File size: 56,579 Bytes
4974490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 |
import torch
from torch import einsum, nn
from einops import rearrange, repeat
from einops_exts import rearrange_many
from einops import rearrange
from typing import List, Optional, Tuple, Union
import torch.nn.functional as F
from transformers.modeling_outputs import CausalLMOutputWithPast
from dataclasses import dataclass
from transformers import CLIPVisionModel
from transformers.models.siglip.modeling_siglip import SiglipVisionTransformer
import transformers
from packaging.version import Version
from utils import num_params, getattr_recursive, stack_with_padding, get_anyres_image_grid_shape, unpad_image
class VisionTokenizer(nn.Module):
def __init__(self, dim_media, num_tokens_per_media):
super().__init__()
self.dim_media = dim_media
self.num_tokens_per_media = num_tokens_per_media
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm_media = nn.LayerNorm(dim)
self.norm_latents = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents, vision_attn_masks=None):
"""
Args:
x (torch.Tensor): image features
shape (b, T, n1, D)
latent (torch.Tensor): latent features
shape (b, T, n2, D)
"""
x = self.norm_media(x)
latents = self.norm_latents(latents)
h = self.heads
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2) # TODO: Change the shape of vision attention mask according to this.
if vision_attn_masks is not None:
vision_attn_masks = torch.cat((vision_attn_masks,
torch.ones((latents.shape[0], latents.shape[-2]), dtype=latents.dtype, device=latents.device)),
dim=-1)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h)
q = q * self.scale
# attention
sim = einsum("... i d, ... j d -> ... i j", q, k)
# Apply vision attention mask here.
# Reference: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html#torch.nn.functional.scaled_dot_product_attention
if vision_attn_masks is not None:
attn_bias = torch.zeros((q.size(0), 1, 1, q.size(-2), k.size(-2)), dtype=q.dtype, device=q.device)
vision_attn_masks = repeat(vision_attn_masks, 'b n -> b 1 1 l n', l=q.size(-2))
attn_bias.masked_fill_(vision_attn_masks.logical_not(), float("-inf"))
sim += attn_bias
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
out = einsum("... i j, ... j d -> ... i d", attn, v)
out = rearrange(out, "b h t n d -> b t n (h d)", h=h)
return self.to_out(out)
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
class PerceiverResampler(VisionTokenizer):
def __init__(
self,
*,
dim,
dim_inner=None,
depth=6,
dim_head=96,
heads=16,
num_latents=128,
max_num_media=None,
max_num_frames=None,
ff_mult=4,
):
"""
Perceiver module which takes in image features and outputs image tokens.
Args:
dim (int): dimension of the incoming image features
dim_inner (int, optional): final dimension to project the incoming image features to;
also the final dimension of the outputted features. If None, no projection is used, and dim_inner = dim.
depth (int, optional): number of layers. Defaults to 6.
dim_head (int, optional): dimension of each head. Defaults to 64.
heads (int, optional): number of heads. Defaults to 8.
num_latents (int, optional): number of latent tokens to use in the Perceiver;
also corresponds to number of tokens per sequence to output. Defaults to 64.
max_num_media (int, optional): maximum number of media per sequence to input into the Perceiver
and keep positional embeddings for. If None, no positional embeddings are used.
max_num_frames (int, optional): maximum number of frames to input into the Perceiver
and keep positional embeddings for. If None, no positional embeddings are used.
ff_mult (int, optional): dimension multiplier for the feedforward network. Defaults to 4.
"""
if dim_inner is not None:
projection = nn.Linear(dim, dim_inner)
else:
projection = None
dim_inner = dim
super().__init__(dim_media=dim, num_tokens_per_media=num_latents)
self.projection = projection
self.latents = nn.Parameter(torch.randn(num_latents, dim))
# positional embeddings
self.frame_embs = (
nn.Parameter(torch.randn(max_num_frames, dim))
if exists(max_num_frames)
else None
)
self.media_time_embs = (
nn.Parameter(torch.randn(max_num_media, 1, dim))
if exists(max_num_media)
else None
)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(
dim=dim, dim_head=dim_head, heads=heads
),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
self.norm = nn.LayerNorm(dim)
def forward(self, x, vision_attn_masks=None):
"""
Args:
x (torch.Tensor): image features
shape (b, T, F, v, D)
vision_attn_masks (torch.Tensor): attention masks for padded visiont tokens (i.e., x)
shape (b, v)
Returns:
shape (b, T, n, D) where n is self.num_latents
"""
b, T, F, v = x.shape[:4]
# frame and media time embeddings
if exists(self.frame_embs):
frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v)
x = x + frame_embs
x = rearrange(
x, "b T F v d -> b T (F v) d"
) # flatten the frame and spatial dimensions
if exists(self.media_time_embs):
x = x + self.media_time_embs[:T]
# blocks
latents = self.latents
latents = repeat(latents, "n d -> b T n d", b=b, T=T)
for attn, ff in self.layers:
latents = attn(x, latents, vision_attn_masks) + latents
latents = ff(latents) + latents
if exists(self.projection):
return self.projection(self.norm(latents))
else:
return self.norm(latents)
class DecoupledEmbedding(nn.Embedding):
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
"""
Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0,
then it will create `num_additional_embeddings` additional parameters that are always trained. If
`num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
"""
def __init__(
self,
max_original_id: int,
num_additional_embeddings: int = 0,
_weight: torch.Tensor = None,
num_original_embeddings: int = None,
embedding_dim: int = None,
partially_freeze=True,
device=None,
dtype=None,
pad_token_id=None,
) -> None:
"""
Args:
max_original_id (`int`):
The largest token id that should be embedded using the regular embedding (regular `weight`).
This is usually len(tokenizer) - 1 before additional tokens are added.
Note that this may not equal self.weight.shape[0]
num_additional_embeddings (`int`):
Number of additional tokens to initialize an Embedding matrix for (`additional_weight`).
_weight (`torch.Tensor`, *optional*, defaults to `None`): The regular weight tensor.
If provided, this sets the `num_original_embeddings` and `embedding_dim` parameters.
num_original_embeddings (`int`):
self.weight.shape[0]
embedding_dim (`int`):
The size of each embedding vector
partially_freeze: (`bool`, *optional*, defaults to `True`):
If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen.
padding_idx (`int`, *optional*):
The padding index (needs to be less than num_embeddings)
Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`,
`max_norm` or `norm_type`. We are not supporting these.
"""
# validate args
if pad_token_id is not None and pad_token_id > max_original_id:
raise ValueError(
f"pad_token_id must be <= max_original_id. Got {pad_token_id} and {max_original_id}."
+ "If the original tokenizer does not have a pad_token_id, use pad_token_id=None."
)
if _weight is not None:
assert (num_original_embeddings is None) or (
_weight.shape[0] == num_original_embeddings
), f"num_original_embeddings={num_original_embeddings} but _weight.shape[0]={_weight.shape[0]}"
assert (embedding_dim is None) or (
_weight.shape[1] == embedding_dim
), f"embedding_dim={embedding_dim} but _weight.shape[1]={_weight.shape[1]}"
num_original_embeddings = _weight.shape[0]
embedding_dim = _weight.shape[1]
else:
assert (
num_original_embeddings is not None
), "num_original_embeddings must be provided if _weight is not provided"
assert (
embedding_dim is not None
), "embedding_dim must be provided if _weight is not provided"
super().__init__(
num_embeddings=num_original_embeddings,
embedding_dim=embedding_dim,
device=device,
dtype=dtype,
padding_idx=pad_token_id,
_weight=_weight,
)
self.max_original_id = max_original_id
self.padding_idx = pad_token_id
self.num_additional_embeddings = num_additional_embeddings
if self.num_additional_embeddings > 0:
self.additional_embedding = nn.Embedding(
num_embeddings=self.num_additional_embeddings,
embedding_dim=embedding_dim,
device=device,
dtype=dtype,
)
self.set_requires_grad(
require_regular_grad=not partially_freeze, require_additional_grad=True
)
def set_requires_grad(self, require_regular_grad, require_additional_grad):
"""
Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
"""
self.weight.requires_grad_(require_regular_grad)
self.additional_embedding.requires_grad_(require_additional_grad)
def forward(self, input_ids):
"""
we have 2 embeddings, with different indices - one pretrained self.weight and another
self.additional_embedding.weight that is being trained.
in order to make a lookup of the input ids, we:
1. find out the indices of the entries belonging to the 2nd embedding
2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd
embedding starts from 0 and not num_embeddings
3. perform the 2nd embedding lookup
4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
5. perform the 1st embedding lookup
6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup
note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but
then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices -
i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are
usually relatively short it's probably not faster or if faster not by much - but might be a good idea to
measure.
"""
if self.num_additional_embeddings == 0:
return F.embedding(input_ids, self.weight)
# Clone so that we don't modify the original input_ids later on
input_ids = input_ids.clone()
additional_vocab_indices = torch.where(input_ids > self.max_original_id)
input_ids_additional_vocab = input_ids[additional_vocab_indices]
additional_embeddings = self.additional_embedding(
input_ids_additional_vocab - self.max_original_id - 1
)
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway
input_ids[additional_vocab_indices] = 0
full_vector = F.embedding(input_ids, self.weight)
# overwrite the records with high indices
full_vector[additional_vocab_indices] = additional_embeddings
return full_vector
def extra_repr(self) -> str:
return "num_original_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
self.max_original_id + 1,
self.num_additional_embeddings,
self.embedding_dim,
(not self.weight.requires_grad),
)
class DecoupledLinear(nn.Linear):
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
"""
Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `additional_out_features` > 0,
then it will create `additional_out_features * in_features` additional parameters that are always trained. If
`additional_out_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
"""
def __init__(
self,
max_original_id: int,
additional_out_features: int = 0,
_weight: torch.Tensor = None,
_bias: torch.Tensor = None,
in_features: int = None,
original_out_features: int = None,
bias: bool = True,
partially_freeze: bool = True,
device=None,
dtype=None,
) -> None:
"""
Args:
max_original_id (`int`): The largest token id that should be extracted from the regular weight.
This is usually len(tokenizer) - 1 before additional tokens are added.
Note that this may not equal original_out_features - 1
_weight: torch.Tensor, *optional*, defaults to `None`. The regular weight tensor.
If provided, this sets the `in_features` and `original_out_features` parameters.
_bias: torch.Tensor, *optional*, defaults to `None`. The regular bias tensor.
in_features: int. Input hidden size.
original_out_features: int. Original out_features of the language model's get_output_embeddings() function.
additional_out_features: int. Number of additional trainable dimensions.
bias: bool. Whether to include a bias term.
partially_freeze: bool, *optional*, defaults to `True`): If `True`, the regular `weight` will be frozen.
"""
# argument validation
if _weight is not None:
assert (_weight.shape[0] == original_out_features) or (
original_out_features is None
), f"original_out_features={original_out_features} but _weight.shape[0]={_weight.shape[0]}"
assert (_weight.shape[1] == in_features) or (
in_features is None
), f"in_features={in_features} but _weight.shape[1]={_weight.shape[1]}"
in_features = _weight.shape[1]
original_out_features = _weight.shape[0]
else:
assert (
in_features is not None
), "in_features must be provided if _weight is not provided"
assert (
original_out_features is not None
), "original_out_features must be provided if _weight is not provided"
if _bias is not None:
assert bias is True, "bias must be True if _bias is provided"
# initialize original linear
super().__init__(
in_features,
original_out_features,
bias,
device,
dtype)
# set weight and bias manually
if _weight is not None:
self.weight = nn.Parameter(_weight)
if _bias is not None:
self.bias = nn.Parameter(_bias)
self.in_features = in_features
self.original_out_features = original_out_features
self.max_original_id = max_original_id
# initialize additional linear
self.additional_out_features = additional_out_features
self.has_bias = bias
if additional_out_features > 0:
self.additional_fc = nn.Linear(
in_features=in_features,
out_features=additional_out_features,
bias=self.has_bias,
device=device,
dtype=dtype,
)
self.set_requires_grad(
require_regular_grad=not partially_freeze, require_additional_grad=True
)
def set_requires_grad(self, require_regular_grad, require_additional_grad):
"""
Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
"""
self.weight.requires_grad_(require_regular_grad)
if self.has_bias:
self.bias.requires_grad_(require_regular_grad)
self.additional_fc.requires_grad_(require_additional_grad)
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = F.linear(input, self.weight, self.bias)
output = output[..., : self.max_original_id + 1]
if self.additional_out_features > 0:
additional_features = F.linear(
input, self.additional_fc.weight, self.additional_fc.bias
)
output = torch.cat((output, additional_features), -1)
return output
def extra_repr(self) -> str:
"""Overwriting `nn.Linear.extra_repr` to include new parameters."""
return "in_features={}, out_features={}, additional_out_features={}, bias={}, partially_freeze={}".format(
self.in_features,
self.max_original_id + 1,
self.additional_out_features,
self.bias is not None,
(not self.weight.requires_grad or not self.bias.requires_grad),
)
class VLM(nn.Module):
"""
Generic vision-language model (VLM) class.
A VLM consists of four components:
1. A vision encoder that extracts features from pixels, e.g. CLIP
input: (B, T_img, F, C, H, W)
output: (B, T_img, F, v, d)
2. A vision tokenizer that converts these features to visual token-like embeddings, e.g. Perceiver, or a linear projection head
input: (B, T_img, F, v, d)
output: (B, T_img, n, d)
3. A fusion method that allows the language model to attend to these tokens, e.g. cross-attention, or placing the tokens directly in the language model's input sequence
4. A language model
"""
def __init__(
self,
vision_encoder: nn.Module,
vision_tokenizer: nn.Module,
lang_model: nn.Module,
initial_tokenizer_len: int,
pad_token_id: int,
gradient_checkpointing: bool = False,
):
"""
Args:
vision_encoder (nn.Module): e.g. CLIP
vision_tokenizer (nn.Module): e.g. PerceiverResampler
lang_model (nn.Module): e.g. MPT
initial_tokenizer_len (int): size of the original tokenizer vocab
pad_token_id (int): id of the pad token
gradient_checkpointing (bool, optional): Whether to use gradient checkpointing. Defaults to False.
"""
super().__init__()
# save dimension information
self.lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
if hasattr(lang_model.config, "d_model"):
self.lang_hidden_dim = lang_model.config.d_model # mpt uses d_model
else:
self.lang_hidden_dim = lang_model.config.hidden_size
self.vis_embedding_dim = vision_tokenizer.dim_media
self.num_tokens_per_vis = vision_tokenizer.num_tokens_per_media
# core components
self.vision_encoder = vision_encoder
self.vision_tokenizer = vision_tokenizer
self.lang_model = lang_model
# lm embeddings
self.pad_token_id = pad_token_id
self.initial_tokenizer_len = initial_tokenizer_len
input_embeds = DecoupledEmbedding(
max_original_id=initial_tokenizer_len - 1,
num_additional_embeddings=len(self.special_tokens),
_weight=self.lang_model.get_input_embeddings().weight,
pad_token_id=self.pad_token_id,
)
if hasattr(input_embeds, "additional_embedding"):
input_embeds.additional_embedding.weight.data.normal_(
mean=0.0,
std=self.lang_model.config.initializer_range
if hasattr(self.lang_model.config, "initializer_range")
else 0.02,
)
self.lang_model.set_input_embeddings(input_embeds)
out_embeds = DecoupledLinear(
max_original_id=initial_tokenizer_len - 1,
additional_out_features=len(self.special_tokens),
_weight=self.lang_model.get_output_embeddings().weight,
_bias=self.lang_model.get_output_embeddings().bias if hasattr(self.lang_model.get_output_embeddings(), "bias") else None,
)
if hasattr(out_embeds, "additional_fc"):
out_embeds.additional_fc.weight.data.normal_(
mean=0.0,
std=self.lang_model.config.initializer_range
if hasattr(self.lang_model.config, "initializer_range")
else 0.02,
)
self.lang_model.set_output_embeddings(out_embeds)
# gradient checkpointing
self.vision_tokenizer._use_gradient_checkpointing = gradient_checkpointing
def forward(
self,
vision_x: Optional[torch.Tensor],
lang_x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
] = None,
past_media_locations: Optional[torch.Tensor] = None,
past_vision_tokens: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = False,
**kwargs,
):
"""
Args:
vision_x: Vision input
shape (B, T_img, F, C, H, W) with F=1
only F = 1 is supported (single-frame videos)
if T_img > the number of media tokens in the corresponding input_ids (lang_x),
only the first number of media tokens in lang_x are used
lang_x: Language input ids, with media tokens denoting where
visual media should be inserted.
shape (B, T_txt)
attention_mask: Attention mask. Defaults to None.
labels: Labels. Defaults to None.
shape (B, T_txt)
past_key_values (Tuple[torch.Tensor]], optional): Past key value pairs for each of the T_txt previous tokens in the language model. Defaults to None.
list of length = number of decoder layers in the LM
exact implementation depends on LM, see Hugging Face docs
past_media_locations (torch.Tensor, optional): boolean mask denoting which of the previous T_txt tokens were media tokens. Defaults to None.
shape (B, T_txt)
past_vision_tokens (torch.Tensor, optional): Previous vision tokens. Defaults to None.
use_cache (Optional[bool], optional): Whether to use cache. Defaults to False.
If True, includes key_values, media_locations, and vision_tokens in the output.
"""
assert not (past_vision_tokens is None) ^ (
past_media_locations is None
), "past_vision_tokens and past_media_locations must both be None or both be not None"
# convert pixels to vision tokens
if vision_x is not None:
vision_features = self._encode_vision_x(vision_x=vision_x)
vision_tokens = self.vision_tokenizer(vision_features)
else:
vision_tokens = None
# fuse the vision and language tokens
new_inputs = self._prepare_inputs_for_forward(
vision_tokens=vision_tokens,
lang_x=lang_x,
attention_mask=attention_mask,
labels=labels,
past_key_values=past_key_values,
past_media_locations=past_media_locations,
padding_side="right",
past_vision_tokens=past_vision_tokens,
)
output = self.lang_model(
**new_inputs,
use_cache=use_cache,
past_key_values=past_key_values,
**kwargs,
)
# postprocessing may be needed, e.g. to remove extra tokens from logits that were inserted into the language stream
# or to add the past_vision_tokens and past_media_locations to the output
output = self._postprocess_outputs_from_forward(
output=output,
lang_x=lang_x,
vision_tokens=vision_tokens,
use_cache=use_cache,
past_vision_tokens=past_vision_tokens,
past_media_locations=past_media_locations,
)
# postforward hooks
self._post_forward_hook()
return output
def _encode_vision_x_anyres(self, samples, device):
assert self.anyres_grids is not None
image_raw = samples["image"] # list of patch list in of shape [1, N_patch, C, H, W]
image_sizes = samples["image_size"]
# Image_raw can be a list of list of patches, when a `samples` has multiple images.
if isinstance(image_raw[0], list):
images = [x.squeeze(0) for sample_img in image_raw for x in sample_img]
image_sizes = [s for sample_sizes in image_sizes for s in sample_sizes]
else:
# assert isinstance(image_raw[0], torch.Tensor), f"Unkown image type: {image_raw[0]}"
# concate list of patches into one big patch for any res encoding.
images = [x.squeeze(0) for x in image_raw] # [N_patch, C, H, W]
image = torch.cat(images, dim=0) # [\sum{B}{N_patch_i}, C, H, W]
image = image.to(device)
with torch.no_grad():
if self.vision_encoder.__class__.__name__ == "TimmModel":
image_embeds = self.vision_encoder.trunk.forward_features(image)
elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
image_embeds = self.vision_encoder(image).last_hidden_state
else:
image_embeds = self.vision_encoder(image)[1] # OpenCLIP returns tuples
if isinstance(self.vision_encoder, CLIPVisionModel) or isinstance(self.vision_encoder, SiglipVisionTransformer):
base_img_size = self.vision_encoder.config.image_size
else:
base_img_size = self.vision_encoder.image_size[0]
if self.vision_encoder.__class__.__name__ == "TimmModel":
grid_size = self.vision_encoder.trunk.patch_embed.grid_size
elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
grid_size_base = self.vision_encoder.config.image_size // self.vision_encoder.config.patch_size
grid_size = (grid_size_base, grid_size_base)
else:
grid_size = self.vision_encoder.grid_size
height, width = grid_size
if not image_embeds.shape[1] == height * width:
assert image_embeds.shape[1] == height * width + 1 # For vision encoders that has [CLS] token.
image_embeds = image_embeds[:, 1:, :] # Drop the cls token for each patch.
n_vis_token_per_patch = image_embeds.shape[1]
# Split encoded patches and merge patch features
# 1. Get the raw sizes from samples, and split the image embeds [\sum_{B}(N_patch_i), N_tok(16*16), C]
split_sizes = [image.shape[0] for image in images]
image_embeds = torch.split(image_embeds, split_sizes, dim=0)
# 2. For each image (consist of a list of patches), merge the patches spatially (of shape [C, n_patch_height, n_patch_width])
new_image_embeds = []
patch_attn_masks = []
max_n_img_token = -1
for idx, patch_embeds in enumerate(image_embeds):
if patch_embeds.shape[0] > 1:
# 3. Flatten the patch features and get [C, n_patch_height * (n_patch_width+1)]
base_patch_embeds = patch_embeds[0] # TODO: prepend the CLS token for th base patch embeds (of the resized entire image).
patch_embeds = patch_embeds[1:]
assert height * width == base_patch_embeds.shape[0]
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[idx],
self.anyres_grids,
base_img_size) # Hardcoded grid_pinpoints.
patch_embeds = patch_embeds.view(num_patch_height, num_patch_width, height, width, -1)
patch_embeds = patch_embeds.permute(4, 0, 2, 1, 3).contiguous()
patch_embeds = patch_embeds.flatten(1, 2).flatten(2, 3)
patch_embeds, patch_attn_mask = unpad_image(patch_embeds, image_sizes[idx], self.anyres_patch_sampling)
if hasattr(self, 'image_newline'):
patch_embeds = torch.cat((
patch_embeds,
self.image_newline[:, None, None].expand(*patch_embeds.shape[:-1], 1)
), dim=-1)
if self.anyres_patch_sampling:
patch_embeds = patch_embeds.view(-1, num_patch_height, num_patch_width, height*width)
patch_embeds = patch_embeds.flatten(1, 2).permute(1, 2, 0)
assert patch_attn_mask is not None
patch_attn_mask = patch_attn_mask.view(num_patch_height, num_patch_width, height*width)
patch_attn_mask = patch_attn_mask.flatten(0, 1)
patch_embeds = torch.cat((base_patch_embeds.unsqueeze(0), patch_embeds), dim=0)
patch_attn_mask = torch.cat((torch.ones(n_vis_token_per_patch, device=patch_embeds.device).unsqueeze(0), patch_attn_mask), dim=0)
else:
patch_embeds = patch_embeds.flatten(1, 2).transpose(0, 1)
patch_embeds = torch.cat((base_patch_embeds, patch_embeds), dim=0)
else:
patch_embeds = patch_embeds[0].unsqueeze(0) if self.anyres_patch_sampling else patch_embeds[0]
patch_attn_mask = torch.ones(n_vis_token_per_patch, device=patch_embeds.device).unsqueeze(0) if self.anyres_patch_sampling else None
if hasattr(self, 'image_newline'):
patch_embeds = torch.cat((
patch_embeds,
self.image_newline[None]
), dim=0)
if not self.anyres_patch_sampling:
max_n_img_token = max(patch_embeds.shape[0], max_n_img_token)
new_image_embeds.append(patch_embeds)
patch_attn_masks.append(patch_attn_mask)
if self.anyres_patch_sampling:
# Return individual patches for independent token downsampling.
return new_image_embeds, patch_attn_masks
# 4. Pad and concat the list of image_embeds [N_tok_i, C] together into a batch. Also modify the query attention mask.
image_embeds = []
image_atts = []
for image_embed in new_image_embeds:
n_img_token = image_embed.shape[0]
img_attn = torch.ones((max_n_img_token), dtype=torch.long, device=image_embed.device)
if n_img_token < max_n_img_token:
padded_embed = torch.zeros((max_n_img_token, image_embed.shape[-1]), dtype=image_embed.dtype, device=image_embed.device)
padded_embed[:n_img_token, :] = image_embed
img_attn[n_img_token:] = 0 # Mask out the padded entries.
else:
padded_embed = image_embed
image_embeds.append(padded_embed)
image_atts.append(img_attn)
image_embeds = torch.stack(image_embeds, dim=0) # Shape [B, N_tok_longest, C_dim]
image_atts = torch.stack(image_atts, dim=0) # Shape [B, N_tok_longest, C_dim]
# TODO: reshape image_embeds and image_atts to "b T F v d"
image_embeds = image_embeds[:, None, None, :, :]
# image_atts = image_atts[:, None, None, :, :]
return image_embeds, image_atts
def _encode_vision_x(self, vision_x: torch.Tensor):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_x: Vision input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
b, T, F = vision_x.shape[:3]
vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
with torch.no_grad():
if self.vision_encoder.__class__.__name__ == "TimmModel":
vision_x = self.vision_encoder.trunk.forward_features(vision_x)
elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
vision_x = self.vision_encoder(vision_x).last_hidden_state
else:
vision_x = self.vision_encoder(vision_x)[1] # OpenCLIP returns tuples
vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
return vision_x
def _concat_vision_cache(
self, lang_x, vision_tokens, past_vision_tokens, past_media_locations, use_cache
):
"""
Helper function to include the past vision tokens and past media locations in the output.
"""
if use_cache:
if past_media_locations is not None and past_vision_tokens is not None:
if vision_tokens is not None:
updated_vision_tokens = torch.cat(
[
past_vision_tokens,
vision_tokens,
],
dim=1,
)
else:
updated_vision_tokens = past_vision_tokens
updated_media_locations = torch.cat(
[
past_media_locations,
lang_x == self.media_token_id,
],
dim=1,
)
else:
updated_vision_tokens = vision_tokens
updated_media_locations = lang_x == self.media_token_id
else:
updated_vision_tokens = None
updated_media_locations = None
return updated_vision_tokens, updated_media_locations
def generate(
self,
vision_x: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
past_key_values: Optional[
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
] = None,
past_media_locations: Optional[torch.Tensor] = None,
past_vision_tokens: Optional[torch.Tensor] = None,
**kwargs,
):
"""
Generate text conditioned on vision and language inputs.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
see documentation for forward
lang_x (torch.Tensor): Language input
shape (B, T_txt)
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
**kwargs: see generate documentation in Hugging Face CausalLM models.
Returns:
torch.Tensor: lang_x with generated tokens appended to it
"""
num_beams = kwargs.pop("num_beams", 1)
# convert pixels to vision tokens
if vision_x is not None:
vision_features = self._encode_vision_x(vision_x=vision_x)
vision_tokens = self.vision_tokenizer(vision_features)
else:
vision_tokens = None
# fuse the vision and language tokens
# for xattn, vision_x and media_location are repeat_interleaved s.t.
# the total batch size is B * num_beams
new_inputs = self._prepare_inputs_for_forward(
vision_tokens=vision_tokens,
lang_x=lang_x,
attention_mask=attention_mask,
past_key_values=past_key_values,
past_media_locations=past_media_locations,
past_vision_tokens=past_vision_tokens,
padding_side="left",
num_beams=num_beams,
)
output = self.lang_model.generate(
**new_inputs,
past_key_values=past_key_values,
num_beams=num_beams,
use_cache=True,
**kwargs,
)
self._post_forward_hook()
return output
@property
def num_trainable_params(self):
"""Print the number of trainable parameters"""
return num_params(self, filter_to_trainable=True)
def set_trainable(self):
"""
Freeze appropriate parameters in the model.
"""
raise NotImplementedError
def group_params_by_weight_decay(self):
"""
Return a tuple of (params to optimize w/ weight decay, params to optimize w/o weight decay)
"""
params_with_wd, params_without_wd = [], []
for n, p in self.named_parameters():
if p.requires_grad:
if self._should_apply_weight_decay(n):
params_with_wd.append(p)
else:
params_without_wd.append(p)
return params_with_wd, params_without_wd
def _should_apply_weight_decay(self, parameter_name):
"""
Return whether weight decay should be applied to a parameter.
"""
raise NotImplementedError
@property
def special_tokens(self):
"""
Returns a dict mapping from the attribute name of a special token to its string format,
e.g. "media_token": "<image>"
"""
assert (
"media_token" in self._special_tokens
), "VLMs need to request that the tokenizer add a media_token and call set_special_token_ids to set self.media_token_id"
return self._special_tokens
@property
def special_token_ids(self):
"""
Returns a list of the special token ids
"""
return [getattr(self, f"{att_name}_id") for att_name in self.special_tokens]
def set_special_token_ids(self, string_to_ids):
"""
Args:
string_to_ids (dict): mapping from token string to id
"""
assert set(self.special_tokens.values()).issubset(set(string_to_ids.keys()))
for att_name, token_str in self.special_tokens.items():
token_id = string_to_ids[token_str]
setattr(self, f"{att_name}_id", token_id)
setattr(self.lang_model, f"{att_name}_id", token_id)
def init_gradient_checkpointing(self):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointWrapper,
CheckpointImpl,
apply_activation_checkpointing,
)
from functools import partial
non_reentrant_wrapper = partial(
checkpoint_wrapper,
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
)
apply_activation_checkpointing(
self,
checkpoint_wrapper_fn=non_reentrant_wrapper,
check_fn=lambda m: getattr(m, "_use_gradient_checkpointing", False)
and not isinstance(m, CheckpointWrapper),
)
@dataclass
class VLMOutputWithPast(CausalLMOutputWithPast):
"""
VLMOutputWithPast is a wrapper around CausalLMOutputWithPast that adds the following attributes:
past_media_locations: Optional[torch.Tensor] = None,
past_vision_tokens: Optional[torch.Tensor] = None,
"""
past_media_locations: Optional[torch.Tensor] = None
past_vision_tokens: Optional[torch.Tensor] = None
def exists(val):
return val is not None
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
class VLMWithLanguageStream(VLM):
"""
VLM that fuses modalities by inserting vision tokens directly into the language stream.
"""
def __init__(
self,
vision_encoder: nn.Module,
vision_tokenizer: nn.Module,
lang_model: nn.Module,
initial_tokenizer_len: int,
pad_token_id: int,
decoder_layers_attr_name: str = None,
gradient_checkpointing: bool = False,
):
super().__init__(
vision_encoder=vision_encoder,
vision_tokenizer=vision_tokenizer,
lang_model=lang_model,
initial_tokenizer_len=initial_tokenizer_len,
pad_token_id=pad_token_id,
gradient_checkpointing=gradient_checkpointing,
)
self.decoder_layers_attr_name = decoder_layers_attr_name
if decoder_layers_attr_name is not None:
for block in getattr_recursive(self.lang_model, self.decoder_layers_attr_name):
block._use_gradient_checkpointing = gradient_checkpointing
def _prepare_inputs_for_forward(
self,
vision_tokens: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor,
labels: torch.Tensor = None,
past_key_values=None,
vision_attention_mask: Optional[torch.Tensor] = None,
past_media_locations: torch.Tensor = None,
past_vision_tokens: torch.Tensor = None,
padding_side: str = "left",
num_beams: int = 1,
):
"""
Insert the vision tokens directly into the language stream/
This requires us to modify the input_ids, attention_mask, and labels.
"""
if past_key_values is not None:
past_len = past_key_values[0][0].shape[2]
assert attention_mask.shape[1] == past_len + lang_x.shape[1], (
"Attention_mask must be as long as the entire past len (including image tokens) and current input IDs. "
+ "Check that you've expanded the attention mask to account for past image tokens."
)
if vision_tokens is None:
return {
"input_ids": lang_x,
"attention_mask": attention_mask,
"labels": labels,
}
# get the language embeddings
lang_embeds = self.lang_model.get_input_embeddings()(lang_x)
# build up the multimodal embeddings
B = lang_x.shape[0]
has_labels = labels is not None
multimodal_embeds = []
multimodal_attention_mask = []
multimodal_labels = [] if has_labels else None
for i in range(B):
# get index of <image> tokens in lang_x[i]
image_token_idxs = torch.where(lang_x[i] == self.media_token_id)[0]
if len(image_token_idxs) == 0:
multimodal_embeds.append(lang_embeds[i].clone())
multimodal_attention_mask.append(attention_mask[i].clone())
if has_labels:
multimodal_labels.append(labels[i].clone())
continue
# loop through the image_token_idxs and insert the vision tokens
new_embed = lang_embeds[i].clone()
new_attention_mask = (
attention_mask[i].clone() if attention_mask is not None else None
)
if has_labels:
new_label = labels[i].clone()
print(vision_tokens.shape)
for img_num, img_idx in enumerate(image_token_idxs):
new_embed = torch.cat(
(
new_embed[:img_idx],
vision_tokens[i][img_num],
new_embed[img_idx + self.num_tokens_per_vis :],
),
dim=0,
)
new_attention_mask = torch.cat(
(
new_attention_mask[:img_idx],
torch.ones(self.num_tokens_per_vis, dtype=torch.long).to(
attention_mask.device
),
new_attention_mask[img_idx + self.num_tokens_per_vis :],
),
dim=0,
)
if has_labels:
new_label = torch.cat(
(
new_label[:img_idx],
torch.ones(self.num_tokens_per_vis, dtype=torch.long).to(
labels.device
)
* -100,
new_label[img_idx + self.num_tokens_per_vis :],
),
dim=0,
)
multimodal_embeds.append(new_embed)
multimodal_attention_mask.append(new_attention_mask)
if has_labels:
multimodal_labels.append(new_label)
# stack
multimodal_embeds = stack_with_padding(
multimodal_embeds,
padding_value=self.pad_token_id,
padding_side=padding_side,
)
multimodal_attention_mask = stack_with_padding(
multimodal_attention_mask,
padding_value=0,
padding_side=padding_side,
)
if has_labels:
multimodal_labels = stack_with_padding(
multimodal_labels,
padding_value=-100,
padding_side=padding_side,
)
return {
"inputs_embeds": multimodal_embeds,
"attention_mask": multimodal_attention_mask,
"labels": multimodal_labels,
}
def _postprocess_outputs_from_forward(
self,
output: CausalLMOutputWithPast,
lang_x: torch.Tensor,
vision_tokens: torch.Tensor,
past_vision_tokens: torch.Tensor,
past_media_locations: torch.Tensor,
use_cache: bool = False,
):
# Include the past vision tokens and past media locations in the output
updated_vision_tokens, updated_media_locations = self._concat_vision_cache(
lang_x=lang_x,
vision_tokens=vision_tokens,
past_vision_tokens=past_vision_tokens,
past_media_locations=past_media_locations,
use_cache=use_cache,
)
# return logits that are the same shape as the original input_ids
logits = output.logits
batch_logits = []
B, T_txt = lang_x.shape
for i in range(B):
sequence_logits = []
logits_j = 0
for j in range(T_txt):
if lang_x[i, j] != self.media_token_id:
sequence_logits.append(logits[i, logits_j])
logits_j += 1
else:
# append the logit for the first image token, then skip over the rest
# note: the model actually learns to predict <im_patch>, not <image>
sequence_logits.append(logits[i, logits_j])
logits_j += self.num_tokens_per_vis
sequence_logits = torch.stack(sequence_logits, dim=0) # (B, vocab_size)
batch_logits.append(sequence_logits)
batch_logits = torch.stack(batch_logits, dim=0) # (B, T_txt, vocab_size)
# The final logits shape should be the same as the original input_ids shape
assert batch_logits.shape[:2] == (B, T_txt)
# assemble the output
output = VLMOutputWithPast(
loss=output.loss,
logits=batch_logits,
past_key_values=output.past_key_values,
hidden_states=output.hidden_states,
attentions=output.attentions,
past_media_locations=updated_media_locations,
past_vision_tokens=updated_vision_tokens,
)
return output
def _post_forward_hook(self):
pass
@property
def num_params_per_module(self):
"""Print the number of parameters per module in the model"""
return "\n".join(
[
f"Vision encoder: {num_params(self.vision_encoder):,} parameters",
f"Vision tokenizer: {num_params(self.vision_tokenizer):,} parameters",
f"Language model: {num_params(self.lang_model):,} parameters",
]
)
@property
def num_trainable_params_per_module(self):
"""Print the number of trainable parameters per module in the model"""
return "\n".join(
[
f"Vision encoder: {num_params(self.vision_encoder, filter_to_trainable=True):,} trainable parameters",
f"Vision tokenizer: {num_params(self.vision_tokenizer, filter_to_trainable=True):,} trainable parameters",
f"Language model: {num_params(self.lang_model, filter_to_trainable=True):,} trainable parameters",
]
)
class XGenMMPerceiver(VLMWithLanguageStream):
def __init__(
self,
vision_encoder: nn.Module,
vision_tokenizer: nn.Module,
lang_model: nn.Module,
initial_tokenizer_len: int,
pad_token_id: int,
decoder_layers_attr_name: str = None,
gradient_checkpointing: bool = False,
image_aspect_ratio: str = 'none',
):
"""
Args:
vision_encoder (nn.Module): HF CLIPModel
lang_encoder (nn.Module): HF causal language model
vis_feature_dim (int): final dimension of the visual features outputted by the vision_encoder
initial_tokenizer_len (int): size of the tokenizer vocab
padding_token_id (int): id of the padding token. None if no padding token; then a padding token
will be inserted into self.special_tokens, which factory.py fills after creating new tokens
decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None.
gradient_checkpointing (bool, optional): whether to use gradient checkpointing. Defaults to False.
"""
self._special_tokens = {
"media_token": "<image>",
"image_placeholder_token": "<image placeholder>",
"end_of_trunk_token": "<|endofchunk|>",
}
lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
super().__init__(
vision_encoder=vision_encoder,
vision_tokenizer=vision_tokenizer,
lang_model=lang_model,
initial_tokenizer_len=initial_tokenizer_len,
gradient_checkpointing=gradient_checkpointing,
decoder_layers_attr_name=decoder_layers_attr_name,
pad_token_id=pad_token_id,
)
self.image_aspect_ratio = image_aspect_ratio
def set_trainable(self):
"""
Unfreeze everything except the vision_encoder
"""
self.requires_grad_(True)
self.vision_encoder.requires_grad_(False)
def _should_apply_weight_decay(self, parameter_name):
"""
Kosmos applies 0.01 weight deacy to everything
"""
return True
def generate(
self,
vision_x: torch.Tensor,
lang_x: torch.Tensor,
image_size: Optional[Tuple] = None,
attention_mask: torch.Tensor = None,
past_key_values: Optional[
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
] = None,
past_media_locations: Optional[torch.Tensor] = None,
past_vision_tokens: Optional[torch.Tensor] = None,
**kwargs,
):
"""
Generate text conditioned on vision and language inputs.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
see documentation for forward
lang_x (torch.Tensor): Language input
shape (B, T_txt)
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
**kwargs: see generate documentation in Hugging Face CausalLM models.
Returns:
torch.Tensor: lang_x with generated tokens appended to it
"""
num_beams = kwargs.pop("num_beams", 1)
# convert pixels to vision tokens
vision_attention_mask = None
if vision_x is not None:
vision_features = self._encode_vision_x(vision_x=vision_x)
vision_tokens = self.vision_tokenizer(vision_features)
else:
vision_tokens = None
# fuse the vision and language tokens
# for xattn, vision_x and media_location are repeat_interleaved s.t.
# the total batch size is B * num_beams
new_inputs = self._prepare_inputs_for_forward(
vision_tokens=vision_tokens,
lang_x=lang_x,
attention_mask=attention_mask,
vision_attention_mask=vision_attention_mask,
past_key_values=past_key_values,
past_media_locations=past_media_locations,
past_vision_tokens=past_vision_tokens,
padding_side="left",
num_beams=num_beams,
)
if past_key_values is not None:
output = self.lang_model.generate(
**new_inputs,
past_key_values=past_key_values,
num_beams=num_beams,
use_cache=True,
**kwargs,
)
else:
output = self.lang_model.generate(
**new_inputs,
num_beams=num_beams,
use_cache=True,
**kwargs,
)
self._post_forward_hook()
return output |