Overwrite the `eos_token_id` for generation, avoiding the endless generation issue that happens only with the HF converted models
Browse files- batch_inference.ipynb +0 -0
- demo.ipynb +19 -28
batch_inference.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
demo.ipynb
CHANGED
@@ -2,25 +2,22 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
9 |
-
"
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
"
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"- image_processing_blip_3.py\n",
|
22 |
-
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n"
|
23 |
-
]
|
24 |
}
|
25 |
],
|
26 |
"source": [
|
@@ -36,7 +33,7 @@
|
|
36 |
},
|
37 |
{
|
38 |
"cell_type": "code",
|
39 |
-
"execution_count":
|
40 |
"metadata": {},
|
41 |
"outputs": [],
|
42 |
"source": [
|
@@ -59,18 +56,19 @@
|
|
59 |
},
|
60 |
{
|
61 |
"cell_type": "code",
|
62 |
-
"execution_count":
|
63 |
"metadata": {},
|
64 |
"outputs": [],
|
65 |
"source": [
|
66 |
"model = model.to('cuda')\n",
|
67 |
"model.eval()\n",
|
68 |
-
"tokenizer.padding_side = \"left\""
|
|
|
69 |
]
|
70 |
},
|
71 |
{
|
72 |
"cell_type": "code",
|
73 |
-
"execution_count":
|
74 |
"metadata": {},
|
75 |
"outputs": [
|
76 |
{
|
@@ -101,14 +99,6 @@
|
|
101 |
},
|
102 |
"output_type": "display_data"
|
103 |
},
|
104 |
-
{
|
105 |
-
"name": "stderr",
|
106 |
-
"output_type": "stream",
|
107 |
-
"text": [
|
108 |
-
"/export/share/anasawadalla/miniconda3/envs/xgenmm-release-clone/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:515: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.05` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n",
|
109 |
-
" warnings.warn(\n"
|
110 |
-
]
|
111 |
-
},
|
112 |
{
|
113 |
"name": "stdout",
|
114 |
"output_type": "stream",
|
@@ -236,6 +226,7 @@
|
|
236 |
" inputs[name] = value.cuda()\n",
|
237 |
" generated_text = model.generate(**inputs, image_size=[image_sizes],\n",
|
238 |
" pad_token_id=tokenizer.pad_token_id,\n",
|
|
|
239 |
" temperature=0.05,\n",
|
240 |
" do_sample=False, max_new_tokens=1024, top_p=None, num_beams=1,\n",
|
241 |
" )\n",
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 18,
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
9 |
+
"data": {
|
10 |
+
"application/vnd.jupyter.widget-view+json": {
|
11 |
+
"model_id": "7e3b39b749f9427cbb75c404056185a4",
|
12 |
+
"version_major": 2,
|
13 |
+
"version_minor": 0
|
14 |
+
},
|
15 |
+
"text/plain": [
|
16 |
+
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
"metadata": {},
|
20 |
+
"output_type": "display_data"
|
|
|
|
|
|
|
21 |
}
|
22 |
],
|
23 |
"source": [
|
|
|
33 |
},
|
34 |
{
|
35 |
"cell_type": "code",
|
36 |
+
"execution_count": 19,
|
37 |
"metadata": {},
|
38 |
"outputs": [],
|
39 |
"source": [
|
|
|
56 |
},
|
57 |
{
|
58 |
"cell_type": "code",
|
59 |
+
"execution_count": 20,
|
60 |
"metadata": {},
|
61 |
"outputs": [],
|
62 |
"source": [
|
63 |
"model = model.to('cuda')\n",
|
64 |
"model.eval()\n",
|
65 |
+
"tokenizer.padding_side = \"left\"\n",
|
66 |
+
"tokenizer.eos_token = '<|end|>'"
|
67 |
]
|
68 |
},
|
69 |
{
|
70 |
"cell_type": "code",
|
71 |
+
"execution_count": 21,
|
72 |
"metadata": {},
|
73 |
"outputs": [
|
74 |
{
|
|
|
99 |
},
|
100 |
"output_type": "display_data"
|
101 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
{
|
103 |
"name": "stdout",
|
104 |
"output_type": "stream",
|
|
|
226 |
" inputs[name] = value.cuda()\n",
|
227 |
" generated_text = model.generate(**inputs, image_size=[image_sizes],\n",
|
228 |
" pad_token_id=tokenizer.pad_token_id,\n",
|
229 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
230 |
" temperature=0.05,\n",
|
231 |
" do_sample=False, max_new_tokens=1024, top_p=None, num_beams=1,\n",
|
232 |
" )\n",
|