--- license: mit base_model: papluca/xlm-roberta-base-language-detection tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Roberta-CLS-URL results: [] --- # Roberta-CLS-URL This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1817 - Accuracy: 0.9571 - F1: 0.9572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.14 | 50 | 0.2787 | 0.8943 | 0.8942 | | No log | 0.28 | 100 | 0.2332 | 0.9179 | 0.9180 | | No log | 0.42 | 150 | 0.2369 | 0.9268 | 0.9269 | | No log | 0.56 | 200 | 0.2071 | 0.9313 | 0.9314 | | No log | 0.69 | 250 | 0.2017 | 0.9344 | 0.9343 | | No log | 0.83 | 300 | 0.1953 | 0.9414 | 0.9415 | | No log | 0.97 | 350 | 0.2031 | 0.9394 | 0.9394 | | 0.2675 | 1.11 | 400 | 0.1915 | 0.9439 | 0.9439 | | 0.2675 | 1.25 | 450 | 0.1696 | 0.9439 | 0.9440 | | 0.2675 | 1.39 | 500 | 0.1747 | 0.9487 | 0.9488 | | 0.2675 | 1.53 | 550 | 0.1958 | 0.9425 | 0.9427 | | 0.2675 | 1.67 | 600 | 0.1608 | 0.9462 | 0.9461 | | 0.2675 | 1.81 | 650 | 0.1547 | 0.9523 | 0.9524 | | 0.2675 | 1.94 | 700 | 0.1668 | 0.9557 | 0.9557 | | 0.1686 | 2.08 | 750 | 0.1709 | 0.9498 | 0.9499 | | 0.1686 | 2.22 | 800 | 0.1605 | 0.9554 | 0.9555 | | 0.1686 | 2.36 | 850 | 0.1703 | 0.9501 | 0.9501 | | 0.1686 | 2.5 | 900 | 0.1603 | 0.9465 | 0.9466 | | 0.1686 | 2.64 | 950 | 0.1742 | 0.9451 | 0.9451 | | 0.1686 | 2.78 | 1000 | 0.1507 | 0.9546 | 0.9546 | | 0.1686 | 2.92 | 1050 | 0.1423 | 0.9557 | 0.9557 | | 0.1385 | 3.06 | 1100 | 0.1496 | 0.9574 | 0.9575 | | 0.1385 | 3.19 | 1150 | 0.1590 | 0.9549 | 0.9549 | | 0.1385 | 3.33 | 1200 | 0.1492 | 0.9523 | 0.9524 | | 0.1385 | 3.47 | 1250 | 0.1390 | 0.9565 | 0.9566 | | 0.1385 | 3.61 | 1300 | 0.1496 | 0.9529 | 0.9530 | | 0.1385 | 3.75 | 1350 | 0.1425 | 0.9551 | 0.9552 | | 0.1385 | 3.89 | 1400 | 0.1494 | 0.9521 | 0.9522 | | 0.1221 | 4.03 | 1450 | 0.1541 | 0.9557 | 0.9557 | | 0.1221 | 4.17 | 1500 | 0.1897 | 0.9532 | 0.9532 | | 0.1221 | 4.31 | 1550 | 0.1595 | 0.9518 | 0.9519 | | 0.1221 | 4.44 | 1600 | 0.1514 | 0.9554 | 0.9555 | | 0.1221 | 4.58 | 1650 | 0.1553 | 0.9554 | 0.9555 | | 0.1221 | 4.72 | 1700 | 0.1626 | 0.9543 | 0.9543 | | 0.1221 | 4.86 | 1750 | 0.1509 | 0.9523 | 0.9523 | | 0.1034 | 5.0 | 1800 | 0.1448 | 0.9554 | 0.9555 | | 0.1034 | 5.14 | 1850 | 0.1685 | 0.9574 | 0.9574 | | 0.1034 | 5.28 | 1900 | 0.1555 | 0.9551 | 0.9552 | | 0.1034 | 5.42 | 1950 | 0.1595 | 0.9557 | 0.9557 | | 0.1034 | 5.56 | 2000 | 0.1660 | 0.9565 | 0.9566 | | 0.1034 | 5.69 | 2050 | 0.1511 | 0.9554 | 0.9555 | | 0.1034 | 5.83 | 2100 | 0.1443 | 0.9565 | 0.9566 | | 0.1034 | 5.97 | 2150 | 0.1526 | 0.9554 | 0.9554 | | 0.0925 | 6.11 | 2200 | 0.1753 | 0.9540 | 0.9541 | | 0.0925 | 6.25 | 2250 | 0.1503 | 0.9557 | 0.9557 | | 0.0925 | 6.39 | 2300 | 0.1827 | 0.9518 | 0.9518 | | 0.0925 | 6.53 | 2350 | 0.1486 | 0.9568 | 0.9568 | | 0.0925 | 6.67 | 2400 | 0.1652 | 0.9568 | 0.9569 | | 0.0925 | 6.81 | 2450 | 0.1544 | 0.9537 | 0.9538 | | 0.0925 | 6.94 | 2500 | 0.1599 | 0.9551 | 0.9552 | | 0.082 | 7.08 | 2550 | 0.1748 | 0.9568 | 0.9569 | | 0.082 | 7.22 | 2600 | 0.1765 | 0.9582 | 0.9583 | | 0.082 | 7.36 | 2650 | 0.1699 | 0.9568 | 0.9569 | | 0.082 | 7.5 | 2700 | 0.1631 | 0.9563 | 0.9563 | | 0.082 | 7.64 | 2750 | 0.1759 | 0.9602 | 0.9602 | | 0.082 | 7.78 | 2800 | 0.1746 | 0.9565 | 0.9566 | | 0.082 | 7.92 | 2850 | 0.1561 | 0.9568 | 0.9569 | | 0.0742 | 8.06 | 2900 | 0.1721 | 0.9577 | 0.9577 | | 0.0742 | 8.19 | 2950 | 0.1877 | 0.9563 | 0.9563 | | 0.0742 | 8.33 | 3000 | 0.1896 | 0.9549 | 0.9549 | | 0.0742 | 8.47 | 3050 | 0.1751 | 0.9577 | 0.9577 | | 0.0742 | 8.61 | 3100 | 0.1812 | 0.9577 | 0.9577 | | 0.0742 | 8.75 | 3150 | 0.1845 | 0.9577 | 0.9577 | | 0.0742 | 8.89 | 3200 | 0.1844 | 0.9579 | 0.9580 | | 0.0659 | 9.03 | 3250 | 0.1963 | 0.9571 | 0.9571 | | 0.0659 | 9.17 | 3300 | 0.1861 | 0.9577 | 0.9577 | | 0.0659 | 9.31 | 3350 | 0.1941 | 0.9585 | 0.9586 | | 0.0659 | 9.44 | 3400 | 0.1900 | 0.9565 | 0.9566 | | 0.0659 | 9.58 | 3450 | 0.1903 | 0.9565 | 0.9566 | | 0.0659 | 9.72 | 3500 | 0.1836 | 0.9579 | 0.9580 | | 0.0659 | 9.86 | 3550 | 0.1818 | 0.9565 | 0.9566 | | 0.0631 | 10.0 | 3600 | 0.1817 | 0.9571 | 0.9572 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2