File size: 10,516 Bytes
f981a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import torch
from torch.nn import functional as F

from densepose.data.meshes.catalog import MeshCatalog
from densepose.structures.mesh import load_mesh_symmetry
from densepose.structures.transform_data import DensePoseTransformData


class DensePoseDataRelative:
    """
    Dense pose relative annotations that can be applied to any bounding box:
        x - normalized X coordinates [0, 255] of annotated points
        y - normalized Y coordinates [0, 255] of annotated points
        i - body part labels 0,...,24 for annotated points
        u - body part U coordinates [0, 1] for annotated points
        v - body part V coordinates [0, 1] for annotated points
        segm - 256x256 segmentation mask with values 0,...,14
    To obtain absolute x and y data wrt some bounding box one needs to first
    divide the data by 256, multiply by the respective bounding box size
    and add bounding box offset:
        x_img = x0 + x_norm * w / 256.0
        y_img = y0 + y_norm * h / 256.0
    Segmentation masks are typically sampled to get image-based masks.
    """

    # Key for normalized X coordinates in annotation dict
    X_KEY = "dp_x"
    # Key for normalized Y coordinates in annotation dict
    Y_KEY = "dp_y"
    # Key for U part coordinates in annotation dict (used in chart-based annotations)
    U_KEY = "dp_U"
    # Key for V part coordinates in annotation dict (used in chart-based annotations)
    V_KEY = "dp_V"
    # Key for I point labels in annotation dict (used in chart-based annotations)
    I_KEY = "dp_I"
    # Key for segmentation mask in annotation dict
    S_KEY = "dp_masks"
    # Key for vertex ids (used in continuous surface embeddings annotations)
    VERTEX_IDS_KEY = "dp_vertex"
    # Key for mesh id (used in continuous surface embeddings annotations)
    MESH_NAME_KEY = "ref_model"
    # Number of body parts in segmentation masks
    N_BODY_PARTS = 14
    # Number of parts in point labels
    N_PART_LABELS = 24
    MASK_SIZE = 256

    def __init__(self, annotation, cleanup=False):
        self.x = torch.as_tensor(annotation[DensePoseDataRelative.X_KEY])
        self.y = torch.as_tensor(annotation[DensePoseDataRelative.Y_KEY])
        if (
            DensePoseDataRelative.I_KEY in annotation
            and DensePoseDataRelative.U_KEY in annotation
            and DensePoseDataRelative.V_KEY in annotation
        ):
            self.i = torch.as_tensor(annotation[DensePoseDataRelative.I_KEY])
            self.u = torch.as_tensor(annotation[DensePoseDataRelative.U_KEY])
            self.v = torch.as_tensor(annotation[DensePoseDataRelative.V_KEY])
        if (
            DensePoseDataRelative.VERTEX_IDS_KEY in annotation
            and DensePoseDataRelative.MESH_NAME_KEY in annotation
        ):
            self.vertex_ids = torch.as_tensor(
                annotation[DensePoseDataRelative.VERTEX_IDS_KEY], dtype=torch.long
            )
            self.mesh_id = MeshCatalog.get_mesh_id(annotation[DensePoseDataRelative.MESH_NAME_KEY])
        if DensePoseDataRelative.S_KEY in annotation:
            self.segm = DensePoseDataRelative.extract_segmentation_mask(annotation)
        self.device = torch.device("cpu")
        if cleanup:
            DensePoseDataRelative.cleanup_annotation(annotation)

    def to(self, device):
        if self.device == device:
            return self
        new_data = DensePoseDataRelative.__new__(DensePoseDataRelative)
        new_data.x = self.x.to(device)
        new_data.y = self.y.to(device)
        for attr in ["i", "u", "v", "vertex_ids", "segm"]:
            if hasattr(self, attr):
                setattr(new_data, attr, getattr(self, attr).to(device))
        if hasattr(self, "mesh_id"):
            new_data.mesh_id = self.mesh_id
        new_data.device = device
        return new_data

    @staticmethod
    def extract_segmentation_mask(annotation):
        import pycocotools.mask as mask_utils

        # TODO: annotation instance is accepted if it contains either
        # DensePose segmentation or instance segmentation. However, here we
        # only rely on DensePose segmentation
        poly_specs = annotation[DensePoseDataRelative.S_KEY]
        if isinstance(poly_specs, torch.Tensor):
            # data is already given as mask tensors, no need to decode
            return poly_specs
        segm = torch.zeros((DensePoseDataRelative.MASK_SIZE,) * 2, dtype=torch.float32)
        if isinstance(poly_specs, dict):
            if poly_specs:
                mask = mask_utils.decode(poly_specs)
                segm[mask > 0] = 1
        else:
            for i in range(len(poly_specs)):
                poly_i = poly_specs[i]
                if poly_i:
                    mask_i = mask_utils.decode(poly_i)
                    segm[mask_i > 0] = i + 1
        return segm

    @staticmethod
    def validate_annotation(annotation):
        for key in [
            DensePoseDataRelative.X_KEY,
            DensePoseDataRelative.Y_KEY,
        ]:
            if key not in annotation:
                return False, "no {key} data in the annotation".format(key=key)
        valid_for_iuv_setting = all(
            key in annotation
            for key in [
                DensePoseDataRelative.I_KEY,
                DensePoseDataRelative.U_KEY,
                DensePoseDataRelative.V_KEY,
            ]
        )
        valid_for_cse_setting = all(
            key in annotation
            for key in [
                DensePoseDataRelative.VERTEX_IDS_KEY,
                DensePoseDataRelative.MESH_NAME_KEY,
            ]
        )
        if not valid_for_iuv_setting and not valid_for_cse_setting:
            return (
                False,
                "expected either {} (IUV setting) or {} (CSE setting) annotations".format(
                    ", ".join(
                        [
                            DensePoseDataRelative.I_KEY,
                            DensePoseDataRelative.U_KEY,
                            DensePoseDataRelative.V_KEY,
                        ]
                    ),
                    ", ".join(
                        [
                            DensePoseDataRelative.VERTEX_IDS_KEY,
                            DensePoseDataRelative.MESH_NAME_KEY,
                        ]
                    ),
                ),
            )
        return True, None

    @staticmethod
    def cleanup_annotation(annotation):
        for key in [
            DensePoseDataRelative.X_KEY,
            DensePoseDataRelative.Y_KEY,
            DensePoseDataRelative.I_KEY,
            DensePoseDataRelative.U_KEY,
            DensePoseDataRelative.V_KEY,
            DensePoseDataRelative.S_KEY,
            DensePoseDataRelative.VERTEX_IDS_KEY,
            DensePoseDataRelative.MESH_NAME_KEY,
        ]:
            if key in annotation:
                del annotation[key]

    def apply_transform(self, transforms, densepose_transform_data):
        self._transform_pts(transforms, densepose_transform_data)
        if hasattr(self, "segm"):
            self._transform_segm(transforms, densepose_transform_data)

    def _transform_pts(self, transforms, dp_transform_data):
        import detectron2.data.transforms as T

        # NOTE: This assumes that HorizFlipTransform is the only one that does flip
        do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1
        if do_hflip:
            self.x = self.MASK_SIZE - self.x
            if hasattr(self, "i"):
                self._flip_iuv_semantics(dp_transform_data)
            if hasattr(self, "vertex_ids"):
                self._flip_vertices()

        for t in transforms.transforms:
            if isinstance(t, T.RotationTransform):
                xy_scale = np.array((t.w, t.h)) / DensePoseDataRelative.MASK_SIZE
                xy = t.apply_coords(np.stack((self.x, self.y), axis=1) * xy_scale)
                self.x, self.y = torch.tensor(xy / xy_scale, dtype=self.x.dtype).T

    def _flip_iuv_semantics(self, dp_transform_data: DensePoseTransformData) -> None:
        i_old = self.i.clone()
        uv_symmetries = dp_transform_data.uv_symmetries
        pt_label_symmetries = dp_transform_data.point_label_symmetries
        for i in range(self.N_PART_LABELS):
            if i + 1 in i_old:
                annot_indices_i = i_old == i + 1
                if pt_label_symmetries[i + 1] != i + 1:
                    self.i[annot_indices_i] = pt_label_symmetries[i + 1]
                u_loc = (self.u[annot_indices_i] * 255).long()
                v_loc = (self.v[annot_indices_i] * 255).long()
                self.u[annot_indices_i] = uv_symmetries["U_transforms"][i][v_loc, u_loc].to(
                    device=self.u.device
                )
                self.v[annot_indices_i] = uv_symmetries["V_transforms"][i][v_loc, u_loc].to(
                    device=self.v.device
                )

    def _flip_vertices(self):
        mesh_info = MeshCatalog[MeshCatalog.get_mesh_name(self.mesh_id)]
        mesh_symmetry = (
            load_mesh_symmetry(mesh_info.symmetry) if mesh_info.symmetry is not None else None
        )
        self.vertex_ids = mesh_symmetry["vertex_transforms"][self.vertex_ids]

    def _transform_segm(self, transforms, dp_transform_data):
        import detectron2.data.transforms as T

        # NOTE: This assumes that HorizFlipTransform is the only one that does flip
        do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1
        if do_hflip:
            self.segm = torch.flip(self.segm, [1])
            self._flip_segm_semantics(dp_transform_data)

        for t in transforms.transforms:
            if isinstance(t, T.RotationTransform):
                self._transform_segm_rotation(t)

    def _flip_segm_semantics(self, dp_transform_data):
        old_segm = self.segm.clone()
        mask_label_symmetries = dp_transform_data.mask_label_symmetries
        for i in range(self.N_BODY_PARTS):
            if mask_label_symmetries[i + 1] != i + 1:
                self.segm[old_segm == i + 1] = mask_label_symmetries[i + 1]

    def _transform_segm_rotation(self, rotation):
        self.segm = F.interpolate(self.segm[None, None, :], (rotation.h, rotation.w)).numpy()
        self.segm = torch.tensor(rotation.apply_segmentation(self.segm[0, 0]))[None, None, :]
        self.segm = F.interpolate(self.segm, [DensePoseDataRelative.MASK_SIZE] * 2)[0, 0]