File size: 56,579 Bytes
4974490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314

import torch
from torch import einsum, nn
from einops import rearrange, repeat
from einops_exts import rearrange_many
from einops import rearrange
from typing import List, Optional, Tuple, Union
import torch.nn.functional as F
from transformers.modeling_outputs import CausalLMOutputWithPast
from dataclasses import dataclass
from transformers import CLIPVisionModel
from transformers.models.siglip.modeling_siglip import SiglipVisionTransformer

import transformers
from packaging.version import Version

from utils import num_params, getattr_recursive, stack_with_padding, get_anyres_image_grid_shape, unpad_image


class VisionTokenizer(nn.Module):
    def __init__(self, dim_media, num_tokens_per_media):
        super().__init__()
        self.dim_media = dim_media
        self.num_tokens_per_media = num_tokens_per_media
        
class PerceiverAttention(nn.Module):
    def __init__(self, *, dim, dim_head=64, heads=8):
        super().__init__()
        self.scale = dim_head**-0.5
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm_media = nn.LayerNorm(dim)
        self.norm_latents = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x, latents, vision_attn_masks=None):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, T, n1, D)
            latent (torch.Tensor): latent features
                shape (b, T, n2, D)
        """
        x = self.norm_media(x)
        latents = self.norm_latents(latents)

        h = self.heads

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2) # TODO: Change the shape of vision attention mask according to this.
        if vision_attn_masks is not None:
            vision_attn_masks = torch.cat((vision_attn_masks, 
                                            torch.ones((latents.shape[0], latents.shape[-2]), dtype=latents.dtype, device=latents.device)),
                                            dim=-1)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)
        q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h)
        q = q * self.scale

        # attention
        sim = einsum("... i d, ... j d  -> ... i j", q, k)
        # Apply vision attention mask here.
        # Reference: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html#torch.nn.functional.scaled_dot_product_attention
        if vision_attn_masks is not None:
            attn_bias = torch.zeros((q.size(0), 1, 1, q.size(-2), k.size(-2)), dtype=q.dtype, device=q.device)
            vision_attn_masks = repeat(vision_attn_masks, 'b n -> b 1 1 l n', l=q.size(-2))
            attn_bias.masked_fill_(vision_attn_masks.logical_not(), float("-inf"))
            sim += attn_bias

        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)
        

        out = einsum("... i j, ... j d -> ... i d", attn, v)
        out = rearrange(out, "b h t n d -> b t n (h d)", h=h)
        return self.to_out(out)       


def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )
            

class PerceiverResampler(VisionTokenizer):
    def __init__(
        self,
        *,
        dim,
        dim_inner=None,
        depth=6,
        dim_head=96,
        heads=16,
        num_latents=128,
        max_num_media=None,
        max_num_frames=None,
        ff_mult=4,
    ):
        """
        Perceiver module which takes in image features and outputs image tokens.
        Args:
            dim (int): dimension of the incoming image features
            dim_inner (int, optional): final dimension to project the incoming image features to;
                also the final dimension of the outputted features. If None, no projection is used, and dim_inner = dim.
            depth (int, optional): number of layers. Defaults to 6.
            dim_head (int, optional): dimension of each head. Defaults to 64.
            heads (int, optional): number of heads. Defaults to 8.
            num_latents (int, optional): number of latent tokens to use in the Perceiver;
                also corresponds to number of tokens per sequence to output. Defaults to 64.
            max_num_media (int, optional): maximum number of media per sequence to input into the Perceiver
                and keep positional embeddings for. If None, no positional embeddings are used.
            max_num_frames (int, optional): maximum number of frames to input into the Perceiver
                and keep positional embeddings for. If None, no positional embeddings are used.
            ff_mult (int, optional): dimension multiplier for the feedforward network. Defaults to 4.
        """
        if dim_inner is not None:
            projection = nn.Linear(dim, dim_inner)
        else:
            projection = None
            dim_inner = dim
        super().__init__(dim_media=dim, num_tokens_per_media=num_latents)
        self.projection = projection
        self.latents = nn.Parameter(torch.randn(num_latents, dim))

        # positional embeddings
        self.frame_embs = (
            nn.Parameter(torch.randn(max_num_frames, dim))
            if exists(max_num_frames)
            else None
        )
        self.media_time_embs = (
            nn.Parameter(torch.randn(max_num_media, 1, dim))
            if exists(max_num_media)
            else None
        )

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        PerceiverAttention(
                            dim=dim, dim_head=dim_head, heads=heads
                        ),
                        FeedForward(dim=dim, mult=ff_mult),
                    ]
                )
            )

        self.norm = nn.LayerNorm(dim)

    def forward(self, x, vision_attn_masks=None):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, T, F, v, D)
            vision_attn_masks (torch.Tensor): attention masks for padded visiont tokens (i.e., x)
                shape (b, v)
        Returns:
            shape (b, T, n, D) where n is self.num_latents
        """
        b, T, F, v = x.shape[:4]

        # frame and media time embeddings
        if exists(self.frame_embs):
            frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v)
            x = x + frame_embs
        x = rearrange(
            x, "b T F v d -> b T (F v) d"
        )  # flatten the frame and spatial dimensions
        if exists(self.media_time_embs):
            x = x + self.media_time_embs[:T]

        # blocks
        latents = self.latents
        latents = repeat(latents, "n d -> b T n d", b=b, T=T)
        for attn, ff in self.layers:
            latents = attn(x, latents, vision_attn_masks) + latents
            latents = ff(latents) + latents
        
        if exists(self.projection):
            return self.projection(self.norm(latents)) 
        else:
            return self.norm(latents)


class DecoupledEmbedding(nn.Embedding):
    # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
    """
    Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the
    regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0,
    then it will create `num_additional_embeddings` additional parameters that are always trained. If
    `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
    """

    def __init__(
        self,
        max_original_id: int,
        num_additional_embeddings: int = 0,
        _weight: torch.Tensor = None,
        num_original_embeddings: int = None,
        embedding_dim: int = None,
        partially_freeze=True,
        device=None,
        dtype=None,
        pad_token_id=None,
    ) -> None:
        """
        Args:
            max_original_id (`int`):
                The largest token id that should be embedded using the regular embedding (regular `weight`).
                This is usually len(tokenizer) - 1 before additional tokens are added.
                Note that this may not equal self.weight.shape[0]
            num_additional_embeddings (`int`):
                Number of additional tokens to initialize an Embedding matrix for (`additional_weight`).
            _weight (`torch.Tensor`, *optional*, defaults to `None`): The regular weight tensor.
                If provided, this sets the `num_original_embeddings` and `embedding_dim` parameters.
            num_original_embeddings (`int`):
                self.weight.shape[0]
            embedding_dim (`int`):
                The size of each embedding vector
            partially_freeze: (`bool`, *optional*, defaults to `True`):
                If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen.
            padding_idx (`int`, *optional*):
                The padding index (needs to be less than num_embeddings)

        Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`,
        `max_norm` or `norm_type`. We are not supporting these.
        """
        # validate args
        if pad_token_id is not None and pad_token_id > max_original_id:
            raise ValueError(
                f"pad_token_id must be <= max_original_id. Got {pad_token_id} and {max_original_id}."
                + "If the original tokenizer does not have a pad_token_id, use pad_token_id=None."
            )
        if _weight is not None:
            assert (num_original_embeddings is None) or (
                _weight.shape[0] == num_original_embeddings
            ), f"num_original_embeddings={num_original_embeddings} but _weight.shape[0]={_weight.shape[0]}"
            assert (embedding_dim is None) or (
                _weight.shape[1] == embedding_dim
            ), f"embedding_dim={embedding_dim} but _weight.shape[1]={_weight.shape[1]}"
            num_original_embeddings = _weight.shape[0]
            embedding_dim = _weight.shape[1]
        else:
            assert (
                num_original_embeddings is not None
            ), "num_original_embeddings must be provided if _weight is not provided"
            assert (
                embedding_dim is not None
            ), "embedding_dim must be provided if _weight is not provided"

        super().__init__(
            num_embeddings=num_original_embeddings,
            embedding_dim=embedding_dim,
            device=device,
            dtype=dtype,
            padding_idx=pad_token_id,
            _weight=_weight,
        )
        self.max_original_id = max_original_id
        self.padding_idx = pad_token_id
        self.num_additional_embeddings = num_additional_embeddings
        if self.num_additional_embeddings > 0:
            self.additional_embedding = nn.Embedding(
                num_embeddings=self.num_additional_embeddings,
                embedding_dim=embedding_dim,
                device=device,
                dtype=dtype,
            )
        self.set_requires_grad(
            require_regular_grad=not partially_freeze, require_additional_grad=True
        )

    def set_requires_grad(self, require_regular_grad, require_additional_grad):
        """
        Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
        """
        self.weight.requires_grad_(require_regular_grad)
        self.additional_embedding.requires_grad_(require_additional_grad)

    def forward(self, input_ids):
        """
        we have 2 embeddings, with different indices - one pretrained self.weight and another
        self.additional_embedding.weight that is being trained.

        in order to make a lookup of the input ids, we:
        1. find out the indices of the entries belonging to the 2nd embedding
        2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd
        embedding starts from 0 and not num_embeddings
        3. perform the 2nd embedding lookup
        4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
        5. perform the 1st embedding lookup
        6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup

        note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but
        then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices -
        i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are
        usually relatively short it's probably not faster or if faster not by much - but might be a good idea to
        measure.

        """
        if self.num_additional_embeddings == 0:
            return F.embedding(input_ids, self.weight)

        # Clone so that we don't modify the original input_ids later on
        input_ids = input_ids.clone()
        additional_vocab_indices = torch.where(input_ids > self.max_original_id)
        input_ids_additional_vocab = input_ids[additional_vocab_indices]
        additional_embeddings = self.additional_embedding(
            input_ids_additional_vocab - self.max_original_id - 1
        )

        # for successful lookup replace input_ids with 0, the results of these will be discarded anyway
        input_ids[additional_vocab_indices] = 0
        full_vector = F.embedding(input_ids, self.weight)

        # overwrite the records with high indices
        full_vector[additional_vocab_indices] = additional_embeddings

        return full_vector

    def extra_repr(self) -> str:
        return "num_original_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
            self.max_original_id + 1,
            self.num_additional_embeddings,
            self.embedding_dim,
            (not self.weight.requires_grad),
        )


class DecoupledLinear(nn.Linear):
    # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
    """
    Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the
    regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `additional_out_features` > 0,
    then it will create `additional_out_features * in_features` additional parameters that are always trained. If
    `additional_out_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
    """

    def __init__(
        self,
        max_original_id: int,
        additional_out_features: int = 0,
        _weight: torch.Tensor = None,
        _bias: torch.Tensor = None,
        in_features: int = None,
        original_out_features: int = None,
        bias: bool = True,
        partially_freeze: bool = True,
        device=None,
        dtype=None,
    ) -> None:
        """
        Args:
            max_original_id (`int`): The largest token id that should be extracted from the regular weight.
                This is usually len(tokenizer) - 1 before additional tokens are added.
                Note that this may not equal original_out_features - 1
            _weight: torch.Tensor, *optional*, defaults to `None`. The regular weight tensor.
                If provided, this sets the `in_features` and `original_out_features` parameters.
            _bias: torch.Tensor, *optional*, defaults to `None`. The regular bias tensor.
            in_features: int. Input hidden size.
            original_out_features: int. Original out_features of the language model's get_output_embeddings() function.
            additional_out_features: int. Number of additional trainable dimensions.
            bias: bool. Whether to include a bias term.
            partially_freeze: bool, *optional*, defaults to `True`): If `True`, the regular `weight` will be frozen.
        """
        # argument validation
        if _weight is not None:
            assert (_weight.shape[0] == original_out_features) or (
                original_out_features is None
            ), f"original_out_features={original_out_features} but _weight.shape[0]={_weight.shape[0]}"
            assert (_weight.shape[1] == in_features) or (
                in_features is None
            ), f"in_features={in_features} but _weight.shape[1]={_weight.shape[1]}"
            in_features = _weight.shape[1]
            original_out_features = _weight.shape[0]
        else:
            assert (
                in_features is not None
            ), "in_features must be provided if _weight is not provided"
            assert (
                original_out_features is not None
            ), "original_out_features must be provided if _weight is not provided"

        if _bias is not None:
            assert bias is True, "bias must be True if _bias is provided"

        # initialize original linear
        super().__init__(
            in_features, 
            original_out_features,
            bias, 
            device, 
            dtype)
        
        # set weight and bias manually
        if _weight is not None:
            self.weight = nn.Parameter(_weight)
        if _bias is not None:
            self.bias = nn.Parameter(_bias)
            
        self.in_features = in_features
        self.original_out_features = original_out_features
        self.max_original_id = max_original_id

        # initialize additional linear
        self.additional_out_features = additional_out_features
        self.has_bias = bias
        if additional_out_features > 0:
            self.additional_fc = nn.Linear(
                in_features=in_features,
                out_features=additional_out_features,
                bias=self.has_bias,
                device=device,
                dtype=dtype,
            )
        self.set_requires_grad(
            require_regular_grad=not partially_freeze, require_additional_grad=True
        )

    def set_requires_grad(self, require_regular_grad, require_additional_grad):
        """
        Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
        """
        self.weight.requires_grad_(require_regular_grad)
        if self.has_bias:
            self.bias.requires_grad_(require_regular_grad)
        self.additional_fc.requires_grad_(require_additional_grad)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = F.linear(input, self.weight, self.bias)
        output = output[..., : self.max_original_id + 1]

        if self.additional_out_features > 0:
            additional_features = F.linear(
                input, self.additional_fc.weight, self.additional_fc.bias
            )
            output = torch.cat((output, additional_features), -1)
        return output

    def extra_repr(self) -> str:
        """Overwriting `nn.Linear.extra_repr` to include new parameters."""
        return "in_features={}, out_features={}, additional_out_features={}, bias={}, partially_freeze={}".format(
            self.in_features,
            self.max_original_id + 1,
            self.additional_out_features,
            self.bias is not None,
            (not self.weight.requires_grad or not self.bias.requires_grad),
        )

class VLM(nn.Module):
    """
    Generic vision-language model (VLM) class.
    A VLM consists of four components:
        1. A vision encoder that extracts features from pixels, e.g. CLIP
            input: (B, T_img, F, C, H, W)
            output: (B, T_img, F, v, d)
        2. A vision tokenizer that converts these features to visual token-like embeddings, e.g. Perceiver, or a linear projection head
            input: (B, T_img, F, v, d)
            output: (B, T_img, n, d)
        3. A fusion method that allows the language model to attend to these tokens, e.g. cross-attention, or placing the tokens directly in the language model's input sequence
        4. A language model
    """

    def __init__(
        self,
        vision_encoder: nn.Module,
        vision_tokenizer: nn.Module,
        lang_model: nn.Module,
        initial_tokenizer_len: int,
        pad_token_id: int,
        gradient_checkpointing: bool = False,
    ):
        """
        Args:
            vision_encoder (nn.Module): e.g. CLIP
            vision_tokenizer (nn.Module): e.g. PerceiverResampler
            lang_model (nn.Module): e.g. MPT
            initial_tokenizer_len (int): size of the original tokenizer vocab
            pad_token_id (int): id of the pad token
            gradient_checkpointing (bool, optional): Whether to use gradient checkpointing. Defaults to False.
        """
        super().__init__()

        # save dimension information
        self.lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
        if hasattr(lang_model.config, "d_model"):
            self.lang_hidden_dim = lang_model.config.d_model  # mpt uses d_model
        else:
            self.lang_hidden_dim = lang_model.config.hidden_size
        self.vis_embedding_dim = vision_tokenizer.dim_media
        self.num_tokens_per_vis = vision_tokenizer.num_tokens_per_media

        # core components
        self.vision_encoder = vision_encoder
        self.vision_tokenizer = vision_tokenizer
        self.lang_model = lang_model

        # lm embeddings
        self.pad_token_id = pad_token_id
        self.initial_tokenizer_len = initial_tokenizer_len
        input_embeds = DecoupledEmbedding(
            max_original_id=initial_tokenizer_len - 1,
            num_additional_embeddings=len(self.special_tokens),
            _weight=self.lang_model.get_input_embeddings().weight,
            pad_token_id=self.pad_token_id,
        )
        if hasattr(input_embeds, "additional_embedding"):
            input_embeds.additional_embedding.weight.data.normal_(
                mean=0.0,
                std=self.lang_model.config.initializer_range
                if hasattr(self.lang_model.config, "initializer_range")
                else 0.02,
            )
        self.lang_model.set_input_embeddings(input_embeds)

        out_embeds = DecoupledLinear(
            max_original_id=initial_tokenizer_len - 1,
            additional_out_features=len(self.special_tokens),
            _weight=self.lang_model.get_output_embeddings().weight,
            _bias=self.lang_model.get_output_embeddings().bias if hasattr(self.lang_model.get_output_embeddings(), "bias") else None,
        )
        if hasattr(out_embeds, "additional_fc"):
            out_embeds.additional_fc.weight.data.normal_(
                mean=0.0,
                std=self.lang_model.config.initializer_range
                if hasattr(self.lang_model.config, "initializer_range")
                else 0.02,
            )
        self.lang_model.set_output_embeddings(out_embeds)

        # gradient checkpointing
        self.vision_tokenizer._use_gradient_checkpointing = gradient_checkpointing

    def forward(
        self,
        vision_x: Optional[torch.Tensor],
        lang_x: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        past_key_values: Optional[
            List[Union[torch.Tensor, Tuple[torch.Tensor]]]
        ] = None,
        past_media_locations: Optional[torch.Tensor] = None,
        past_vision_tokens: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = False,
        **kwargs,
    ):
        """
        Args:
            vision_x: Vision input
                shape (B, T_img, F, C, H, W) with F=1
                only F = 1 is supported (single-frame videos)
                if T_img > the number of media tokens in the corresponding input_ids (lang_x),
                only the first number of media tokens in lang_x are used
            lang_x: Language input ids, with media tokens denoting where
                visual media should be inserted.
                shape (B, T_txt)
            attention_mask: Attention mask. Defaults to None.
            labels: Labels. Defaults to None.
                shape (B, T_txt)
            past_key_values (Tuple[torch.Tensor]], optional): Past key value pairs for each of the T_txt previous tokens in the language model. Defaults to None.
                list of length = number of decoder layers in the LM
                exact implementation depends on LM, see Hugging Face docs
            past_media_locations (torch.Tensor, optional): boolean mask denoting which of the previous T_txt tokens were media tokens. Defaults to None.
                shape (B, T_txt)
            past_vision_tokens (torch.Tensor, optional): Previous vision tokens. Defaults to None.
            use_cache (Optional[bool], optional): Whether to use cache. Defaults to False.
                If True, includes key_values, media_locations, and vision_tokens in the output.
        """
        assert not (past_vision_tokens is None) ^ (
            past_media_locations is None
        ), "past_vision_tokens and past_media_locations must both be None or both be not None"

        # convert pixels to vision tokens
        if vision_x is not None:
            vision_features = self._encode_vision_x(vision_x=vision_x)
            vision_tokens = self.vision_tokenizer(vision_features)
        else:
            vision_tokens = None

        # fuse the vision and language tokens
        new_inputs = self._prepare_inputs_for_forward(
            vision_tokens=vision_tokens,
            lang_x=lang_x,
            attention_mask=attention_mask,
            labels=labels,
            past_key_values=past_key_values,
            past_media_locations=past_media_locations,
            padding_side="right",
            past_vision_tokens=past_vision_tokens,
        )
        output = self.lang_model(
            **new_inputs,
            use_cache=use_cache,
            past_key_values=past_key_values,
            **kwargs,
        )

        # postprocessing may be needed, e.g. to remove extra tokens from logits that were inserted into the language stream
        # or to add the past_vision_tokens and past_media_locations to the output
        output = self._postprocess_outputs_from_forward(
            output=output,
            lang_x=lang_x,
            vision_tokens=vision_tokens,
            use_cache=use_cache,
            past_vision_tokens=past_vision_tokens,
            past_media_locations=past_media_locations,
        )

        # postforward hooks
        self._post_forward_hook()
        return output

    def _encode_vision_x_anyres(self, samples, device):
        assert self.anyres_grids is not None
        image_raw = samples["image"] # list of patch list in of shape [1, N_patch, C, H, W]
        image_sizes = samples["image_size"]

        # Image_raw can be a list of list of patches, when a `samples` has multiple images.
        if isinstance(image_raw[0], list):
            images = [x.squeeze(0) for sample_img in image_raw for x in sample_img]
            image_sizes = [s for sample_sizes in image_sizes for s in sample_sizes]
        else:
            # assert isinstance(image_raw[0], torch.Tensor), f"Unkown image type: {image_raw[0]}"
            # concate list of patches into one big patch for any res encoding.
            images = [x.squeeze(0) for x in image_raw] # [N_patch, C, H, W]
        image = torch.cat(images, dim=0) # [\sum{B}{N_patch_i}, C, H, W]
        image = image.to(device)

        with torch.no_grad():
            if self.vision_encoder.__class__.__name__ == "TimmModel":
                image_embeds = self.vision_encoder.trunk.forward_features(image)
            elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
                image_embeds = self.vision_encoder(image).last_hidden_state
            else:
                image_embeds = self.vision_encoder(image)[1]  # OpenCLIP returns tuples

        if isinstance(self.vision_encoder, CLIPVisionModel) or isinstance(self.vision_encoder, SiglipVisionTransformer):
            base_img_size = self.vision_encoder.config.image_size
        else:
            base_img_size = self.vision_encoder.image_size[0]
        
        if self.vision_encoder.__class__.__name__ == "TimmModel":
            grid_size = self.vision_encoder.trunk.patch_embed.grid_size
        elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
            grid_size_base = self.vision_encoder.config.image_size // self.vision_encoder.config.patch_size
            grid_size = (grid_size_base, grid_size_base)
        else:
            grid_size = self.vision_encoder.grid_size
        height, width = grid_size
        
        if not image_embeds.shape[1] == height * width:
            assert image_embeds.shape[1] == height * width + 1 # For vision encoders that has [CLS] token.
            image_embeds = image_embeds[:, 1:, :] # Drop the cls token for each patch.
        n_vis_token_per_patch = image_embeds.shape[1]

        # Split encoded patches and merge patch features
        # 1. Get the raw sizes from samples, and split the image embeds [\sum_{B}(N_patch_i), N_tok(16*16), C]
        split_sizes = [image.shape[0] for image in images]
        image_embeds = torch.split(image_embeds, split_sizes, dim=0)
        # 2. For each image (consist of a list of patches), merge the patches spatially (of shape [C, n_patch_height, n_patch_width])
        new_image_embeds = []
        patch_attn_masks = []
        max_n_img_token = -1
        for idx, patch_embeds in enumerate(image_embeds):
            if patch_embeds.shape[0] > 1:
                # 3. Flatten the patch features and get [C, n_patch_height * (n_patch_width+1)]
                base_patch_embeds = patch_embeds[0] # TODO: prepend the CLS token for th base patch embeds (of the resized entire image).
                patch_embeds = patch_embeds[1:]
                
                assert height * width == base_patch_embeds.shape[0]
    
                num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[idx], 
                                                                                self.anyres_grids, 
                                                                                base_img_size) # Hardcoded grid_pinpoints.
                patch_embeds = patch_embeds.view(num_patch_height, num_patch_width, height, width, -1)

                patch_embeds = patch_embeds.permute(4, 0, 2, 1, 3).contiguous()
                patch_embeds = patch_embeds.flatten(1, 2).flatten(2, 3)
                patch_embeds, patch_attn_mask = unpad_image(patch_embeds, image_sizes[idx], self.anyres_patch_sampling)
                if hasattr(self, 'image_newline'):
                    patch_embeds = torch.cat((
                            patch_embeds,
                            self.image_newline[:, None, None].expand(*patch_embeds.shape[:-1], 1)
                        ), dim=-1)
                if self.anyres_patch_sampling:
                    patch_embeds = patch_embeds.view(-1, num_patch_height, num_patch_width, height*width)
                    patch_embeds = patch_embeds.flatten(1, 2).permute(1, 2, 0)
                    assert patch_attn_mask is not None
                    patch_attn_mask = patch_attn_mask.view(num_patch_height, num_patch_width, height*width)
                    patch_attn_mask = patch_attn_mask.flatten(0, 1)
                    patch_embeds = torch.cat((base_patch_embeds.unsqueeze(0), patch_embeds), dim=0)
                    patch_attn_mask = torch.cat((torch.ones(n_vis_token_per_patch, device=patch_embeds.device).unsqueeze(0), patch_attn_mask), dim=0)
                else:
                    patch_embeds = patch_embeds.flatten(1, 2).transpose(0, 1)
                    patch_embeds = torch.cat((base_patch_embeds, patch_embeds), dim=0)
            else:
                patch_embeds = patch_embeds[0].unsqueeze(0) if self.anyres_patch_sampling else patch_embeds[0]
                patch_attn_mask = torch.ones(n_vis_token_per_patch, device=patch_embeds.device).unsqueeze(0) if self.anyres_patch_sampling else None
                if hasattr(self, 'image_newline'):
                    patch_embeds = torch.cat((
                            patch_embeds,
                            self.image_newline[None]
                        ), dim=0)
            if not self.anyres_patch_sampling:
                max_n_img_token = max(patch_embeds.shape[0], max_n_img_token)

            new_image_embeds.append(patch_embeds)
            patch_attn_masks.append(patch_attn_mask)
        
        if self.anyres_patch_sampling:
            # Return individual patches for independent token downsampling.
            return new_image_embeds, patch_attn_masks

        # 4. Pad and concat the list of image_embeds [N_tok_i, C] together into a batch. Also modify the query attention mask.
        image_embeds = []
        image_atts = []
        for image_embed in new_image_embeds:
            n_img_token = image_embed.shape[0]
            img_attn = torch.ones((max_n_img_token), dtype=torch.long, device=image_embed.device)
            if n_img_token < max_n_img_token:
                padded_embed = torch.zeros((max_n_img_token, image_embed.shape[-1]), dtype=image_embed.dtype, device=image_embed.device)
                padded_embed[:n_img_token, :] = image_embed
                img_attn[n_img_token:] = 0 # Mask out the padded entries.
            else:
                padded_embed = image_embed
            image_embeds.append(padded_embed)
            image_atts.append(img_attn)
        image_embeds = torch.stack(image_embeds, dim=0) # Shape [B, N_tok_longest, C_dim]
        image_atts = torch.stack(image_atts, dim=0) # Shape [B, N_tok_longest, C_dim]
        # TODO: reshape image_embeds and image_atts to "b T F v d"
        image_embeds = image_embeds[:, None, None, :, :]
        # image_atts = image_atts[:, None, None, :, :]

        return image_embeds, image_atts

    def _encode_vision_x(self, vision_x: torch.Tensor):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_x: Vision input
                shape (B, T_img, F, C, H, W)
                Images in the same chunk are collated along T_img, and frames are collated along F
                Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """
        assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
        b, T, F = vision_x.shape[:3]
        
        vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
        with torch.no_grad():
            if self.vision_encoder.__class__.__name__ == "TimmModel":
                vision_x = self.vision_encoder.trunk.forward_features(vision_x)
            elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
                vision_x = self.vision_encoder(vision_x).last_hidden_state
            else:
                vision_x = self.vision_encoder(vision_x)[1]  # OpenCLIP returns tuples
        vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
        return vision_x

    def _concat_vision_cache(
        self, lang_x, vision_tokens, past_vision_tokens, past_media_locations, use_cache
    ):
        """
        Helper function to include the past vision tokens and past media locations in the output.
        """
        if use_cache:
            if past_media_locations is not None and past_vision_tokens is not None:
                if vision_tokens is not None:
                    updated_vision_tokens = torch.cat(
                        [
                            past_vision_tokens,
                            vision_tokens,
                        ],
                        dim=1,
                    )
                else:
                    updated_vision_tokens = past_vision_tokens
                updated_media_locations = torch.cat(
                    [
                        past_media_locations,
                        lang_x == self.media_token_id,
                    ],
                    dim=1,
                )
            else:
                updated_vision_tokens = vision_tokens
                updated_media_locations = lang_x == self.media_token_id

        else:
            updated_vision_tokens = None
            updated_media_locations = None

        return updated_vision_tokens, updated_media_locations

    def generate(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor = None,
        past_key_values: Optional[
            List[Union[torch.Tensor, Tuple[torch.Tensor]]]
        ] = None,
        past_media_locations: Optional[torch.Tensor] = None,
        past_vision_tokens: Optional[torch.Tensor] = None,
        **kwargs,
    ):
        """
        Generate text conditioned on vision and language inputs.
        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                see documentation for forward
            lang_x (torch.Tensor): Language input
                shape (B, T_txt)
            attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
            **kwargs: see generate documentation in Hugging Face CausalLM models.
        Returns:
            torch.Tensor: lang_x with generated tokens appended to it
        """
        num_beams = kwargs.pop("num_beams", 1)

        # convert pixels to vision tokens
        if vision_x is not None:
            vision_features = self._encode_vision_x(vision_x=vision_x)
            vision_tokens = self.vision_tokenizer(vision_features)
        else:
            vision_tokens = None

        # fuse the vision and language tokens
        # for xattn, vision_x and media_location are repeat_interleaved s.t.
        # the total batch size is B * num_beams
        new_inputs = self._prepare_inputs_for_forward(
            vision_tokens=vision_tokens,
            lang_x=lang_x,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            past_media_locations=past_media_locations,
            past_vision_tokens=past_vision_tokens,
            padding_side="left",
            num_beams=num_beams,
        )
        output = self.lang_model.generate(
            **new_inputs,
            past_key_values=past_key_values,
            num_beams=num_beams,
            use_cache=True,
            **kwargs,
        )
        self._post_forward_hook()
        return output

    @property
    def num_trainable_params(self):
        """Print the number of trainable parameters"""
        return num_params(self, filter_to_trainable=True)

    def set_trainable(self):
        """
        Freeze appropriate parameters in the model.
        """
        raise NotImplementedError

    def group_params_by_weight_decay(self):
        """
        Return a tuple of (params to optimize w/ weight decay, params to optimize w/o weight decay)
        """
        params_with_wd, params_without_wd = [], []
        for n, p in self.named_parameters():
            if p.requires_grad:    
                if self._should_apply_weight_decay(n):
                    params_with_wd.append(p)
                else:
                    params_without_wd.append(p)
        return params_with_wd, params_without_wd

    def _should_apply_weight_decay(self, parameter_name):
        """
        Return whether weight decay should be applied to a parameter.
        """
        raise NotImplementedError

    @property
    def special_tokens(self):
        """
        Returns a dict mapping from the attribute name of a special token to its string format,
         e.g. "media_token": "<image>"
        """
        assert (
            "media_token" in self._special_tokens
        ), "VLMs need to request that the tokenizer add a media_token and call set_special_token_ids to set self.media_token_id"
        return self._special_tokens

    @property
    def special_token_ids(self):
        """
        Returns a list of the special token ids
        """
        return [getattr(self, f"{att_name}_id") for att_name in self.special_tokens]

    def set_special_token_ids(self, string_to_ids):
        """
        Args:
            string_to_ids (dict): mapping from token string to id
        """
        assert set(self.special_tokens.values()).issubset(set(string_to_ids.keys()))
        for att_name, token_str in self.special_tokens.items():
            token_id = string_to_ids[token_str]
            setattr(self, f"{att_name}_id", token_id)
            setattr(self.lang_model, f"{att_name}_id", token_id)

    def init_gradient_checkpointing(self):
        from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
            checkpoint_wrapper,
            CheckpointWrapper,
            CheckpointImpl,
            apply_activation_checkpointing,
        )
        from functools import partial

        non_reentrant_wrapper = partial(
            checkpoint_wrapper,
            checkpoint_impl=CheckpointImpl.NO_REENTRANT,
        )
        apply_activation_checkpointing(
            self,
            checkpoint_wrapper_fn=non_reentrant_wrapper,
            check_fn=lambda m: getattr(m, "_use_gradient_checkpointing", False)
            and not isinstance(m, CheckpointWrapper),
        )

@dataclass
class VLMOutputWithPast(CausalLMOutputWithPast):
    """
    VLMOutputWithPast is a wrapper around CausalLMOutputWithPast that adds the following attributes:
        past_media_locations: Optional[torch.Tensor] = None,
        past_vision_tokens: Optional[torch.Tensor] = None,
    """

    past_media_locations: Optional[torch.Tensor] = None
    past_vision_tokens: Optional[torch.Tensor] = None


def exists(val):
    return val is not None


def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )    
        
class VLMWithLanguageStream(VLM):
    """
    VLM that fuses modalities by inserting vision tokens directly into the language stream.
    """

    def __init__(
        self,
        vision_encoder: nn.Module,
        vision_tokenizer: nn.Module,
        lang_model: nn.Module,
        initial_tokenizer_len: int,
        pad_token_id: int,
        decoder_layers_attr_name: str = None,
        gradient_checkpointing: bool = False,
    ):
        super().__init__(
            vision_encoder=vision_encoder,
            vision_tokenizer=vision_tokenizer,
            lang_model=lang_model,
            initial_tokenizer_len=initial_tokenizer_len,
            pad_token_id=pad_token_id,
            gradient_checkpointing=gradient_checkpointing,
        )
        self.decoder_layers_attr_name = decoder_layers_attr_name
        if decoder_layers_attr_name is not None:
            for block in getattr_recursive(self.lang_model, self.decoder_layers_attr_name):
                block._use_gradient_checkpointing = gradient_checkpointing

    def _prepare_inputs_for_forward(
        self,
        vision_tokens: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor,
        labels: torch.Tensor = None,
        past_key_values=None,
        vision_attention_mask: Optional[torch.Tensor] = None,
        past_media_locations: torch.Tensor = None,
        past_vision_tokens: torch.Tensor = None,
        padding_side: str = "left",
        num_beams: int = 1,
    ):
        """
        Insert the vision tokens directly into the language stream/
        This requires us to modify the input_ids, attention_mask, and labels.
        """
        if past_key_values is not None:
            past_len = past_key_values[0][0].shape[2]
            assert attention_mask.shape[1] == past_len + lang_x.shape[1], (
                "Attention_mask must be as long as the entire past len (including image tokens) and current input IDs. "
                + "Check that you've expanded the attention mask to account for past image tokens."
            )
        
        if vision_tokens is None:
            return {
                "input_ids": lang_x,
                "attention_mask": attention_mask,
                "labels": labels,
            }

        # get the language embeddings
        lang_embeds = self.lang_model.get_input_embeddings()(lang_x)

        # build up the multimodal embeddings
        B = lang_x.shape[0]
        has_labels = labels is not None
        multimodal_embeds = []
        multimodal_attention_mask = []
        multimodal_labels = [] if has_labels else None
        for i in range(B):
            # get index of <image> tokens in lang_x[i]
            image_token_idxs = torch.where(lang_x[i] == self.media_token_id)[0]

            if len(image_token_idxs) == 0:
                multimodal_embeds.append(lang_embeds[i].clone())
                multimodal_attention_mask.append(attention_mask[i].clone())
                if has_labels:
                    multimodal_labels.append(labels[i].clone())
                continue

            # loop through the image_token_idxs and insert the vision tokens
            new_embed = lang_embeds[i].clone()
            new_attention_mask = (
                attention_mask[i].clone() if attention_mask is not None else None
            )
            if has_labels:
                new_label = labels[i].clone()
            print(vision_tokens.shape)
            for img_num, img_idx in enumerate(image_token_idxs):
                new_embed = torch.cat(
                    (
                        new_embed[:img_idx],
                        vision_tokens[i][img_num],
                        new_embed[img_idx + self.num_tokens_per_vis :],
                    ),
                    dim=0,
                )
                new_attention_mask = torch.cat(
                    (
                        new_attention_mask[:img_idx],
                        torch.ones(self.num_tokens_per_vis, dtype=torch.long).to(
                            attention_mask.device
                        ),
                        new_attention_mask[img_idx + self.num_tokens_per_vis :],
                    ),
                    dim=0,
                )
                if has_labels:
                    new_label = torch.cat(
                        (
                            new_label[:img_idx],
                            torch.ones(self.num_tokens_per_vis, dtype=torch.long).to(
                                labels.device
                            )
                            * -100,
                            new_label[img_idx + self.num_tokens_per_vis :],
                        ),
                        dim=0,
                    )
            multimodal_embeds.append(new_embed)
            multimodal_attention_mask.append(new_attention_mask)
            if has_labels:
                multimodal_labels.append(new_label)

        # stack
        multimodal_embeds = stack_with_padding(
            multimodal_embeds,
            padding_value=self.pad_token_id,
            padding_side=padding_side,
        )
        multimodal_attention_mask = stack_with_padding(
            multimodal_attention_mask,
            padding_value=0,
            padding_side=padding_side,
        )
        if has_labels:
            multimodal_labels = stack_with_padding(
                multimodal_labels,
                padding_value=-100,
                padding_side=padding_side,
            )

        return {
            "inputs_embeds": multimodal_embeds,
            "attention_mask": multimodal_attention_mask,
            "labels": multimodal_labels,
        }

    def _postprocess_outputs_from_forward(
        self,
        output: CausalLMOutputWithPast,
        lang_x: torch.Tensor,
        vision_tokens: torch.Tensor,
        past_vision_tokens: torch.Tensor,
        past_media_locations: torch.Tensor,
        use_cache: bool = False,
    ):
        # Include the past vision tokens and past media locations in the output
        updated_vision_tokens, updated_media_locations = self._concat_vision_cache(
            lang_x=lang_x,
            vision_tokens=vision_tokens,
            past_vision_tokens=past_vision_tokens,
            past_media_locations=past_media_locations,
            use_cache=use_cache,
        )

        # return logits that are the same shape as the original input_ids
        logits = output.logits
        batch_logits = []
        B, T_txt = lang_x.shape
        for i in range(B):
            sequence_logits = []
            logits_j = 0
            for j in range(T_txt):
                if lang_x[i, j] != self.media_token_id:
                    sequence_logits.append(logits[i, logits_j])
                    logits_j += 1
                else:
                    # append the logit for the first image token, then skip over the rest
                    # note: the model actually learns to predict <im_patch>, not <image>
                    sequence_logits.append(logits[i, logits_j])
                    logits_j += self.num_tokens_per_vis
            sequence_logits = torch.stack(sequence_logits, dim=0)  # (B, vocab_size)
            batch_logits.append(sequence_logits)

        batch_logits = torch.stack(batch_logits, dim=0)  # (B, T_txt, vocab_size)
        # The final logits shape should be the same as the original input_ids shape
        assert batch_logits.shape[:2] == (B, T_txt)

        # assemble the output
        output = VLMOutputWithPast(
            loss=output.loss,
            logits=batch_logits,
            past_key_values=output.past_key_values,
            hidden_states=output.hidden_states,
            attentions=output.attentions,
            past_media_locations=updated_media_locations,
            past_vision_tokens=updated_vision_tokens,
        )

        return output

    def _post_forward_hook(self):
        pass


    @property
    def num_params_per_module(self):
        """Print the number of parameters per module in the model"""
        return "\n".join(
            [
                f"Vision encoder: {num_params(self.vision_encoder):,} parameters",
                f"Vision tokenizer: {num_params(self.vision_tokenizer):,} parameters",
                f"Language model: {num_params(self.lang_model):,} parameters",
            ]
        )

    @property
    def num_trainable_params_per_module(self):
        """Print the number of trainable parameters per module in the model"""
        return "\n".join(
            [
                f"Vision encoder: {num_params(self.vision_encoder, filter_to_trainable=True):,} trainable parameters",
                f"Vision tokenizer: {num_params(self.vision_tokenizer, filter_to_trainable=True):,} trainable parameters",
                f"Language model: {num_params(self.lang_model, filter_to_trainable=True):,} trainable parameters",
            ]
        )
        
        
class XGenMMPerceiver(VLMWithLanguageStream):
    def __init__(
        self,
        vision_encoder: nn.Module,
        vision_tokenizer: nn.Module,
        lang_model: nn.Module,
        initial_tokenizer_len: int,
        pad_token_id: int,
        decoder_layers_attr_name: str = None,
        gradient_checkpointing: bool = False,
        image_aspect_ratio: str = 'none',
    ):
        """
        Args:
            vision_encoder (nn.Module): HF CLIPModel
            lang_encoder (nn.Module): HF causal language model
            vis_feature_dim (int): final dimension of the visual features outputted by the vision_encoder
            initial_tokenizer_len (int): size of the tokenizer vocab
            padding_token_id (int): id of the padding token. None if no padding token; then a padding token
                will be inserted into self.special_tokens, which factory.py fills after creating new tokens
            decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None.
            gradient_checkpointing (bool, optional): whether to use gradient checkpointing. Defaults to False.
        """
        self._special_tokens = {
            "media_token": "<image>",
            "image_placeholder_token": "<image placeholder>",
            "end_of_trunk_token": "<|endofchunk|>",
        }
        lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
        super().__init__(
            vision_encoder=vision_encoder,
            vision_tokenizer=vision_tokenizer,
            lang_model=lang_model,
            initial_tokenizer_len=initial_tokenizer_len,
            gradient_checkpointing=gradient_checkpointing,
            decoder_layers_attr_name=decoder_layers_attr_name,
            pad_token_id=pad_token_id,
        )
        self.image_aspect_ratio = image_aspect_ratio

    def set_trainable(self):
        """
        Unfreeze everything except the vision_encoder
        """
        self.requires_grad_(True)
        self.vision_encoder.requires_grad_(False)

    def _should_apply_weight_decay(self, parameter_name):
        """
        Kosmos applies 0.01 weight deacy to everything
        """
        return True
    
    def generate(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        image_size: Optional[Tuple] = None,
        attention_mask: torch.Tensor = None,
        past_key_values: Optional[
            List[Union[torch.Tensor, Tuple[torch.Tensor]]]
        ] = None,
        past_media_locations: Optional[torch.Tensor] = None,
        past_vision_tokens: Optional[torch.Tensor] = None,
        **kwargs,
    ):
        """
        Generate text conditioned on vision and language inputs.
        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                see documentation for forward
            lang_x (torch.Tensor): Language input
                shape (B, T_txt)
            attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
            **kwargs: see generate documentation in Hugging Face CausalLM models.
        Returns:
            torch.Tensor: lang_x with generated tokens appended to it
        """
        num_beams = kwargs.pop("num_beams", 1)

        # convert pixels to vision tokens
        vision_attention_mask = None
        if vision_x is not None:
            vision_features = self._encode_vision_x(vision_x=vision_x)
            vision_tokens = self.vision_tokenizer(vision_features)
        else:
            vision_tokens = None

        # fuse the vision and language tokens
        # for xattn, vision_x and media_location are repeat_interleaved s.t.
        # the total batch size is B * num_beams
        new_inputs = self._prepare_inputs_for_forward(
            vision_tokens=vision_tokens,
            lang_x=lang_x,
            attention_mask=attention_mask,
            vision_attention_mask=vision_attention_mask,
            past_key_values=past_key_values,
            past_media_locations=past_media_locations,
            past_vision_tokens=past_vision_tokens,
            padding_side="left",
            num_beams=num_beams,
        )
        if past_key_values is not None:
            output = self.lang_model.generate(
                **new_inputs,
                past_key_values=past_key_values,
                num_beams=num_beams,
                use_cache=True,
                **kwargs,
            )
        else:
            output = self.lang_model.generate(
                **new_inputs,
                num_beams=num_beams,
                use_cache=True,
                **kwargs,
            )
        self._post_forward_hook()
        return output