File size: 4,585 Bytes
00deace
b4a60cb
2149dc1
 
 
 
 
 
 
 
00deace
4d4e386
b730b55
4d4e386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab54e2
4d4e386
 
 
 
 
7ab54e2
4d4e386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a41338c
7ab54e2
4d4e386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab54e2
4d4e386
 
 
 
 
 
03e0d0f
 
 
4d4e386
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: cc-by-nc-4.0
pipeline_tag: time-series-forecasting
tags:
  - time series
  - forecasting
  - pretrained models
  - foundation models
  - time series foundation models
  - time-series
---

# Moirai-1.0-R-Base

Moirai, the Masked Encoder-based Universal Time Series Forecasting Transformer is a Large Time Series Model pre-trained on [LOTSA data](https://huggingface.co/datasets/Salesforce/lotsa_data).
For more details on the Moirai architecture, training, and results, please refer to the [paper](https://arxiv.org/abs/2402.02592).

<p align="center">
  <img src="figures/architecture.png" width="100%">
  <br />
  <span>
    Fig. 1: Overall architecture of Moirai. Visualized is a 3-variate time series, where variates 0 and 1 are target variables (i.e. to be forecasted, and variate 2 is a dynamic covariate (values in forecast horizon known). Based on a patch size of 64, each variate is patchified into 3 tokens. The patch embeddings along with sequence and variate id are fed into the Transformer. The shaded patches represent the forecast horizon to be forecasted, whose corresponding output representations are mapped into the mixture distribution parameters.
  </span>
</p>

## Usage

To perform inference with Moirai, install the uni2ts library from our [GitHub repo](https://github.com/SalesforceAIResearch/uni2ts).

1. Clone repository:
```shell
git clone https://github.com/SalesforceAIResearch/uni2ts.git
cd uni2ts
```

2) Create virtual environment:
```shell
virtualenv venv
. venv/bin/activate
```

3) Build from source:
```shell
pip install -e '.[notebook]'
```

4) Create a `.env` file:
```shell
touch .env
```

A simple example to get started:

```python
import torch
import matplotlib.pyplot as plt
import pandas as pd
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split

from uni2ts.eval_util.plot import plot_single
from uni2ts.model.moirai import MoiraiForecast, MoiraiModule


SIZE = "small"  # model size: choose from {'small', 'base', 'large'}
PDT = 20  # prediction length: any positive integer
CTX = 200  # context length: any positive integer
PSZ = "auto"  # patch size: choose from {"auto", 8, 16, 32, 64, 128}
BSZ = 32  # batch size: any positive integer
TEST = 100  # test set length: any positive integer

# Read data into pandas DataFrame
url = (
    "https://gist.githubusercontent.com/rsnirwan/c8c8654a98350fadd229b00167174ec4"
    "/raw/a42101c7786d4bc7695228a0f2c8cea41340e18f/ts_wide.csv"
)
df = pd.read_csv(url, index_col=0, parse_dates=True)

# Convert into GluonTS dataset
ds = PandasDataset(dict(df))

# Split into train/test set
train, test_template = split(
    ds, offset=-TEST
)  # assign last TEST time steps as test set

# Construct rolling window evaluation
test_data = test_template.generate_instances(
    prediction_length=PDT,  # number of time steps for each prediction
    windows=TEST // PDT,  # number of windows in rolling window evaluation
    distance=PDT,  # number of time steps between each window - distance=PDT for non-overlapping windows
)

# Prepare pre-trained model by downloading model weights from huggingface hub
model = MoiraiForecast(
    module=MoiraiModule.from_pretrained(f"Salesforce/moirai-1.0-R-{SIZE}"),
    prediction_length=PDT,
    context_length=CTX,
    patch_size=PSZ,
    num_samples=100,
    target_dim=1,
    feat_dynamic_real_dim=ds.num_feat_dynamic_real,
    past_feat_dynamic_real_dim=ds.num_past_feat_dynamic_real,
)

predictor = model.create_predictor(batch_size=BSZ)
forecasts = predictor.predict(test_data.input)

input_it = iter(test_data.input)
label_it = iter(test_data.label)
forecast_it = iter(forecasts)

inp = next(input_it)
label = next(label_it)
forecast = next(forecast_it)

plot_single(
    inp, 
    label, 
    forecast, 
    context_length=200,
    name="pred",
    show_label=True,
)
plt.show()
```

## The Moirai Family

| # Model | # Parameters |
| :---: | :---: |
| [Moirai-1.0-R-Small](https://huggingface.co/Salesforce/moirai-1.0-R-small) | 14m |
| [Moirai-1.0-R-Base](https://huggingface.co/Salesforce/moirai-1.0-R-base) | 91m |
| [Moirai-1.0-R-Large](https://huggingface.co/Salesforce/moirai-1.0-R-large) | 311m |

## Citation

If you're using Uni2TS in your research or applications, please cite it using this BibTeX:

```markdown
@article{woo2024unified,
  title={Unified Training of Universal Time Series Forecasting Transformers},
  author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Xiong, Caiming and Savarese, Silvio and Sahoo, Doyen},
  journal={arXiv preprint arXiv:2402.02592},
  year={2024}
}
```