Text Generation
Safetensors
PyTorch
English
mixtral
function-calling
LLM Agent
tool-use
mistral
conversational
File size: 17,087 Bytes
b41c8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ce4a9ccf-4bd6-43fb-a24d-b6a7da401a96",
   "metadata": {},
   "source": [
    "## Load xLAM model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b1351d81-4502-4b65-b88a-464acd0e80f8",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch \n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer\n",
    "torch.random.manual_seed(0) \n",
    "\n",
    "model_name = \"Salesforce/xLAM-7b-r\"\n",
    "model = AutoModelForCausalLM.from_pretrained(model_name, device_map=\"auto\", torch_dtype=\"auto\", trust_remote_code=True)\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name) "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2cdd5bae-da43-4713-9956-360f1f3a9721",
   "metadata": {},
   "source": [
    "## Build the prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e138e9f6-0543-427c-bce6-b4f14765a040",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "# Please use our provided instruction prompt for best performance\n",
    "task_instruction = \"\"\"\n",
    "Based on the previous context and API request history, generate an API request or a response as an AI assistant.\"\"\".strip()\n",
    "\n",
    "format_instruction = \"\"\"\n",
    "The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
    "tool_calls an empty list \"[]\".\n",
    "```\n",
    "{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
    "```\n",
    "\"\"\".strip()\n",
    "\n",
    "get_weather_api = {\n",
    "    \"name\": \"get_weather\",\n",
    "    \"description\": \"Get the current weather for a location\",\n",
    "    \"parameters\": {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"location\": {\n",
    "                \"type\": \"string\",\n",
    "                \"description\": \"The city and state, e.g. San Francisco, New York\"\n",
    "            },\n",
    "            \"unit\": {\n",
    "                \"type\": \"string\",\n",
    "                \"enum\": [\"celsius\", \"fahrenheit\"],\n",
    "                \"description\": \"The unit of temperature to return\"\n",
    "            }\n",
    "        },\n",
    "        \"required\": [\"location\"]\n",
    "    }\n",
    "}\n",
    "\n",
    "search_api = {\n",
    "    \"name\": \"search\",\n",
    "    \"description\": \"Search for information on the internet\",\n",
    "    \"parameters\": {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"query\": {\n",
    "                \"type\": \"string\",\n",
    "                \"description\": \"The search query, e.g. 'latest news on AI'\"\n",
    "            }\n",
    "        },\n",
    "        \"required\": [\"query\"]\n",
    "    }\n",
    "}\n",
    "\n",
    "openai_format_tools = [get_weather_api, search_api]\n",
    "\n",
    "# Define the input query and available tools\n",
    "query = \"What's the weather like in New York in fahrenheit?\"\n",
    "\n",
    "# Helper function to convert openai format tools to our more concise xLAM format\n",
    "def convert_to_xlam_tool(tools):\n",
    "    ''''''\n",
    "    if isinstance(tools, dict):\n",
    "        return {\n",
    "            \"name\": tools[\"name\"],\n",
    "            \"description\": tools[\"description\"],\n",
    "            \"parameters\": {k: v for k, v in tools[\"parameters\"].get(\"properties\", {}).items()}\n",
    "        }\n",
    "    elif isinstance(tools, list):\n",
    "        return [convert_to_xlam_tool(tool) for tool in tools]\n",
    "    else:\n",
    "        return tools\n",
    "\n",
    "def build_conversation_history_prompt(conversation_history: str):\n",
    "    parsed_history = []\n",
    "    for step_data in conversation_history:\n",
    "        parsed_history.append({\n",
    "            \"step_id\": step_data[\"step_id\"],\n",
    "            \"thought\": step_data[\"thought\"],\n",
    "            \"tool_calls\": step_data[\"tool_calls\"],\n",
    "            \"next_observation\": step_data[\"next_observation\"],\n",
    "            \"user_input\": step_data['user_input']\n",
    "        })\n",
    "        \n",
    "    history_string = json.dumps(parsed_history)\n",
    "    return f\"\\n[BEGIN OF HISTORY STEPS]\\n{history_string}\\n[END OF HISTORY STEPS]\\n\"\n",
    "    \n",
    "    \n",
    "# Helper function to build the input prompt for our model\n",
    "def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):\n",
    "    prompt = f\"[BEGIN OF TASK INSTRUCTION]\\n{task_instruction}\\n[END OF TASK INSTRUCTION]\\n\\n\"\n",
    "    prompt += f\"[BEGIN OF AVAILABLE TOOLS]\\n{json.dumps(xlam_format_tools)}\\n[END OF AVAILABLE TOOLS]\\n\\n\"\n",
    "    prompt += f\"[BEGIN OF FORMAT INSTRUCTION]\\n{format_instruction}\\n[END OF FORMAT INSTRUCTION]\\n\\n\"\n",
    "    prompt += f\"[BEGIN OF QUERY]\\n{query}\\n[END OF QUERY]\\n\\n\"\n",
    "    \n",
    "    if len(conversation_history) > 0: prompt += build_conversation_history_prompt(conversation_history)\n",
    "    return prompt\n",
    "\n",
    "\n",
    "    \n",
    "# Build the input and start the inference\n",
    "xlam_format_tools = convert_to_xlam_tool(openai_format_tools)\n",
    "\n",
    "conversation_history = []\n",
    "content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)\n",
    "\n",
    "messages=[\n",
    "    { 'role': 'user', 'content': content}\n",
    "]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ff7bccd5-fa04-4fbe-92b3-13f58914da4d",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[BEGIN OF TASK INSTRUCTION]\n",
      "Based on the previous context and API request history, generate an API request or a response as an AI assistant.\n",
      "[END OF TASK INSTRUCTION]\n",
      "\n",
      "[BEGIN OF AVAILABLE TOOLS]\n",
      "[{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, New York\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}, {\"name\": \"search\", \"description\": \"Search for information on the internet\", \"parameters\": {\"query\": {\"type\": \"string\", \"description\": \"The search query, e.g. 'latest news on AI'\"}}}]\n",
      "[END OF AVAILABLE TOOLS]\n",
      "\n",
      "[BEGIN OF FORMAT INSTRUCTION]\n",
      "The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
      "tool_calls an empty list \"[]\".\n",
      "```\n",
      "{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
      "```\n",
      "[END OF FORMAT INSTRUCTION]\n",
      "\n",
      "[BEGIN OF QUERY]\n",
      "What's the weather like in New York in fahrenheit?\n",
      "[END OF QUERY]\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "print(content)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a5fb0006-9f5d-4d79-a8cd-819bad627441",
   "metadata": {},
   "source": [
    "## Get the model output (agent_action)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cbe56588-c786-4913-9062-373a22a92e08",
   "metadata": {},
   "outputs": [],
   "source": [
    "inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
    "\n",
    "# tokenizer.eos_token_id is the id of <|EOT|> token\n",
    "outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
    "agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b20ed2ae-86f6-489b-ad54-fe7ea911667b",
   "metadata": {},
   "source": [
    "For demo purpose, we use an example agent_action"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "ab20c084-44fa-403d-92a5-1b8ced72e9be",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "agent_action = \"\"\"{\"thought\": \"\", \"tool_calls\": [{\"name\": \"get_weather\", \"arguments\": {\"location\": \"New York\"}}]}\n",
    "\"\"\".strip()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1cd4d8e4-ee6b-499e-b75f-a48df7848a60",
   "metadata": {},
   "source": [
    "### Add follow-up question"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "825649ba-2691-43a2-b3d8-7baf8b66d46e",
   "metadata": {},
   "outputs": [],
   "source": [
    "def parse_agent_action(agent_action: str):\n",
    "    \"\"\"\n",
    "    Given an agent's action, parse it to add to conversation history\n",
    "    \"\"\"\n",
    "    try: parsed_agent_action_json = json.loads(agent_action)\n",
    "    except: return \"\", []\n",
    "    \n",
    "    if \"thought\" not in parsed_agent_action_json.keys(): thought = \"\"\n",
    "    else: thought = parsed_agent_action_json[\"thought\"]\n",
    "    \n",
    "    if \"tool_calls\" not in parsed_agent_action_json.keys(): tool_calls = []\n",
    "    else: tool_calls = parsed_agent_action_json[\"tool_calls\"]\n",
    "    \n",
    "    return thought, tool_calls\n",
    "\n",
    "def update_conversation_history(conversation_history: list, agent_action: str, environment_response: str, user_input: str):\n",
    "    \"\"\"\n",
    "    Update the conversation history list based on the new agent_action, environment_response, and/or user_input\n",
    "    \"\"\"\n",
    "    thought, tool_calls = parse_agent_action(agent_action)\n",
    "    new_step_data = {\n",
    "        \"step_id\": len(conversation_history) + 1,\n",
    "        \"thought\": thought,\n",
    "        \"tool_calls\": tool_calls,\n",
    "        \"next_observation\": environment_response,\n",
    "        \"user_input\": user_input,\n",
    "    }\n",
    "    \n",
    "    conversation_history.append(new_step_data)\n",
    "\n",
    "def get_environment_response(agent_action: str):\n",
    "    \"\"\"\n",
    "    Get the environment response for the agent_action\n",
    "    \"\"\"\n",
    "    # TODO: add custom implementation here\n",
    "    error_message, response_message = \"\", \"Sunny, 81 degrees\"\n",
    "    return {\"error\": error_message, \"response\": response_message}\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "051e6aff-c21b-4dcb-9eb8-c34154d90c39",
   "metadata": {},
   "source": [
    "1. **Get the next state after agent's response:**\n",
    "  The next 2 lines are examples of getting environment response and user_input.\n",
    "  It is depended on particular usage, we can have either one or both of those."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "649a8e9d-9757-408c-9214-0590556c2db4",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "environment_response = get_environment_response(agent_action)\n",
    "user_input = \"Now, search on the Internet for cute puppies\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9c9c9418-1c54-4381-81d1-7f3834037739",
   "metadata": {},
   "source": [
    "2. After we got environment_response and (or) user_input, we want to add to our conversation history"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "bcfe89f3-8237-41bf-b92c-7c7568366042",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'step_id': 1,\n",
       "  'thought': '',\n",
       "  'tool_calls': [{'name': 'get_weather',\n",
       "    'arguments': {'location': 'New York'}}],\n",
       "  'next_observation': {'error': '', 'response': 'Sunny, 81 degrees'},\n",
       "  'user_input': 'Now, search on the Internet for cute puppies'}]"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "update_conversation_history(conversation_history, agent_action, environment_response, user_input)\n",
    "conversation_history"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "23ba97c6-2356-49e8-a07b-0e664b7f505c",
   "metadata": {},
   "source": [
    "3. We now can build the prompt with the updated history, and prepare the inputs for the LLM"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "ed204b3a-3be5-431b-b355-facaf31309d2",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)\n",
    "messages=[\n",
    "    { 'role': 'user', 'content': content}\n",
    "]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "8af843aa-6a47-4938-a455-567ea0cccce3",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[BEGIN OF TASK INSTRUCTION]\n",
      "Based on the previous context and API request history, generate an API request or a response as an AI assistant.\n",
      "[END OF TASK INSTRUCTION]\n",
      "\n",
      "[BEGIN OF AVAILABLE TOOLS]\n",
      "[{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, New York\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}, {\"name\": \"search\", \"description\": \"Search for information on the internet\", \"parameters\": {\"query\": {\"type\": \"string\", \"description\": \"The search query, e.g. 'latest news on AI'\"}}}]\n",
      "[END OF AVAILABLE TOOLS]\n",
      "\n",
      "[BEGIN OF FORMAT INSTRUCTION]\n",
      "The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
      "tool_calls an empty list \"[]\".\n",
      "```\n",
      "{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
      "```\n",
      "[END OF FORMAT INSTRUCTION]\n",
      "\n",
      "[BEGIN OF QUERY]\n",
      "What's the weather like in New York in fahrenheit?\n",
      "[END OF QUERY]\n",
      "\n",
      "\n",
      "[BEGIN OF HISTORY STEPS]\n",
      "[{\"step_id\": 1, \"thought\": \"\", \"tool_calls\": [{\"name\": \"get_weather\", \"arguments\": {\"location\": \"New York\"}}], \"next_observation\": {\"error\": \"\", \"response\": \"Sunny, 81 degrees\"}, \"user_input\": \"Now, search on the Internet for cute puppies\"}]\n",
      "[END OF HISTORY STEPS]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "print(content)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71f76a10-a152-49d7-aa6f-3060cc49b935",
   "metadata": {},
   "source": [
    "## Get the model output for follow-up question"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "30af06fd-4aa7-4550-af39-3a77b5951882",
   "metadata": {},
   "outputs": [],
   "source": [
    "inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
    "# 5. Generate the outputs & decode\n",
    "#   tokenizer.eos_token_id is the id of <|EOT|> token\n",
    "outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
    "agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel) (Local)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}