EvoSDXL-JP-v1 / evosdxl_jp_v1.py
aka7774's picture
Use "cpu" in merge, save model
a366424 verified
raw
history blame
7.03 kB
import os
from typing import List, Dict, Union
from tqdm import tqdm
import torch
import safetensors
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, CLIPTextModelWithProjection
from diffusers import (
StableDiffusionXLPipeline,
UNet2DConditionModel,
EulerDiscreteScheduler,
)
from diffusers.loaders import LoraLoaderMixin
SDXL_REPO = "stabilityai/stable-diffusion-xl-base-1.0"
JSDXL_REPO = "stabilityai/japanese-stable-diffusion-xl"
L_REPO = "ByteDance/SDXL-Lightning"
MERGED_FILE = "evosdxl_jp_v1.safetensors"
def load_state_dict(checkpoint_file: Union[str, os.PathLike], device: str = "cpu"):
file_extension = os.path.basename(checkpoint_file).split(".")[-1]
if file_extension == "safetensors":
return safetensors.torch.load_file(checkpoint_file, device=device)
else:
return torch.load(checkpoint_file, map_location=device)
def load_from_pretrained(
repo_id,
filename="diffusion_pytorch_model.fp16.safetensors",
subfolder="unet",
device="cuda",
) -> Dict[str, torch.Tensor]:
return load_state_dict(
hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
),
device=device,
)
def reshape_weight_task_tensors(task_tensors, weights):
"""
Reshapes `weights` to match the shape of `task_tensors` by unsqeezing in the remaining dimenions.
Args:
task_tensors (`torch.Tensor`): The tensors that will be used to reshape `weights`.
weights (`torch.Tensor`): The tensor to be reshaped.
Returns:
`torch.Tensor`: The reshaped tensor.
"""
new_shape = weights.shape + (1,) * (task_tensors.dim() - weights.dim())
weights = weights.view(new_shape)
return weights
def linear(task_tensors: List[torch.Tensor], weights: torch.Tensor) -> torch.Tensor:
"""
Merge the task tensors using `linear`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
Returns:
`torch.Tensor`: The merged tensor.
"""
task_tensors = torch.stack(task_tensors, dim=0)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
mixed_task_tensors = weighted_task_tensors.sum(dim=0)
return mixed_task_tensors
def merge_models(
task_tensors,
weights,
):
keys = list(task_tensors[0].keys())
weights = torch.tensor(weights, device=task_tensors[0][keys[0]].device)
state_dict = {}
for key in tqdm(keys, desc="Merging"):
w_list = []
for i, sd in enumerate(task_tensors):
w = sd.pop(key)
w_list.append(w)
new_w = linear(task_tensors=w_list, weights=weights)
state_dict[key] = new_w
return state_dict
def split_conv_attn(weights):
attn_tensors = {}
conv_tensors = {}
for key in list(weights.keys()):
if any(k in key for k in ["to_k", "to_q", "to_v", "to_out.0"]):
attn_tensors[key] = weights.pop(key)
else:
conv_tensors[key] = weights.pop(key)
return {"conv": conv_tensors, "attn": attn_tensors}
def merge_evosdxl_jp(device="cpu") -> StableDiffusionXLPipeline:
sdxl_weights = split_conv_attn(load_from_pretrained(SDXL_REPO, device=device))
dpo_weights = split_conv_attn(
load_from_pretrained(
"mhdang/dpo-sdxl-text2image-v1",
"diffusion_pytorch_model.safetensors",
device=device,
)
)
jn_weights = split_conv_attn(
load_from_pretrained("RunDiffusion/Juggernaut-XL-v9", device=device)
)
jsdxl_weights = split_conv_attn(load_from_pretrained(JSDXL_REPO, device=device))
tensors = [sdxl_weights, dpo_weights, jn_weights, jsdxl_weights]
new_conv = merge_models(
[sd["conv"] for sd in tensors],
[
0.15928833971605916,
0.1032449268871776,
0.6503217149752791,
0.08714501842148402,
],
)
new_attn = merge_models(
[sd["attn"] for sd in tensors],
[
0.1877279276437178,
0.20014114603909822,
0.3922685507065275,
0.2198623756106564,
],
)
del sdxl_weights, dpo_weights, jn_weights, jsdxl_weights
torch.cuda.empty_cache()
unet_config = UNet2DConditionModel.load_config(SDXL_REPO, subfolder="unet")
unet = UNet2DConditionModel.from_config(unet_config).to(device=device)
unet.load_state_dict({**new_conv, **new_attn})
state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(
L_REPO, weight_name="sdxl_lightning_4step_lora.safetensors"
)
LoraLoaderMixin.load_lora_into_unet(state_dict, network_alphas, unet)
unet.fuse_lora(lora_scale=3.224682864579401)
new_weights = split_conv_attn(unet.state_dict())
l_weights = split_conv_attn(
load_from_pretrained(
L_REPO,
"sdxl_lightning_4step_unet.safetensors",
subfolder=None,
device=device,
)
)
jnl_weights = split_conv_attn(
load_from_pretrained(
"RunDiffusion/Juggernaut-XL-Lightning",
"diffusion_pytorch_model.bin",
device=device,
)
)
tensors = [l_weights, jnl_weights, new_weights]
new_conv = merge_models(
[sd["conv"] for sd in tensors],
[0.47222002022088533, 0.48419531030361584, 0.04358466947549889],
)
new_attn = merge_models(
[sd["attn"] for sd in tensors],
[0.023119324530758375, 0.04924981616469831, 0.9276308593045434],
)
new_weights = {**new_conv, **new_attn}
safetensors.torch.save_file(new_weights, MERGED_FILE)
def load_evosdxl_jp(device="cuda"):
unet_config = UNet2DConditionModel.load_config(SDXL_REPO, subfolder="unet")
unet = UNet2DConditionModel.from_config(unet_config).to(device=device)
unet.load_state_dict(safetensors.torch.load_file(MERGED_FILE))
text_encoder = CLIPTextModelWithProjection.from_pretrained(
JSDXL_REPO, subfolder="text_encoder", torch_dtype=torch.float16, variant="fp16"
)
tokenizer = AutoTokenizer.from_pretrained(
JSDXL_REPO, subfolder="tokenizer", use_fast=False
)
pipe = StableDiffusionXLPipeline.from_pretrained(
SDXL_REPO,
unet=unet,
text_encoder=text_encoder,
tokenizer=tokenizer,
torch_dtype=torch.float16,
variant="fp16",
)
# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing"
)
pipe = pipe.to(device, dtype=torch.float16)
return pipe
if __name__ == "__main__":
if not os.path.exists(MERGED_FILE):
merge_evosdxl_jp()
pipe: StableDiffusionXLPipeline = load_evosdxl_jp()
images = pipe("犬", num_inference_steps=4, guidance_scale=0).images
images[0].save("out.png")