
`Image` or tensor representing an image batch to mask `image`. White pixels in the mask are repainted
|
1036 |
+
while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a single channel
|
1037 |
+
(luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the
|
1038 |
+
expected shape would be `(B, H, W, 1)`.
|
1039 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1040 |
+
The height in pixels of the generated image.
|
1041 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1042 |
+
The width in pixels of the generated image.
|
1043 |
+
strength (`float`, *optional*, defaults to 1.0):
|
1044 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
1045 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
1046 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
1047 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
1048 |
+
essentially ignores `image`.
|
1049 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1050 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1051 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
1052 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1053 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1054 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
1055 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1056 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
1057 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
1058 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1059 |
+
The number of images to generate per prompt.
|
1060 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1061 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1062 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1063 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1064 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1065 |
+
generation deterministic.
|
1066 |
+
latents (`torch.FloatTensor`, *optional*):
|
1067 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1068 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1069 |
+
tensor is generated by sampling using the supplied random `generator`.
|
1070 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1071 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1072 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
1073 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1074 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1075 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1076 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1077 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1078 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1079 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1080 |
+
plain tuple.
|
1081 |
+
callback (`Callable`, *optional*):
|
1082 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
1083 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1084 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1085 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
1086 |
+
every step.
|
1087 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1088 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1089 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1090 |
+
|
1091 |
+
Examples:
|
1092 |
+
|
1093 |
+
```py
|
1094 |
+
>>> import PIL
|
1095 |
+
>>> import requests
|
1096 |
+
>>> import torch
|
1097 |
+
>>> from io import BytesIO
|
1098 |
+
|
1099 |
+
>>> from diffusers import StableDiffusionInpaintPipeline
|
1100 |
+
|
1101 |
+
|
1102 |
+
>>> def download_image(url):
|
1103 |
+
... response = requests.get(url)
|
1104 |
+
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
1105 |
+
|
1106 |
+
|
1107 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
1108 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
1109 |
+
|
1110 |
+
>>> init_image = download_image(img_url).resize((512, 512))
|
1111 |
+
>>> mask_image = download_image(mask_url).resize((512, 512))
|
1112 |
+
|
1113 |
+
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
1114 |
+
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
1115 |
+
... )
|
1116 |
+
>>> pipe = pipe.to("cuda")
|
1117 |
+
|
1118 |
+
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
1119 |
+
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
|
1120 |
+
```
|
1121 |
+
|
1122 |
+
Returns:
|
1123 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1124 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1125 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
1126 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
1127 |
+
"not-safe-for-work" (nsfw) content.
|
1128 |
+
"""
|
1129 |
+
# 0. Default height and width to unet
|
1130 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1131 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
1132 |
+
prompt = promptA
|
1133 |
+
negative_prompt = negative_promptA
|
1134 |
+
# 1. Check inputs
|
1135 |
+
self.check_inputs(
|
1136 |
+
prompt,
|
1137 |
+
height,
|
1138 |
+
width,
|
1139 |
+
strength,
|
1140 |
+
callback_steps,
|
1141 |
+
negative_prompt,
|
1142 |
+
prompt_embeds,
|
1143 |
+
negative_prompt_embeds,
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
# 2. Define call parameters
|
1147 |
+
if prompt is not None and isinstance(prompt, str):
|
1148 |
+
batch_size = 1
|
1149 |
+
elif prompt is not None and isinstance(prompt, list):
|
1150 |
+
batch_size = len(prompt)
|
1151 |
+
else:
|
1152 |
+
batch_size = prompt_embeds.shape[0]
|
1153 |
+
|
1154 |
+
device = self._execution_device
|
1155 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1156 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1157 |
+
# corresponds to doing no classifier free guidance.
|
1158 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1159 |
+
|
1160 |
+
# 3. Encode input prompt
|
1161 |
+
text_encoder_lora_scale = (
|
1162 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1163 |
+
)
|
1164 |
+
prompt_embeds = self._encode_prompt(
|
1165 |
+
promptA,
|
1166 |
+
promptB,
|
1167 |
+
tradoff,
|
1168 |
+
device,
|
1169 |
+
num_images_per_prompt,
|
1170 |
+
do_classifier_free_guidance,
|
1171 |
+
negative_promptA,
|
1172 |
+
negative_promptB,
|
1173 |
+
tradoff_nag,
|
1174 |
+
prompt_embeds=prompt_embeds,
|
1175 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1176 |
+
lora_scale=text_encoder_lora_scale,
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
# 4. set timesteps
|
1180 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1181 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1182 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
1183 |
+
)
|
1184 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
1185 |
+
if num_inference_steps < 1:
|
1186 |
+
raise ValueError(
|
1187 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
1188 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
1189 |
+
)
|
1190 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1191 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1192 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1193 |
+
is_strength_max = strength == 1.0
|
1194 |
+
|
1195 |
+
# 5. Preprocess mask and image
|
1196 |
+
mask, masked_image, init_image = prepare_mask_and_masked_image(
|
1197 |
+
image, mask_image, height, width, return_image=True
|
1198 |
+
)
|
1199 |
+
mask_condition = mask.clone()
|
1200 |
+
|
1201 |
+
# 6. Prepare latent variables
|
1202 |
+
num_channels_latents = self.vae.config.latent_channels
|
1203 |
+
num_channels_unet = self.unet.config.in_channels
|
1204 |
+
return_image_latents = num_channels_unet == 4
|
1205 |
+
|
1206 |
+
latents_outputs = self.prepare_latents(
|
1207 |
+
batch_size * num_images_per_prompt,
|
1208 |
+
num_channels_latents,
|
1209 |
+
height,
|
1210 |
+
width,
|
1211 |
+
prompt_embeds.dtype,
|
1212 |
+
device,
|
1213 |
+
generator,
|
1214 |
+
latents,
|
1215 |
+
image=init_image,
|
1216 |
+
timestep=latent_timestep,
|
1217 |
+
is_strength_max=is_strength_max,
|
1218 |
+
return_noise=True,
|
1219 |
+
return_image_latents=return_image_latents,
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
if return_image_latents:
|
1223 |
+
latents, noise, image_latents = latents_outputs
|
1224 |
+
else:
|
1225 |
+
latents, noise = latents_outputs
|
1226 |
+
|
1227 |
+
# 7. Prepare mask latent variables
|
1228 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1229 |
+
mask,
|
1230 |
+
masked_image,
|
1231 |
+
batch_size * num_images_per_prompt,
|
1232 |
+
height,
|
1233 |
+
width,
|
1234 |
+
prompt_embeds.dtype,
|
1235 |
+
device,
|
1236 |
+
generator,
|
1237 |
+
do_classifier_free_guidance,
|
1238 |
+
)
|
1239 |
+
|
1240 |
+
# 8. Check that sizes of mask, masked image and latents match
|
1241 |
+
if num_channels_unet == 9:
|
1242 |
+
# default case for runwayml/stable-diffusion-inpainting
|
1243 |
+
num_channels_mask = mask.shape[1]
|
1244 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
1245 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
1246 |
+
raise ValueError(
|
1247 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
1248 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1249 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1250 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1251 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
1252 |
+
)
|
1253 |
+
elif num_channels_unet != 4:
|
1254 |
+
raise ValueError(
|
1255 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
1256 |
+
)
|
1257 |
+
|
1258 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1259 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1260 |
+
|
1261 |
+
# 10. Denoising loop
|
1262 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1263 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1264 |
+
for i, t in enumerate(timesteps):
|
1265 |
+
# expand the latents if we are doing classifier free guidance
|
1266 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1267 |
+
|
1268 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
1269 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1270 |
+
|
1271 |
+
if num_channels_unet == 9:
|
1272 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1273 |
+
|
1274 |
+
# predict the noise residual
|
1275 |
+
if task_class is not None:
|
1276 |
+
noise_pred = self.unet(
|
1277 |
+
sample = latent_model_input,
|
1278 |
+
timestep = t,
|
1279 |
+
encoder_hidden_states=prompt_embeds,
|
1280 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1281 |
+
return_dict=False,
|
1282 |
+
task_class = task_class,
|
1283 |
+
)[0]
|
1284 |
+
else:
|
1285 |
+
noise_pred = self.unet(
|
1286 |
+
latent_model_input,
|
1287 |
+
t,
|
1288 |
+
encoder_hidden_states=prompt_embeds,
|
1289 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1290 |
+
return_dict=False,
|
1291 |
+
)[0]
|
1292 |
+
|
1293 |
+
# perform guidance
|
1294 |
+
if do_classifier_free_guidance:
|
1295 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1296 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1297 |
+
|
1298 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1299 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1300 |
+
|
1301 |
+
if num_channels_unet == 4:
|
1302 |
+
init_latents_proper = image_latents[:1]
|
1303 |
+
init_mask = mask[:1]
|
1304 |
+
|
1305 |
+
if i < len(timesteps) - 1:
|
1306 |
+
noise_timestep = timesteps[i + 1]
|
1307 |
+
init_latents_proper = self.scheduler.add_noise(
|
1308 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1309 |
+
)
|
1310 |
+
|
1311 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1312 |
+
|
1313 |
+
# call the callback, if provided
|
1314 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1315 |
+
progress_bar.update()
|
1316 |
+
if callback is not None and i % callback_steps == 0:
|
1317 |
+
callback(i, t, latents)
|
1318 |
+
|
1319 |
+
if not output_type == "latent":
|
1320 |
+
condition_kwargs = {}
|
1321 |
+
if isinstance(self.vae, AsymmetricAutoencoderKL):
|
1322 |
+
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
|
1323 |
+
init_image_condition = init_image.clone()
|
1324 |
+
init_image = self._encode_vae_image(init_image, generator=generator)
|
1325 |
+
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
|
1326 |
+
condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
|
1327 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, **condition_kwargs)[0]
|
1328 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1329 |
+
else:
|
1330 |
+
image = latents
|
1331 |
+
has_nsfw_concept = None
|
1332 |
+
|
1333 |
+
if has_nsfw_concept is None:
|
1334 |
+
do_denormalize = [True] * image.shape[0]
|
1335 |
+
else:
|
1336 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1337 |
+
|
1338 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1339 |
+
|
1340 |
+
# Offload last model to CPU
|
1341 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1342 |
+
self.final_offload_hook.offload()
|
1343 |
+
|
1344 |
+
if not return_dict:
|
1345 |
+
return (image, has_nsfw_concept)
|
1346 |
+
|
1347 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
1348 |
+
|
1349 |
+
|
1350 |
+
@torch.no_grad()
|
1351 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1352 |
+
def __call__(
|
1353 |
+
self,
|
1354 |
+
promptA: Union[str, List[str]] = None,
|
1355 |
+
promptB: Union[str, List[str]] = None,
|
1356 |
+
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
1357 |
+
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
1358 |
+
control_image: Union[
|
1359 |
+
torch.FloatTensor,
|
1360 |
+
PIL.Image.Image,
|
1361 |
+
np.ndarray,
|
1362 |
+
List[torch.FloatTensor],
|
1363 |
+
List[PIL.Image.Image],
|
1364 |
+
List[np.ndarray],
|
1365 |
+
] = None,
|
1366 |
+
height: Optional[int] = None,
|
1367 |
+
width: Optional[int] = None,
|
1368 |
+
strength: float = 1.0,
|
1369 |
+
tradoff: float = 1.0,
|
1370 |
+
tradoff_nag: float = 1.0,
|
1371 |
+
num_inference_steps: int = 50,
|
1372 |
+
guidance_scale: float = 7.5,
|
1373 |
+
negative_promptA: Optional[Union[str, List[str]]] = None,
|
1374 |
+
negative_promptB: Optional[Union[str, List[str]]] = None,
|
1375 |
+
num_images_per_prompt: Optional[int] = 1,
|
1376 |
+
eta: float = 0.0,
|
1377 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1378 |
+
latents: Optional[torch.FloatTensor] = None,
|
1379 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1380 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1381 |
+
output_type: Optional[str] = "pil",
|
1382 |
+
return_dict: bool = True,
|
1383 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
1384 |
+
callback_steps: int = 1,
|
1385 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1386 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
|
1387 |
+
guess_mode: bool = False,
|
1388 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
1389 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
1390 |
+
):
|
1391 |
+
r"""
|
1392 |
+
Function invoked when calling the pipeline for generation.
|
1393 |
+
|
1394 |
+
Args:
|
1395 |
+
prompt (`str` or `List[str]`, *optional*):
|
1396 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1397 |
+
instead.
|
1398 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
|
1399 |
+
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
|
1400 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
1401 |
+
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
|
1402 |
+
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
|
1403 |
+
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
|
1404 |
+
specified in init, images must be passed as a list such that each element of the list can be correctly
|
1405 |
+
batched for input to a single controlnet.
|
1406 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1407 |
+
The height in pixels of the generated image.
|
1408 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1409 |
+
The width in pixels of the generated image.
|
1410 |
+
strength (`float`, *optional*, defaults to 1.):
|
1411 |
+
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
1412 |
+
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
1413 |
+
`strength`. The number of denoising steps depends on the amount of noise initially added. When
|
1414 |
+
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
|
1415 |
+
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
|
1416 |
+
portion of the reference `image`.
|
1417 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1418 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1419 |
+
expense of slower inference.
|
1420 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1421 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1422 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1423 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1424 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1425 |
+
usually at the expense of lower image quality.
|
1426 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1427 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1428 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1429 |
+
less than `1`).
|
1430 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1431 |
+
The number of images to generate per prompt.
|
1432 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1433 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1434 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1435 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1436 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1437 |
+
to make generation deterministic.
|
1438 |
+
latents (`torch.FloatTensor`, *optional*):
|
1439 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1440 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1441 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1442 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1443 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1444 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1445 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1446 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1447 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1448 |
+
argument.
|
1449 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1450 |
+
The output format of the generate image. Choose between
|
1451 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1452 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1453 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1454 |
+
plain tuple.
|
1455 |
+
callback (`Callable`, *optional*):
|
1456 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
1457 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1458 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1459 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1460 |
+
called at every step.
|
1461 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1462 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1463 |
+
`self.processor` in
|
1464 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1465 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
|
1466 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
1467 |
+
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
1468 |
+
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
|
1469 |
+
than for [`~StableDiffusionControlNetPipeline.__call__`].
|
1470 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
1471 |
+
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
|
1472 |
+
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
1473 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1474 |
+
The percentage of total steps at which the controlnet starts applying.
|
1475 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1476 |
+
The percentage of total steps at which the controlnet stops applying.
|
1477 |
+
|
1478 |
+
Examples:
|
1479 |
+
|
1480 |
+
Returns:
|
1481 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1482 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
1483 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
1484 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
1485 |
+
(nsfw) content, according to the `safety_checker`.
|
1486 |
+
"""
|
1487 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1488 |
+
|
1489 |
+
# 0. Default height and width to unet
|
1490 |
+
height, width = self._default_height_width(height, width, image)
|
1491 |
+
|
1492 |
+
prompt = promptA
|
1493 |
+
negative_prompt = negative_promptA
|
1494 |
+
|
1495 |
+
# align format for control guidance
|
1496 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1497 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1498 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1499 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1500 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1501 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1502 |
+
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
|
1503 |
+
control_guidance_end
|
1504 |
+
]
|
1505 |
+
|
1506 |
+
# 1. Check inputs. Raise error if not correct
|
1507 |
+
self.check_inputs(
|
1508 |
+
prompt,
|
1509 |
+
control_image,
|
1510 |
+
height,
|
1511 |
+
width,
|
1512 |
+
callback_steps,
|
1513 |
+
negative_prompt,
|
1514 |
+
prompt_embeds,
|
1515 |
+
negative_prompt_embeds,
|
1516 |
+
controlnet_conditioning_scale,
|
1517 |
+
control_guidance_start,
|
1518 |
+
control_guidance_end,
|
1519 |
+
)
|
1520 |
+
|
1521 |
+
# 2. Define call parameters
|
1522 |
+
if prompt is not None and isinstance(prompt, str):
|
1523 |
+
batch_size = 1
|
1524 |
+
elif prompt is not None and isinstance(prompt, list):
|
1525 |
+
batch_size = len(prompt)
|
1526 |
+
else:
|
1527 |
+
batch_size = prompt_embeds.shape[0]
|
1528 |
+
|
1529 |
+
device = self._execution_device
|
1530 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1531 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1532 |
+
# corresponds to doing no classifier free guidance.
|
1533 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1534 |
+
|
1535 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1536 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1537 |
+
|
1538 |
+
global_pool_conditions = (
|
1539 |
+
controlnet.config.global_pool_conditions
|
1540 |
+
if isinstance(controlnet, ControlNetModel)
|
1541 |
+
else controlnet.nets[0].config.global_pool_conditions
|
1542 |
+
)
|
1543 |
+
guess_mode = guess_mode or global_pool_conditions
|
1544 |
+
|
1545 |
+
# 3. Encode input prompt
|
1546 |
+
text_encoder_lora_scale = (
|
1547 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1548 |
+
)
|
1549 |
+
prompt_embeds = self._encode_prompt(
|
1550 |
+
promptA,
|
1551 |
+
promptB,
|
1552 |
+
tradoff,
|
1553 |
+
device,
|
1554 |
+
num_images_per_prompt,
|
1555 |
+
do_classifier_free_guidance,
|
1556 |
+
negative_promptA,
|
1557 |
+
negative_promptB,
|
1558 |
+
tradoff_nag,
|
1559 |
+
prompt_embeds=prompt_embeds,
|
1560 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1561 |
+
lora_scale=text_encoder_lora_scale,
|
1562 |
+
)
|
1563 |
+
|
1564 |
+
# 4. Prepare image
|
1565 |
+
if isinstance(controlnet, ControlNetModel):
|
1566 |
+
control_image = self.prepare_control_image(
|
1567 |
+
image=control_image,
|
1568 |
+
width=width,
|
1569 |
+
height=height,
|
1570 |
+
batch_size=batch_size * num_images_per_prompt,
|
1571 |
+
num_images_per_prompt=num_images_per_prompt,
|
1572 |
+
device=device,
|
1573 |
+
dtype=controlnet.dtype,
|
1574 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1575 |
+
guess_mode=guess_mode,
|
1576 |
+
)
|
1577 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
1578 |
+
control_images = []
|
1579 |
+
|
1580 |
+
for control_image_ in control_image:
|
1581 |
+
control_image_ = self.prepare_control_image(
|
1582 |
+
image=control_image_,
|
1583 |
+
width=width,
|
1584 |
+
height=height,
|
1585 |
+
batch_size=batch_size * num_images_per_prompt,
|
1586 |
+
num_images_per_prompt=num_images_per_prompt,
|
1587 |
+
device=device,
|
1588 |
+
dtype=controlnet.dtype,
|
1589 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1590 |
+
guess_mode=guess_mode,
|
1591 |
+
)
|
1592 |
+
|
1593 |
+
control_images.append(control_image_)
|
1594 |
+
|
1595 |
+
control_image = control_images
|
1596 |
+
else:
|
1597 |
+
assert False
|
1598 |
+
|
1599 |
+
# 4. Preprocess mask and image - resizes image and mask w.r.t height and width
|
1600 |
+
mask, masked_image, init_image = prepare_mask_and_masked_image(
|
1601 |
+
image, mask_image, height, width, return_image=True
|
1602 |
+
)
|
1603 |
+
|
1604 |
+
# 5. Prepare timesteps
|
1605 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1606 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1607 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
1608 |
+
)
|
1609 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1610 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1611 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1612 |
+
is_strength_max = strength == 1.0
|
1613 |
+
|
1614 |
+
# 6. Prepare latent variables
|
1615 |
+
num_channels_latents = self.vae.config.latent_channels
|
1616 |
+
num_channels_unet = self.unet.config.in_channels
|
1617 |
+
return_image_latents = num_channels_unet == 4
|
1618 |
+
latents_outputs = self.prepare_latents(
|
1619 |
+
batch_size * num_images_per_prompt,
|
1620 |
+
num_channels_latents,
|
1621 |
+
height,
|
1622 |
+
width,
|
1623 |
+
prompt_embeds.dtype,
|
1624 |
+
device,
|
1625 |
+
generator,
|
1626 |
+
latents,
|
1627 |
+
image=init_image,
|
1628 |
+
timestep=latent_timestep,
|
1629 |
+
is_strength_max=is_strength_max,
|
1630 |
+
return_noise=True,
|
1631 |
+
return_image_latents=return_image_latents,
|
1632 |
+
)
|
1633 |
+
|
1634 |
+
if return_image_latents:
|
1635 |
+
latents, noise, image_latents = latents_outputs
|
1636 |
+
else:
|
1637 |
+
latents, noise = latents_outputs
|
1638 |
+
|
1639 |
+
# 7. Prepare mask latent variables
|
1640 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1641 |
+
mask,
|
1642 |
+
masked_image,
|
1643 |
+
batch_size * num_images_per_prompt,
|
1644 |
+
height,
|
1645 |
+
width,
|
1646 |
+
prompt_embeds.dtype,
|
1647 |
+
device,
|
1648 |
+
generator,
|
1649 |
+
do_classifier_free_guidance,
|
1650 |
+
)
|
1651 |
+
|
1652 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1653 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1654 |
+
|
1655 |
+
# 7.1 Create tensor stating which controlnets to keep
|
1656 |
+
controlnet_keep = []
|
1657 |
+
for i in range(len(timesteps)):
|
1658 |
+
keeps = [
|
1659 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1660 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1661 |
+
]
|
1662 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
1663 |
+
|
1664 |
+
# 8. Denoising loop
|
1665 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1666 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1667 |
+
for i, t in enumerate(timesteps):
|
1668 |
+
# expand the latents if we are doing classifier free guidance
|
1669 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1670 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1671 |
+
|
1672 |
+
# controlnet(s) inference
|
1673 |
+
if guess_mode and do_classifier_free_guidance:
|
1674 |
+
# Infer ControlNet only for the conditional batch.
|
1675 |
+
control_model_input = latents
|
1676 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1677 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1678 |
+
else:
|
1679 |
+
control_model_input = latent_model_input
|
1680 |
+
controlnet_prompt_embeds = prompt_embeds
|
1681 |
+
|
1682 |
+
if isinstance(controlnet_keep[i], list):
|
1683 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1684 |
+
else:
|
1685 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1686 |
+
if isinstance(controlnet_cond_scale, list):
|
1687 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1688 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1689 |
+
|
1690 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1691 |
+
control_model_input,
|
1692 |
+
t,
|
1693 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1694 |
+
controlnet_cond=control_image,
|
1695 |
+
conditioning_scale=cond_scale,
|
1696 |
+
guess_mode=guess_mode,
|
1697 |
+
return_dict=False,
|
1698 |
+
)
|
1699 |
+
|
1700 |
+
if guess_mode and do_classifier_free_guidance:
|
1701 |
+
# Infered ControlNet only for the conditional batch.
|
1702 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1703 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1704 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1705 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1706 |
+
|
1707 |
+
# predict the noise residual
|
1708 |
+
if num_channels_unet == 9:
|
1709 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1710 |
+
|
1711 |
+
noise_pred = self.unet(
|
1712 |
+
latent_model_input,
|
1713 |
+
t,
|
1714 |
+
encoder_hidden_states=prompt_embeds,
|
1715 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1716 |
+
down_block_additional_residuals=down_block_res_samples,
|
1717 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1718 |
+
return_dict=False,
|
1719 |
+
)[0]
|
1720 |
+
|
1721 |
+
# perform guidance
|
1722 |
+
if do_classifier_free_guidance:
|
1723 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1724 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1725 |
+
|
1726 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1727 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1728 |
+
|
1729 |
+
if num_channels_unet == 4:
|
1730 |
+
init_latents_proper = image_latents[:1]
|
1731 |
+
init_mask = mask[:1]
|
1732 |
+
|
1733 |
+
if i < len(timesteps) - 1:
|
1734 |
+
noise_timestep = timesteps[i + 1]
|
1735 |
+
init_latents_proper = self.scheduler.add_noise(
|
1736 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1737 |
+
)
|
1738 |
+
|
1739 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1740 |
+
|
1741 |
+
# call the callback, if provided
|
1742 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1743 |
+
progress_bar.update()
|
1744 |
+
if callback is not None and i % callback_steps == 0:
|
1745 |
+
callback(i, t, latents)
|
1746 |
+
|
1747 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1748 |
+
# manually for max memory savings
|
1749 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1750 |
+
self.unet.to("cpu")
|
1751 |
+
self.controlnet.to("cpu")
|
1752 |
+
torch.cuda.empty_cache()
|
1753 |
+
|
1754 |
+
if not output_type == "latent":
|
1755 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1756 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1757 |
+
else:
|
1758 |
+
image = latents
|
1759 |
+
has_nsfw_concept = None
|
1760 |
+
|
1761 |
+
if has_nsfw_concept is None:
|
1762 |
+
do_denormalize = [True] * image.shape[0]
|
1763 |
+
else:
|
1764 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1765 |
+
|
1766 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1767 |
+
|
1768 |
+
# Offload last model to CPU
|
1769 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1770 |
+
self.final_offload_hook.offload()
|
1771 |
+
|
1772 |
+
if not return_dict:
|
1773 |
+
return (image, has_nsfw_concept)
|
1774 |
+
|
1775 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
power_paint_tokenizer.py
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import copy
|
4 |
+
import random
|
5 |
+
from typing import Any, List, Optional, Union
|
6 |
+
from transformers import CLIPTokenizer
|
7 |
+
|
8 |
+
|
9 |
+
class PowerPaintTokenizer:
|
10 |
+
def __init__(self, tokenizer: CLIPTokenizer):
|
11 |
+
self.wrapped = tokenizer
|
12 |
+
self.token_map = {}
|
13 |
+
placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"]
|
14 |
+
num_vec_per_token = 10
|
15 |
+
for placeholder_token in placeholder_tokens:
|
16 |
+
output = []
|
17 |
+
for i in range(num_vec_per_token):
|
18 |
+
ith_token = placeholder_token + f"_{i}"
|
19 |
+
output.append(ith_token)
|
20 |
+
self.token_map[placeholder_token] = output
|
21 |
+
|
22 |
+
def __getattr__(self, name: str) -> Any:
|
23 |
+
if name == "wrapped":
|
24 |
+
return super().__getattr__("wrapped")
|
25 |
+
|
26 |
+
try:
|
27 |
+
return getattr(self.wrapped, name)
|
28 |
+
except AttributeError:
|
29 |
+
try:
|
30 |
+
return super().__getattr__(name)
|
31 |
+
except AttributeError:
|
32 |
+
raise AttributeError(
|
33 |
+
"'name' cannot be found in both "
|
34 |
+
f"'{self.__class__.__name__}' and "
|
35 |
+
f"'{self.__class__.__name__}.tokenizer'."
|
36 |
+
)
|
37 |
+
|
38 |
+
def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs):
|
39 |
+
"""Attempt to add tokens to the tokenizer.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
tokens (Union[str, List[str]]): The tokens to be added.
|
43 |
+
"""
|
44 |
+
num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs)
|
45 |
+
assert num_added_tokens != 0, (
|
46 |
+
f"The tokenizer already contains the token {tokens}. Please pass "
|
47 |
+
"a different `placeholder_token` that is not already in the "
|
48 |
+
"tokenizer."
|
49 |
+
)
|
50 |
+
|
51 |
+
def get_token_info(self, token: str) -> dict:
|
52 |
+
"""Get the information of a token, including its start and end index in
|
53 |
+
the current tokenizer.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
token (str): The token to be queried.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
dict: The information of the token, including its start and end
|
60 |
+
index in current tokenizer.
|
61 |
+
"""
|
62 |
+
token_ids = self.__call__(token).input_ids
|
63 |
+
start, end = token_ids[1], token_ids[-2] + 1
|
64 |
+
return {"name": token, "start": start, "end": end}
|
65 |
+
|
66 |
+
def add_placeholder_token(
|
67 |
+
self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs
|
68 |
+
):
|
69 |
+
"""Add placeholder tokens to the tokenizer.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
placeholder_token (str): The placeholder token to be added.
|
73 |
+
num_vec_per_token (int, optional): The number of vectors of
|
74 |
+
the added placeholder token.
|
75 |
+
*args, **kwargs: The arguments for `self.wrapped.add_tokens`.
|
76 |
+
"""
|
77 |
+
output = []
|
78 |
+
if num_vec_per_token == 1:
|
79 |
+
self.try_adding_tokens(placeholder_token, *args, **kwargs)
|
80 |
+
output.append(placeholder_token)
|
81 |
+
else:
|
82 |
+
output = []
|
83 |
+
for i in range(num_vec_per_token):
|
84 |
+
ith_token = placeholder_token + f"_{i}"
|
85 |
+
self.try_adding_tokens(ith_token, *args, **kwargs)
|
86 |
+
output.append(ith_token)
|
87 |
+
|
88 |
+
for token in self.token_map:
|
89 |
+
if token in placeholder_token:
|
90 |
+
raise ValueError(
|
91 |
+
f"The tokenizer already has placeholder token {token} "
|
92 |
+
f"that can get confused with {placeholder_token} "
|
93 |
+
"keep placeholder tokens independent"
|
94 |
+
)
|
95 |
+
self.token_map[placeholder_token] = output
|
96 |
+
|
97 |
+
def replace_placeholder_tokens_in_text(
|
98 |
+
self,
|
99 |
+
text: Union[str, List[str]],
|
100 |
+
vector_shuffle: bool = False,
|
101 |
+
prop_tokens_to_load: float = 1.0,
|
102 |
+
) -> Union[str, List[str]]:
|
103 |
+
"""Replace the keywords in text with placeholder tokens. This function
|
104 |
+
will be called in `self.__call__` and `self.encode`.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
text (Union[str, List[str]]): The text to be processed.
|
108 |
+
vector_shuffle (bool, optional): Whether to shuffle the vectors.
|
109 |
+
Defaults to False.
|
110 |
+
prop_tokens_to_load (float, optional): The proportion of tokens to
|
111 |
+
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
Union[str, List[str]]: The processed text.
|
115 |
+
"""
|
116 |
+
if isinstance(text, list):
|
117 |
+
output = []
|
118 |
+
for i in range(len(text)):
|
119 |
+
output.append(
|
120 |
+
self.replace_placeholder_tokens_in_text(
|
121 |
+
text[i], vector_shuffle=vector_shuffle
|
122 |
+
)
|
123 |
+
)
|
124 |
+
return output
|
125 |
+
|
126 |
+
for placeholder_token in self.token_map:
|
127 |
+
if placeholder_token in text:
|
128 |
+
tokens = self.token_map[placeholder_token]
|
129 |
+
tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
|
130 |
+
if vector_shuffle:
|
131 |
+
tokens = copy.copy(tokens)
|
132 |
+
random.shuffle(tokens)
|
133 |
+
text = text.replace(placeholder_token, " ".join(tokens))
|
134 |
+
return text
|
135 |
+
|
136 |
+
def replace_text_with_placeholder_tokens(
|
137 |
+
self, text: Union[str, List[str]]
|
138 |
+
) -> Union[str, List[str]]:
|
139 |
+
"""Replace the placeholder tokens in text with the original keywords.
|
140 |
+
This function will be called in `self.decode`.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
text (Union[str, List[str]]): The text to be processed.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
Union[str, List[str]]: The processed text.
|
147 |
+
"""
|
148 |
+
if isinstance(text, list):
|
149 |
+
output = []
|
150 |
+
for i in range(len(text)):
|
151 |
+
output.append(self.replace_text_with_placeholder_tokens(text[i]))
|
152 |
+
return output
|
153 |
+
|
154 |
+
for placeholder_token, tokens in self.token_map.items():
|
155 |
+
merged_tokens = " ".join(tokens)
|
156 |
+
if merged_tokens in text:
|
157 |
+
text = text.replace(merged_tokens, placeholder_token)
|
158 |
+
return text
|
159 |
+
|
160 |
+
def __call__(
|
161 |
+
self,
|
162 |
+
text: Union[str, List[str]],
|
163 |
+
*args,
|
164 |
+
vector_shuffle: bool = False,
|
165 |
+
prop_tokens_to_load: float = 1.0,
|
166 |
+
**kwargs,
|
167 |
+
):
|
168 |
+
"""The call function of the wrapper.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
text (Union[str, List[str]]): The text to be tokenized.
|
172 |
+
vector_shuffle (bool, optional): Whether to shuffle the vectors.
|
173 |
+
Defaults to False.
|
174 |
+
prop_tokens_to_load (float, optional): The proportion of tokens to
|
175 |
+
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0
|
176 |
+
*args, **kwargs: The arguments for `self.wrapped.__call__`.
|
177 |
+
"""
|
178 |
+
replaced_text = self.replace_placeholder_tokens_in_text(
|
179 |
+
text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load
|
180 |
+
)
|
181 |
+
|
182 |
+
return self.wrapped.__call__(replaced_text, *args, **kwargs)
|
183 |
+
|
184 |
+
def encode(self, text: Union[str, List[str]], *args, **kwargs):
|
185 |
+
"""Encode the passed text to token index.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
text (Union[str, List[str]]): The text to be encode.
|
189 |
+
*args, **kwargs: The arguments for `self.wrapped.__call__`.
|
190 |
+
"""
|
191 |
+
replaced_text = self.replace_placeholder_tokens_in_text(text)
|
192 |
+
return self.wrapped(replaced_text, *args, **kwargs)
|
193 |
+
|
194 |
+
def decode(
|
195 |
+
self, token_ids, return_raw: bool = False, *args, **kwargs
|
196 |
+
) -> Union[str, List[str]]:
|
197 |
+
"""Decode the token index to text.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
token_ids: The token index to be decoded.
|
201 |
+
return_raw: Whether keep the placeholder token in the text.
|
202 |
+
Defaults to False.
|
203 |
+
*args, **kwargs: The arguments for `self.wrapped.decode`.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
Union[str, List[str]]: The decoded text.
|
207 |
+
"""
|
208 |
+
text = self.wrapped.decode(token_ids, *args, **kwargs)
|
209 |
+
if return_raw:
|
210 |
+
return text
|
211 |
+
replaced_text = self.replace_text_with_placeholder_tokens(text)
|
212 |
+
return replaced_text
|
213 |
+
|
214 |
+
|
215 |
+
class EmbeddingLayerWithFixes(nn.Module):
|
216 |
+
"""The revised embedding layer to support external embeddings. This design
|
217 |
+
of this class is inspired by https://github.com/AUTOMATIC1111/stable-
|
218 |
+
diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi
|
219 |
+
jack.py#L224 # noqa.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
wrapped (nn.Emebdding): The embedding layer to be wrapped.
|
223 |
+
external_embeddings (Union[dict, List[dict]], optional): The external
|
224 |
+
embeddings added to this layer. Defaults to None.
|
225 |
+
"""
|
226 |
+
|
227 |
+
def __init__(
|
228 |
+
self,
|
229 |
+
wrapped: nn.Embedding,
|
230 |
+
external_embeddings: Optional[Union[dict, List[dict]]] = None,
|
231 |
+
):
|
232 |
+
super().__init__()
|
233 |
+
self.wrapped = wrapped
|
234 |
+
self.num_embeddings = wrapped.weight.shape[0]
|
235 |
+
|
236 |
+
self.external_embeddings = []
|
237 |
+
if external_embeddings:
|
238 |
+
self.add_embeddings(external_embeddings)
|
239 |
+
|
240 |
+
self.trainable_embeddings = nn.ParameterDict()
|
241 |
+
|
242 |
+
@property
|
243 |
+
def weight(self):
|
244 |
+
"""Get the weight of wrapped embedding layer."""
|
245 |
+
return self.wrapped.weight
|
246 |
+
|
247 |
+
def check_duplicate_names(self, embeddings: List[dict]):
|
248 |
+
"""Check whether duplicate names exist in list of 'external
|
249 |
+
embeddings'.
|
250 |
+
|
251 |
+
Args:
|
252 |
+
embeddings (List[dict]): A list of embedding to be check.
|
253 |
+
"""
|
254 |
+
names = [emb["name"] for emb in embeddings]
|
255 |
+
assert len(names) == len(set(names)), (
|
256 |
+
"Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'"
|
257 |
+
)
|
258 |
+
|
259 |
+
def check_ids_overlap(self, embeddings):
|
260 |
+
"""Check whether overlap exist in token ids of 'external_embeddings'.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
embeddings (List[dict]): A list of embedding to be check.
|
264 |
+
"""
|
265 |
+
ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings]
|
266 |
+
ids_range.sort() # sort by 'start'
|
267 |
+
# check if 'end' has overlapping
|
268 |
+
for idx in range(len(ids_range) - 1):
|
269 |
+
name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1]
|
270 |
+
assert ids_range[idx][1] <= ids_range[idx + 1][0], (
|
271 |
+
f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'."
|
272 |
+
)
|
273 |
+
|
274 |
+
def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]):
|
275 |
+
"""Add external embeddings to this layer.
|
276 |
+
|
277 |
+
Use case:
|
278 |
+
|
279 |
+
>>> 1. Add token to tokenizer and get the token id.
|
280 |
+
>>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32')
|
281 |
+
>>> # 'how much' in kiswahili
|
282 |
+
>>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4)
|
283 |
+
>>>
|
284 |
+
>>> 2. Add external embeddings to the model.
|
285 |
+
>>> new_embedding = {
|
286 |
+
>>> 'name': 'ngapi', # 'how much' in kiswahili
|
287 |
+
>>> 'embedding': torch.ones(1, 15) * 4,
|
288 |
+
>>> 'start': tokenizer.get_token_info('kwaheri')['start'],
|
289 |
+
>>> 'end': tokenizer.get_token_info('kwaheri')['end'],
|
290 |
+
>>> 'trainable': False # if True, will registry as a parameter
|
291 |
+
>>> }
|
292 |
+
>>> embedding_layer = nn.Embedding(10, 15)
|
293 |
+
>>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer)
|
294 |
+
>>> embedding_layer_wrapper.add_embeddings(new_embedding)
|
295 |
+
>>>
|
296 |
+
>>> 3. Forward tokenizer and embedding layer!
|
297 |
+
>>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?']
|
298 |
+
>>> input_ids = tokenizer(
|
299 |
+
>>> input_text, padding='max_length', truncation=True,
|
300 |
+
>>> return_tensors='pt')['input_ids']
|
301 |
+
>>> out_feat = embedding_layer_wrapper(input_ids)
|
302 |
+
>>>
|
303 |
+
>>> 4. Let's validate the result!
|
304 |
+
>>> assert (out_feat[0, 3: 7] == 2.3).all()
|
305 |
+
>>> assert (out_feat[2, 5: 9] == 2.3).all()
|
306 |
+
|
307 |
+
Args:
|
308 |
+
embeddings (Union[dict, list[dict]]): The external embeddings to
|
309 |
+
be added. Each dict must contain the following 4 fields: 'name'
|
310 |
+
(the name of this embedding), 'embedding' (the embedding
|
311 |
+
tensor), 'start' (the start token id of this embedding), 'end'
|
312 |
+
(the end token id of this embedding). For example:
|
313 |
+
`{name: NAME, start: START, end: END, embedding: torch.Tensor}`
|
314 |
+
"""
|
315 |
+
if isinstance(embeddings, dict):
|
316 |
+
embeddings = [embeddings]
|
317 |
+
|
318 |
+
self.external_embeddings += embeddings
|
319 |
+
self.check_duplicate_names(self.external_embeddings)
|
320 |
+
self.check_ids_overlap(self.external_embeddings)
|
321 |
+
|
322 |
+
# set for trainable
|
323 |
+
added_trainable_emb_info = []
|
324 |
+
for embedding in embeddings:
|
325 |
+
trainable = embedding.get("trainable", False)
|
326 |
+
if trainable:
|
327 |
+
name = embedding["name"]
|
328 |
+
embedding["embedding"] = torch.nn.Parameter(embedding["embedding"])
|
329 |
+
self.trainable_embeddings[name] = embedding["embedding"]
|
330 |
+
added_trainable_emb_info.append(name)
|
331 |
+
|
332 |
+
added_emb_info = [emb["name"] for emb in embeddings]
|
333 |
+
added_emb_info = ", ".join(added_emb_info)
|
334 |
+
print(f"Successfully add external embeddings: {added_emb_info}.", "current")
|
335 |
+
|
336 |
+
if added_trainable_emb_info:
|
337 |
+
added_trainable_emb_info = ", ".join(added_trainable_emb_info)
|
338 |
+
print(
|
339 |
+
"Successfully add trainable external embeddings: "
|
340 |
+
f"{added_trainable_emb_info}",
|
341 |
+
"current",
|
342 |
+
)
|
343 |
+
|
344 |
+
def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
345 |
+
"""Replace external input ids to 0.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
input_ids (torch.Tensor): The input ids to be replaced.
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
torch.Tensor: The replaced input ids.
|
352 |
+
"""
|
353 |
+
input_ids_fwd = input_ids.clone()
|
354 |
+
input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0
|
355 |
+
return input_ids_fwd
|
356 |
+
|
357 |
+
def replace_embeddings(
|
358 |
+
self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict
|
359 |
+
) -> torch.Tensor:
|
360 |
+
"""Replace external embedding to the embedding layer. Noted that, in
|
361 |
+
this function we use `torch.cat` to avoid inplace modification.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
input_ids (torch.Tensor): The original token ids. Shape like
|
365 |
+
[LENGTH, ].
|
366 |
+
embedding (torch.Tensor): The embedding of token ids after
|
367 |
+
`replace_input_ids` function.
|
368 |
+
external_embedding (dict): The external embedding to be replaced.
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
torch.Tensor: The replaced embedding.
|
372 |
+
"""
|
373 |
+
new_embedding = []
|
374 |
+
|
375 |
+
name = external_embedding["name"]
|
376 |
+
start = external_embedding["start"]
|
377 |
+
end = external_embedding["end"]
|
378 |
+
target_ids_to_replace = [i for i in range(start, end)]
|
379 |
+
ext_emb = external_embedding["embedding"]
|
380 |
+
|
381 |
+
# do not need to replace
|
382 |
+
if not (input_ids == start).any():
|
383 |
+
return embedding
|
384 |
+
|
385 |
+
# start replace
|
386 |
+
s_idx, e_idx = 0, 0
|
387 |
+
while e_idx < len(input_ids):
|
388 |
+
if input_ids[e_idx] == start:
|
389 |
+
if e_idx != 0:
|
390 |
+
# add embedding do not need to replace
|
391 |
+
new_embedding.append(embedding[s_idx:e_idx])
|
392 |
+
|
393 |
+
# check if the next embedding need to replace is valid
|
394 |
+
actually_ids_to_replace = [
|
395 |
+
int(i) for i in input_ids[e_idx : e_idx + end - start]
|
396 |
+
]
|
397 |
+
assert actually_ids_to_replace == target_ids_to_replace, (
|
398 |
+
f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. "
|
399 |
+
f"Expect '{target_ids_to_replace}' for embedding "
|
400 |
+
f"'{name}' but found '{actually_ids_to_replace}'."
|
401 |
+
)
|
402 |
+
|
403 |
+
new_embedding.append(ext_emb)
|
404 |
+
|
405 |
+
s_idx = e_idx + end - start
|
406 |
+
e_idx = s_idx + 1
|
407 |
+
else:
|
408 |
+
e_idx += 1
|
409 |
+
|
410 |
+
if e_idx == len(input_ids):
|
411 |
+
new_embedding.append(embedding[s_idx:e_idx])
|
412 |
+
|
413 |
+
return torch.cat(new_embedding, dim=0)
|
414 |
+
|
415 |
+
def forward(
|
416 |
+
self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None
|
417 |
+
):
|
418 |
+
"""The forward function.
|
419 |
+
|
420 |
+
Args:
|
421 |
+
input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or
|
422 |
+
[LENGTH, ].
|
423 |
+
external_embeddings (Optional[List[dict]]): The external
|
424 |
+
embeddings. If not passed, only `self.external_embeddings`
|
425 |
+
will be used. Defaults to None.
|
426 |
+
|
427 |
+
input_ids: shape like [bz, LENGTH] or [LENGTH].
|
428 |
+
"""
|
429 |
+
assert input_ids.ndim in [1, 2]
|
430 |
+
if input_ids.ndim == 1:
|
431 |
+
input_ids = input_ids.unsqueeze(0)
|
432 |
+
|
433 |
+
if external_embeddings is None and not self.external_embeddings:
|
434 |
+
return self.wrapped(input_ids)
|
435 |
+
|
436 |
+
input_ids_fwd = self.replace_input_ids(input_ids)
|
437 |
+
inputs_embeds = self.wrapped(input_ids_fwd)
|
438 |
+
|
439 |
+
vecs = []
|
440 |
+
|
441 |
+
if external_embeddings is None:
|
442 |
+
external_embeddings = []
|
443 |
+
elif isinstance(external_embeddings, dict):
|
444 |
+
external_embeddings = [external_embeddings]
|
445 |
+
embeddings = self.external_embeddings + external_embeddings
|
446 |
+
|
447 |
+
for input_id, embedding in zip(input_ids, inputs_embeds):
|
448 |
+
new_embedding = embedding
|
449 |
+
for external_embedding in embeddings:
|
450 |
+
new_embedding = self.replace_embeddings(
|
451 |
+
input_id, new_embedding, external_embedding
|
452 |
+
)
|
453 |
+
vecs.append(new_embedding)
|
454 |
+
|
455 |
+
return torch.stack(vecs)
|
456 |
+
|
457 |
+
|
458 |
+
def add_tokens(
|
459 |
+
tokenizer,
|
460 |
+
text_encoder,
|
461 |
+
placeholder_tokens: list,
|
462 |
+
initialize_tokens: list = None,
|
463 |
+
num_vectors_per_token: int = 1,
|
464 |
+
):
|
465 |
+
"""Add token for training.
|
466 |
+
|
467 |
+
# TODO: support add tokens as dict, then we can load pretrained tokens.
|
468 |
+
"""
|
469 |
+
if initialize_tokens is not None:
|
470 |
+
assert len(initialize_tokens) == len(
|
471 |
+
placeholder_tokens
|
472 |
+
), "placeholder_token should be the same length as initialize_token"
|
473 |
+
for ii in range(len(placeholder_tokens)):
|
474 |
+
tokenizer.add_placeholder_token(
|
475 |
+
placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token
|
476 |
+
)
|
477 |
+
|
478 |
+
# text_encoder.set_embedding_layer()
|
479 |
+
embedding_layer = text_encoder.text_model.embeddings.token_embedding
|
480 |
+
text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(
|
481 |
+
embedding_layer
|
482 |
+
)
|
483 |
+
embedding_layer = text_encoder.text_model.embeddings.token_embedding
|
484 |
+
|
485 |
+
assert embedding_layer is not None, (
|
486 |
+
"Do not support get embedding layer for current text encoder. "
|
487 |
+
"Please check your configuration."
|
488 |
+
)
|
489 |
+
initialize_embedding = []
|
490 |
+
if initialize_tokens is not None:
|
491 |
+
for ii in range(len(placeholder_tokens)):
|
492 |
+
init_id = tokenizer(initialize_tokens[ii]).input_ids[1]
|
493 |
+
temp_embedding = embedding_layer.weight[init_id]
|
494 |
+
initialize_embedding.append(
|
495 |
+
temp_embedding[None, ...].repeat(num_vectors_per_token, 1)
|
496 |
+
)
|
497 |
+
else:
|
498 |
+
for ii in range(len(placeholder_tokens)):
|
499 |
+
init_id = tokenizer("a").input_ids[1]
|
500 |
+
temp_embedding = embedding_layer.weight[init_id]
|
501 |
+
len_emb = temp_embedding.shape[0]
|
502 |
+
init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0
|
503 |
+
initialize_embedding.append(init_weight)
|
504 |
+
|
505 |
+
# initialize_embedding = torch.cat(initialize_embedding,dim=0)
|
506 |
+
|
507 |
+
token_info_all = []
|
508 |
+
for ii in range(len(placeholder_tokens)):
|
509 |
+
token_info = tokenizer.get_token_info(placeholder_tokens[ii])
|
510 |
+
token_info["embedding"] = initialize_embedding[ii]
|
511 |
+
token_info["trainable"] = True
|
512 |
+
token_info_all.append(token_info)
|
513 |
+
embedding_layer.add_embeddings(token_info_all)
|