Rodrigo1771 commited on
Commit
09f50a0
1 Parent(s): 86da576

Training in progress, epoch 0

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
+ tags:
6
+ - token-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - Rodrigo1771/symptemist-fasttext-75-ner
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ - accuracy
15
+ model-index:
16
+ - name: output
17
+ results:
18
+ - task:
19
+ name: Token Classification
20
+ type: token-classification
21
+ dataset:
22
+ name: Rodrigo1771/symptemist-fasttext-75-ner
23
+ type: Rodrigo1771/symptemist-fasttext-75-ner
24
+ config: SympTEMIST NER
25
+ split: validation
26
+ args: SympTEMIST NER
27
+ metrics:
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.6784232365145229
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.715927750410509
34
+ - name: F1
35
+ type: f1
36
+ value: 0.696671105193076
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.9490359010555359
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # output
46
+
47
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/symptemist-fasttext-75-ner dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.3374
50
+ - Precision: 0.6784
51
+ - Recall: 0.7159
52
+ - F1: 0.6967
53
+ - Accuracy: 0.9490
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 5e-05
73
+ - train_batch_size: 32
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 2
77
+ - total_train_batch_size: 64
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 10.0
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | No log | 1.0 | 258 | 0.1517 | 0.6354 | 0.6448 | 0.6400 | 0.9488 |
87
+ | 0.1357 | 2.0 | 516 | 0.2025 | 0.6306 | 0.7137 | 0.6696 | 0.9460 |
88
+ | 0.1357 | 3.0 | 774 | 0.2294 | 0.6649 | 0.7039 | 0.6839 | 0.9496 |
89
+ | 0.0238 | 4.0 | 1032 | 0.2818 | 0.6689 | 0.7066 | 0.6873 | 0.9492 |
90
+ | 0.0238 | 5.0 | 1290 | 0.2762 | 0.6528 | 0.7039 | 0.6774 | 0.9487 |
91
+ | 0.0081 | 6.0 | 1548 | 0.2938 | 0.6663 | 0.7203 | 0.6923 | 0.9484 |
92
+ | 0.0081 | 7.0 | 1806 | 0.3145 | 0.6789 | 0.7001 | 0.6893 | 0.9499 |
93
+ | 0.0039 | 8.0 | 2064 | 0.3267 | 0.6686 | 0.7055 | 0.6866 | 0.9491 |
94
+ | 0.0039 | 9.0 | 2322 | 0.3374 | 0.6784 | 0.7159 | 0.6967 | 0.9490 |
95
+ | 0.0021 | 10.0 | 2580 | 0.3400 | 0.6827 | 0.7077 | 0.6950 | 0.9495 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.44.2
101
+ - Pytorch 2.4.0+cu121
102
+ - Datasets 2.21.0
103
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9490359010555359,
4
+ "eval_f1": 0.696671105193076,
5
+ "eval_loss": 0.33743786811828613,
6
+ "eval_precision": 0.6784232365145229,
7
+ "eval_recall": 0.715927750410509,
8
+ "eval_runtime": 5.8603,
9
+ "eval_samples": 2519,
10
+ "eval_samples_per_second": 429.84,
11
+ "eval_steps_per_second": 53.751,
12
+ "predict_accuracy": 0.9470472034672878,
13
+ "predict_f1": 0.701497292131252,
14
+ "predict_loss": 0.3655967116355896,
15
+ "predict_precision": 0.6944181646168401,
16
+ "predict_recall": 0.7087222401029932,
17
+ "predict_runtime": 9.7752,
18
+ "predict_samples_per_second": 414.006,
19
+ "predict_steps_per_second": 51.764,
20
+ "total_flos": 8092971627384348.0,
21
+ "train_loss": 0.033683168437591816,
22
+ "train_runtime": 1318.6544,
23
+ "train_samples": 16483,
24
+ "train_samples_per_second": 124.999,
25
+ "train_steps_per_second": 1.957
26
+ }
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
3
+ "architectures": [
4
+ "RobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "finetuning_task": "ner",
11
+ "gradient_checkpointing": false,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "id2label": {
16
+ "0": "O",
17
+ "1": "B-SINTOMA",
18
+ "2": "I-SINTOMA"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "B-SINTOMA": 1,
24
+ "I-SINTOMA": 2,
25
+ "O": 0
26
+ },
27
+ "layer_norm_eps": 1e-05,
28
+ "max_position_embeddings": 514,
29
+ "model_type": "roberta",
30
+ "num_attention_heads": 12,
31
+ "num_hidden_layers": 12,
32
+ "pad_token_id": 1,
33
+ "position_embedding_type": "absolute",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.44.2",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 50262
39
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9490359010555359,
4
+ "eval_f1": 0.696671105193076,
5
+ "eval_loss": 0.33743786811828613,
6
+ "eval_precision": 0.6784232365145229,
7
+ "eval_recall": 0.715927750410509,
8
+ "eval_runtime": 5.8603,
9
+ "eval_samples": 2519,
10
+ "eval_samples_per_second": 429.84,
11
+ "eval_steps_per_second": 53.751
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdf40d5f4f591a504434aa91dd3ebdc497806dee69c3e5919a3465e2334b9184
3
+ size 496244100
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9470472034672878,
3
+ "predict_f1": 0.701497292131252,
4
+ "predict_loss": 0.3655967116355896,
5
+ "predict_precision": 0.6944181646168401,
6
+ "predict_recall": 0.7087222401029932,
7
+ "predict_runtime": 9.7752,
8
+ "predict_samples_per_second": 414.006,
9
+ "predict_steps_per_second": 51.764
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tb/events.out.tfevents.1725881335.0a1c9bec2a53.3232.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:593e737686a00ae0f64a94f2ef02389ad7dff30c0ba6a6f2b1c65ac31e873867
3
+ size 11302
tb/events.out.tfevents.1725882696.0a1c9bec2a53.3232.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05ecdc6d00855fb66deb25a7b5be160aa0ebb2ebe07a43beb7d88fb0430fb141
3
+ size 560
tb/events.out.tfevents.1725882852.0a1c9bec2a53.9893.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96c1600632af625402c889456fb9a8dd268472a67db05041ef467ce081d18572
3
+ size 5645
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50261": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_len": 512,
52
+ "model_max_length": 512,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
train.log ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/2030 [00:00<?, ?it/s]
1
  0%| | 1/2030 [00:01<43:23, 1.28s/it]
2
  0%| | 2/2030 [00:01<27:30, 1.23it/s]
3
  0%| | 3/2030 [00:02<22:20, 1.51it/s]
4
  0%| | 4/2030 [00:02<20:58, 1.61it/s]
5
  0%| | 5/2030 [00:03<18:15, 1.85it/s]
6
  0%| | 6/2030 [00:03<16:47, 2.01it/s]
7
  0%| | 7/2030 [00:04<16:12, 2.08it/s]
8
  0%| | 8/2030 [00:04<16:25, 2.05it/s]
9
  0%| | 9/2030 [00:05<15:51, 2.12it/s]
10
  0%| | 10/2030 [00:05<16:55, 1.99it/s]
11
  1%| | 11/2030 [00:05<15:19, 2.20it/s]
12
  1%| | 12/2030 [00:06<17:18, 1.94it/s]
13
  1%| | 13/2030 [00:07<16:43, 2.01it/s]
14
  1%| | 14/2030 [00:07<18:38, 1.80it/s]
15
  1%| | 15/2030 [00:08<16:34, 2.03it/s]
16
  1%| | 16/2030 [00:08<17:35, 1.91it/s]
17
  1%| | 17/2030 [00:09<16:44, 2.00it/s]
18
  1%| | 18/2030 [00:09<18:13, 1.84it/s]
19
  1%| | 19/2030 [00:10<23:35, 1.42it/s]
20
  1%| | 20/2030 [00:11<22:07, 1.51it/s]
21
  1%| | 21/2030 [00:11<19:46, 1.69it/s]
22
  1%| | 22/2030 [00:12<17:22, 1.93it/s]
23
  1%| | 23/2030 [00:12<19:14, 1.74it/s]
24
  1%| | 24/2030 [00:13<18:36, 1.80it/s]
25
  1%| | 25/2030 [00:13<17:01, 1.96it/s]
26
  1%|▏ | 26/2030 [00:14<16:28, 2.03it/s]
27
  1%|▏ | 27/2030 [00:14<16:55, 1.97it/s]
28
  1%|▏ | 28/2030 [00:15<18:05, 1.84it/s]
29
  1%|▏ | 29/2030 [00:15<16:38, 2.00it/s]
30
  1%|▏ | 30/2030 [00:16<16:25, 2.03it/s]
31
  2%|▏ | 31/2030 [00:16<16:14, 2.05it/s]
32
  2%|▏ | 32/2030 [00:17<16:03, 2.07it/s]
33
  2%|▏ | 33/2030 [00:17<17:38, 1.89it/s]
34
  2%|▏ | 34/2030 [00:18<16:22, 2.03it/s]
35
  2%|▏ | 35/2030 [00:18<15:07, 2.20it/s]
36
  2%|▏ | 36/2030 [00:19<14:36, 2.28it/s]
37
  2%|▏ | 37/2030 [00:19<15:03, 2.21it/s]
38
  2%|▏ | 38/2030 [00:19<14:25, 2.30it/s]
39
  2%|▏ | 39/2030 [00:20<15:44, 2.11it/s]
40
  2%|▏ | 40/2030 [00:20<14:43, 2.25it/s]
41
  2%|▏ | 41/2030 [00:21<14:17, 2.32it/s]
42
  2%|▏ | 42/2030 [00:21<14:54, 2.22it/s]
43
  2%|▏ | 43/2030 [00:22<14:50, 2.23it/s]
44
  2%|▏ | 44/2030 [00:22<15:11, 2.18it/s]
45
  2%|▏ | 45/2030 [00:23<15:19, 2.16it/s]
46
  2%|▏ | 46/2030 [00:23<14:40, 2.25it/s]
47
  2%|▏ | 47/2030 [00:24<15:29, 2.13it/s]
48
  2%|▏ | 48/2030 [00:24<14:57, 2.21it/s]
49
  2%|▏ | 49/2030 [00:24<15:07, 2.18it/s]
50
  2%|▏ | 50/2030 [00:25<15:57, 2.07it/s]
51
  3%|▎ | 51/2030 [00:25<15:31, 2.12it/s]
52
  3%|▎ | 52/2030 [00:26<15:21, 2.15it/s]
53
  3%|▎ | 53/2030 [00:26<14:55, 2.21it/s]
54
  3%|▎ | 54/2030 [00:27<13:40, 2.41it/s]
55
  3%|▎ | 55/2030 [00:27<13:39, 2.41it/s]
56
  3%|▎ | 56/2030 [00:28<14:39, 2.25it/s]
57
  3%|▎ | 57/2030 [00:28<14:34, 2.26it/s]
58
  3%|▎ | 58/2030 [00:28<14:11, 2.32it/s]
59
  3%|▎ | 59/2030 [00:29<14:11, 2.31it/s]
60
  3%|▎ | 60/2030 [00:30<16:39, 1.97it/s]
61
  3%|▎ | 61/2030 [00:30<14:58, 2.19it/s]
62
  3%|▎ | 62/2030 [00:30<13:48, 2.38it/s]
63
  3%|▎ | 63/2030 [00:31<13:58, 2.35it/s]
64
  3%|▎ | 64/2030 [00:31<14:10, 2.31it/s]
65
  3%|▎ | 65/2030 [00:32<14:04, 2.33it/s]
66
  3%|▎ | 66/2030 [00:32<13:33, 2.41it/s]
67
  3%|▎ | 67/2030 [00:32<13:57, 2.34it/s]
68
  3%|▎ | 68/2030 [00:33<13:23, 2.44it/s]
69
  3%|▎ | 69/2030 [00:33<12:56, 2.53it/s]
70
  3%|▎ | 70/2030 [00:34<14:55, 2.19it/s]
71
  3%|▎ | 71/2030 [00:34<14:42, 2.22it/s]
72
  4%|▎ | 72/2030 [00:35<14:08, 2.31it/s]
73
  4%|▎ | 73/2030 [00:35<13:54, 2.34it/s]
74
  4%|▎ | 74/2030 [00:35<13:32, 2.41it/s]
75
  4%|▎ | 75/2030 [00:36<13:34, 2.40it/s]
76
  4%|▎ | 76/2030 [00:36<13:41, 2.38it/s]
77
  4%|▍ | 77/2030 [00:37<14:07, 2.30it/s]
78
  4%|▍ | 78/2030 [00:37<14:33, 2.24it/s]
79
  4%|▍ | 79/2030 [00:38<14:16, 2.28it/s]
80
  4%|▍ | 80/2030 [00:38<14:14, 2.28it/s]
81
  4%|▍ | 81/2030 [00:38<13:49, 2.35it/s]
82
  4%|▍ | 82/2030 [00:39<14:52, 2.18it/s]
83
  4%|▍ | 83/2030 [00:39<13:50, 2.34it/s]
84
  4%|▍ | 84/2030 [00:40<15:49, 2.05it/s]
85
  4%|▍ | 85/2030 [00:40<15:30, 2.09it/s]
86
  4%|▍ | 86/2030 [00:41<15:10, 2.14it/s]
87
  4%|▍ | 87/2030 [00:41<15:02, 2.15it/s]
88
  4%|▍ | 88/2030 [00:42<15:54, 2.04it/s]
89
  4%|▍ | 89/2030 [00:42<15:01, 2.15it/s]
90
  4%|▍ | 90/2030 [00:43<14:36, 2.21it/s]
91
  4%|▍ | 91/2030 [00:43<13:44, 2.35it/s]
92
  5%|▍ | 92/2030 [00:43<14:17, 2.26it/s]
93
  5%|▍ | 93/2030 [00:44<17:39, 1.83it/s]
94
  5%|▍ | 94/2030 [00:45<16:23, 1.97it/s]
95
  5%|▍ | 95/2030 [00:45<15:11, 2.12it/s]
96
  5%|▍ | 96/2030 [00:46<14:51, 2.17it/s]
97
  5%|▍ | 97/2030 [00:46<14:32, 2.21it/s]
98
  5%|▍ | 98/2030 [00:46<14:14, 2.26it/s]
99
  5%|▍ | 99/2030 [00:47<14:50, 2.17it/s]
100
  5%|▍ | 100/2030 [00:47<13:48, 2.33it/s]
101
  5%|▍ | 101/2030 [00:48<13:31, 2.38it/s]
102
  5%|▌ | 102/2030 [00:48<13:42, 2.34it/s]
103
  5%|▌ | 103/2030 [00:48<12:47, 2.51it/s]
104
  5%|▌ | 104/2030 [00:49<14:29, 2.22it/s]
105
  5%|▌ | 105/2030 [00:49<14:31, 2.21it/s]
106
  5%|▌ | 106/2030 [00:50<14:53, 2.15it/s]
107
  5%|▌ | 107/2030 [00:50<14:26, 2.22it/s]
108
  5%|▌ | 108/2030 [00:51<13:20, 2.40it/s]
109
  5%|▌ | 109/2030 [00:51<14:11, 2.25it/s]
110
  5%|▌ | 110/2030 [00:52<14:00, 2.28it/s]
111
  5%|▌ | 111/2030 [00:52<13:40, 2.34it/s]
112
  6%|▌ | 112/2030 [00:52<13:15, 2.41it/s]
113
  6%|▌ | 113/2030 [00:53<14:36, 2.19it/s]
114
  6%|▌ | 114/2030 [00:53<15:33, 2.05it/s]
115
  6%|▌ | 115/2030 [00:54<15:08, 2.11it/s]
116
  6%|▌ | 116/2030 [00:54<14:34, 2.19it/s]
117
  6%|▌ | 117/2030 [00:55<14:45, 2.16it/s]
118
  6%|▌ | 118/2030 [00:55<14:07, 2.26it/s]
119
  6%|▌ | 119/2030 [00:56<14:05, 2.26it/s]
120
  6%|▌ | 120/2030 [00:56<13:44, 2.32it/s]
121
  6%|▌ | 121/2030 [00:57<14:00, 2.27it/s]
122
  6%|▌ | 122/2030 [00:57<13:23, 2.37it/s]
123
  6%|▌ | 123/2030 [00:57<12:58, 2.45it/s]
124
  6%|▌ | 124/2030 [00:58<15:07, 2.10it/s]
125
  6%|▌ | 125/2030 [00:58<15:02, 2.11it/s]
126
  6%|▌ | 126/2030 [00:59<15:04, 2.11it/s]
127
  6%|▋ | 127/2030 [00:59<14:34, 2.18it/s]
128
  6%|▋ | 128/2030 [01:00<14:47, 2.14it/s]
129
  6%|▋ | 129/2030 [01:00<13:53, 2.28it/s]
130
  6%|▋ | 130/2030 [01:01<16:03, 1.97it/s]
131
  6%|▋ | 131/2030 [01:01<16:28, 1.92it/s]
132
  7%|▋ | 132/2030 [01:02<15:23, 2.06it/s]
133
  7%|▋ | 133/2030 [01:03<18:04, 1.75it/s]
134
  7%|▋ | 134/2030 [01:03<17:08, 1.84it/s]
135
  7%|▋ | 135/2030 [01:03<16:13, 1.95it/s]
136
  7%|▋ | 136/2030 [01:04<15:14, 2.07it/s]
137
  7%|▋ | 137/2030 [01:04<13:58, 2.26it/s]
138
  7%|▋ | 138/2030 [01:05<13:47, 2.29it/s]
139
  7%|▋ | 139/2030 [01:05<13:46, 2.29it/s]
140
  7%|▋ | 140/2030 [01:06<17:13, 1.83it/s]
141
  7%|▋ | 141/2030 [01:06<15:44, 2.00it/s]
142
  7%|▋ | 142/2030 [01:07<18:04, 1.74it/s]
143
  7%|▋ | 143/2030 [01:07<16:32, 1.90it/s]
144
  7%|▋ | 144/2030 [01:08<17:46, 1.77it/s]
145
  7%|▋ | 145/2030 [01:08<15:39, 2.01it/s]
146
  7%|▋ | 146/2030 [01:09<15:15, 2.06it/s]
147
  7%|▋ | 147/2030 [01:09<14:20, 2.19it/s]
148
  7%|▋ | 148/2030 [01:10<13:42, 2.29it/s]
149
  7%|▋ | 149/2030 [01:10<13:13, 2.37it/s]
150
  7%|▋ | 150/2030 [01:11<14:12, 2.21it/s]
151
  7%|▋ | 151/2030 [01:11<15:01, 2.08it/s]
152
  7%|▋ | 152/2030 [01:12<14:34, 2.15it/s]
153
  8%|▊ | 153/2030 [01:12<13:22, 2.34it/s]
154
  8%|▊ | 154/2030 [01:12<14:04, 2.22it/s]
155
  8%|▊ | 155/2030 [01:13<13:31, 2.31it/s]
156
  8%|▊ | 156/2030 [01:13<14:24, 2.17it/s]
157
  8%|▊ | 157/2030 [01:14<14:18, 2.18it/s]
158
  8%|▊ | 158/2030 [01:14<15:19, 2.04it/s]
159
  8%|▊ | 159/2030 [01:15<14:23, 2.17it/s]
160
  8%|▊ | 160/2030 [01:15<13:47, 2.26it/s]
161
  8%|▊ | 161/2030 [01:16<13:50, 2.25it/s]
162
  8%|▊ | 162/2030 [01:16<14:12, 2.19it/s]
163
  8%|▊ | 163/2030 [01:17<13:53, 2.24it/s]
164
  8%|▊ | 164/2030 [01:17<13:45, 2.26it/s]
165
  8%|▊ | 165/2030 [01:17<13:39, 2.28it/s]
166
  8%|▊ | 166/2030 [01:18<15:08, 2.05it/s]
167
  8%|▊ | 167/2030 [01:18<14:35, 2.13it/s]
168
  8%|▊ | 168/2030 [01:19<14:27, 2.15it/s]
169
  8%|▊ | 169/2030 [01:19<13:34, 2.29it/s]
170
  8%|▊ | 170/2030 [01:20<14:37, 2.12it/s]
171
  8%|▊ | 171/2030 [01:20<13:29, 2.30it/s]
172
  8%|▊ | 172/2030 [01:21<16:15, 1.90it/s]
173
  9%|▊ | 173/2030 [01:21<15:03, 2.06it/s]
174
  9%|▊ | 174/2030 [01:22<13:56, 2.22it/s]
175
  9%|▊ | 175/2030 [01:22<13:27, 2.30it/s]
176
  9%|▊ | 176/2030 [01:22<12:39, 2.44it/s]
177
  9%|▊ | 177/2030 [01:23<14:01, 2.20it/s]
178
  9%|▉ | 178/2030 [01:23<12:55, 2.39it/s]
179
  9%|▉ | 179/2030 [01:24<12:19, 2.50it/s]
180
  9%|▉ | 180/2030 [01:24<12:59, 2.37it/s]
181
  9%|▉ | 181/2030 [01:24<12:19, 2.50it/s]
182
  9%|▉ | 182/2030 [01:25<12:00, 2.56it/s]
183
  9%|▉ | 183/2030 [01:25<12:02, 2.56it/s]
184
  9%|▉ | 184/2030 [01:26<12:22, 2.49it/s]
185
  9%|▉ | 185/2030 [01:26<12:37, 2.44it/s]
186
  9%|▉ | 186/2030 [01:26<12:00, 2.56it/s]
187
  9%|▉ | 187/2030 [01:27<12:49, 2.39it/s]
188
  9%|▉ | 188/2030 [01:27<13:38, 2.25it/s]
189
  9%|▉ | 189/2030 [01:28<13:21, 2.30it/s]
190
  9%|▉ | 190/2030 [01:29<16:36, 1.85it/s]
191
  9%|▉ | 191/2030 [01:29<16:06, 1.90it/s]
192
  9%|▉ | 192/2030 [01:29<14:24, 2.13it/s]
193
  10%|▉ | 193/2030 [01:30<16:50, 1.82it/s]
194
  10%|▉ | 194/2030 [01:31<15:12, 2.01it/s]
195
  10%|▉ | 195/2030 [01:31<15:09, 2.02it/s]
196
  10%|▉ | 196/2030 [01:31<14:00, 2.18it/s]
197
  10%|▉ | 197/2030 [01:32<16:28, 1.85it/s]
198
  10%|▉ | 198/2030 [01:33<18:54, 1.62it/s]
199
  10%|▉ | 199/2030 [01:33<17:25, 1.75it/s]
200
  10%|▉ | 200/2030 [01:34<16:29, 1.85it/s]
201
  10%|▉ | 201/2030 [01:34<15:25, 1.98it/s]
202
  10%|▉ | 202/2030 [01:35<14:43, 2.07it/s]
203
  10%|█ | 203/2030 [01:35<14:58, 2.03it/s][INFO|trainer.py:811] 2024-09-09 11:55:48,641 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
204
  0%| | 0/315 [00:00<?, ?it/s]
 
205
  3%|▎ | 8/315 [00:00<00:04, 76.12it/s]
 
206
  5%|▌ | 16/315 [00:00<00:04, 74.05it/s]
 
207
  8%|▊ | 24/315 [00:00<00:03, 75.18it/s]
 
208
  10%|█ | 32/315 [00:00<00:03, 70.92it/s]
 
209
  13%|█▎ | 40/315 [00:00<00:03, 73.74it/s]
 
210
  15%|█▌ | 48/315 [00:00<00:03, 74.41it/s]
 
211
  18%|█▊ | 56/315 [00:00<00:03, 73.32it/s]
 
212
  20%|██ | 64/315 [00:00<00:03, 71.03it/s]
 
213
  23%|██▎ | 72/315 [00:00<00:03, 73.04it/s]
 
214
  25%|██▌ | 80/315 [00:01<00:03, 69.62it/s]
 
215
  28%|██▊ | 88/315 [00:01<00:03, 67.05it/s]
 
216
  30%|███ | 96/315 [00:01<00:03, 70.09it/s]
 
217
  33%|███▎ | 104/315 [00:01<00:03, 67.36it/s]
 
218
  36%|███▌ | 112/315 [00:01<00:02, 69.60it/s]
 
219
  38%|███▊ | 120/315 [00:01<00:02, 69.30it/s]
 
220
  40%|████ | 127/315 [00:01<00:02, 68.58it/s]
 
221
  43%|████▎ | 134/315 [00:01<00:02, 67.97it/s]
 
222
  45%|████▍ | 141/315 [00:02<00:02, 68.37it/s]
 
223
  47%|████▋ | 149/315 [00:02<00:02, 70.96it/s]
 
224
  50%|█████ | 158/315 [00:02<00:02, 74.16it/s]
 
225
  53%|█████▎ | 166/315 [00:02<00:02, 72.11it/s]
 
226
  55%|█████▌ | 174/315 [00:02<00:01, 71.61it/s]
 
227
  58%|█████▊ | 182/315 [00:02<00:01, 68.73it/s]
 
228
  60%|██████ | 189/315 [00:02<00:01, 68.38it/s]
 
229
  62%|██████▏ | 196/315 [00:02<00:01, 67.76it/s]
 
230
  64%|██████▍ | 203/315 [00:02<00:01, 64.44it/s]
 
231
  67%|██████▋ | 210/315 [00:03<00:01, 64.84it/s]
 
232
  69%|██████▉ | 218/315 [00:03<00:01, 68.36it/s]
 
233
  72%|███████▏ | 226/315 [00:03<00:01, 70.84it/s]
 
234
  75%|███████▍ | 235/315 [00:03<00:01, 73.77it/s]
 
235
  77%|███████▋ | 243/315 [00:03<00:01, 70.62it/s]
 
236
  80%|███████▉ | 251/315 [00:03<00:00, 70.66it/s]
 
237
  82%|████████▏ | 259/315 [00:03<00:00, 69.14it/s]
 
238
  85%|████████▍ | 267/315 [00:03<00:00, 70.28it/s]
 
239
  88%|████████▊ | 276/315 [00:03<00:00, 73.48it/s]
 
240
  90%|█████████ | 284/315 [00:04<00:00, 73.87it/s]
 
241
  93%|█████████▎| 292/315 [00:04<00:00, 71.52it/s]
 
242
  95%|█████████▌| 300/315 [00:04<00:00, 71.25it/s]
 
243
  98%|█████████▊| 308/315 [00:04<00:00, 71.82it/s]
244
 
 
245
 
246
  10%|█ | 203/2030 [01:41<14:58, 2.03it/s]
 
 
247
  [INFO|trainer.py:3503] 2024-09-09 11:55:54,552 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-203
 
 
 
 
 
 
 
248
  10%|█ | 204/2030 [01:47<1:59:40, 3.93s/it]
249
  10%|█ | 205/2030 [01:48<1:28:45, 2.92s/it]
250
  10%|█ | 206/2030 [01:48<1:06:21, 2.18s/it]
251
  10%|█ | 207/2030 [01:49<50:53, 1.67s/it]
252
  10%|█ | 208/2030 [01:49<39:22, 1.30s/it]
253
  10%|█ | 209/2030 [01:49<30:44, 1.01s/it]
254
  10%|█ | 210/2030 [01:50<25:37, 1.18it/s]
255
  10%|█ | 211/2030 [01:51<24:14, 1.25it/s]
256
  10%|█ | 212/2030 [01:51<21:03, 1.44it/s]
257
  10%|█ | 213/2030 [01:51<18:36, 1.63it/s]
258
  11%|█ | 214/2030 [01:52<17:59, 1.68it/s]
259
  11%|█ | 215/2030 [01:52<16:37, 1.82it/s]
260
  11%|█ | 216/2030 [01:53<15:39, 1.93it/s]
261
  11%|█ | 217/2030 [01:54<19:55, 1.52it/s]
262
  11%|█ | 218/2030 [01:54<17:23, 1.74it/s]
263
  11%|█ | 219/2030 [01:55<16:28, 1.83it/s]
264
  11%|█ | 220/2030 [01:55<17:39, 1.71it/s]
265
  11%|█ | 221/2030 [01:56<15:31, 1.94it/s]
266
  11%|█ | 222/2030 [01:56<14:36, 2.06it/s]
267
  11%|█ | 223/2030 [01:57<14:18, 2.11it/s]
268
  11%|█ | 224/2030 [01:57<16:05, 1.87it/s]
269
  11%|█ | 225/2030 [01:58<15:11, 1.98it/s]
270
  11%|█ | 226/2030 [01:58<14:18, 2.10it/s]
271
  11%|█ | 227/2030 [01:59<14:05, 2.13it/s]
272
  11%|█ | 228/2030 [01:59<13:34, 2.21it/s]
273
  11%|█▏ | 229/2030 [01:59<12:44, 2.36it/s]
274
  11%|█▏ | 230/2030 [02:00<12:42, 2.36it/s]
275
  11%|█▏ | 231/2030 [02:00<12:22, 2.42it/s]
276
  11%|█▏ | 232/2030 [02:01<12:16, 2.44it/s]
277
  11%|█▏ | 233/2030 [02:01<12:45, 2.35it/s]
278
  12%|█▏ | 234/2030 [02:02<14:11, 2.11it/s]
279
  12%|█▏ | 235/2030 [02:02<13:37, 2.20it/s]
280
  12%|█▏ | 236/2030 [02:02<13:13, 2.26it/s]
281
  12%|█▏ | 237/2030 [02:03<13:48, 2.16it/s]
282
  12%|█▏ | 238/2030 [02:03<13:05, 2.28it/s]
283
  12%|█▏ | 239/2030 [02:04<12:34, 2.37it/s]
284
  12%|█▏ | 240/2030 [02:04<12:38, 2.36it/s]
285
  12%|█▏ | 241/2030 [02:05<12:12, 2.44it/s]
286
  12%|█▏ | 242/2030 [02:05<12:03, 2.47it/s]
287
  12%|█▏ | 243/2030 [02:05<13:09, 2.26it/s]
288
  12%|█▏ | 244/2030 [02:06<13:57, 2.13it/s]
289
  12%|█▏ | 245/2030 [02:06<12:28, 2.39it/s]
290
  12%|█▏ | 246/2030 [02:07<11:47, 2.52it/s]
291
  12%|█▏ | 247/2030 [02:07<12:04, 2.46it/s]
292
  12%|█▏ | 248/2030 [02:07<11:32, 2.57it/s]
293
  12%|█▏ | 249/2030 [02:08<12:22, 2.40it/s]
294
  12%|█▏ | 250/2030 [02:08<12:07, 2.45it/s]
295
  12%|█▏ | 251/2030 [02:09<11:40, 2.54it/s]
296
  12%|█▏ | 252/2030 [02:09<14:13, 2.08it/s]
297
  12%|█▏ | 253/2030 [02:10<15:51, 1.87it/s]
298
  13%|█▎ | 254/2030 [02:10<14:48, 2.00it/s]
299
  13%|█▎ | 255/2030 [02:11<16:12, 1.83it/s]
300
  13%|█▎ | 256/2030 [02:12<15:55, 1.86it/s]
301
  13%|█▎ | 257/2030 [02:12<15:12, 1.94it/s]
302
  13%|█▎ | 258/2030 [02:13<16:09, 1.83it/s]
303
  13%|█▎ | 259/2030 [02:13<14:20, 2.06it/s]
304
  13%|█▎ | 260/2030 [02:13<13:31, 2.18it/s]
305
  13%|█▎ | 261/2030 [02:14<16:16, 1.81it/s]
306
  13%|█▎ | 262/2030 [02:15<14:54, 1.98it/s]
307
  13%|█▎ | 263/2030 [02:15<14:32, 2.03it/s]
308
  13%|█▎ | 264/2030 [02:16<15:26, 1.91it/s]
309
  13%|█▎ | 265/2030 [02:16<14:04, 2.09it/s]
310
  13%|█▎ | 266/2030 [02:16<13:00, 2.26it/s]
311
  13%|█▎ | 267/2030 [02:17<12:11, 2.41it/s]
312
  13%|█▎ | 268/2030 [02:17<12:46, 2.30it/s]
313
  13%|█▎ | 269/2030 [02:18<11:57, 2.46it/s]
314
  13%|█▎ | 270/2030 [02:18<12:20, 2.38it/s]
315
  13%|█▎ | 271/2030 [02:19<12:47, 2.29it/s]
316
  13%|█▎ | 272/2030 [02:19<13:52, 2.11it/s]
317
  13%|█▎ | 273/2030 [02:20<13:54, 2.11it/s]
318
  13%|█▎ | 274/2030 [02:20<12:44, 2.30it/s]
319
  14%|█▎ | 275/2030 [02:20<12:38, 2.31it/s]
320
  14%|█▎ | 276/2030 [02:21<12:42, 2.30it/s]
321
  14%|█▎ | 277/2030 [02:21<12:34, 2.32it/s]
322
  14%|█▎ | 278/2030 [02:22<12:30, 2.33it/s]
323
  14%|█▎ | 279/2030 [02:22<12:28, 2.34it/s]
324
  14%|█▍ | 280/2030 [02:22<11:52, 2.46it/s]
325
  14%|█▍ | 281/2030 [02:23<12:37, 2.31it/s]
326
  14%|█▍ | 282/2030 [02:23<12:16, 2.37it/s]
327
  14%|█▍ | 283/2030 [02:24<12:33, 2.32it/s]
328
  14%|█▍ | 284/2030 [02:24<13:13, 2.20it/s]
329
  14%|█▍ | 285/2030 [02:25<13:08, 2.21it/s]
330
  14%|█▍ | 286/2030 [02:25<13:09, 2.21it/s]
331
  14%|█▍ | 287/2030 [02:26<12:27, 2.33it/s]
332
  14%|█▍ | 288/2030 [02:26<13:57, 2.08it/s]
333
  14%|█▍ | 289/2030 [02:27<13:51, 2.09it/s]
334
  14%|█▍ | 290/2030 [02:27<15:16, 1.90it/s]
335
  14%|█▍ | 291/2030 [02:28<14:18, 2.02it/s]
336
  14%|█▍ | 292/2030 [02:28<15:12, 1.91it/s]
337
  14%|█▍ | 293/2030 [02:29<14:05, 2.05it/s]
338
  14%|█▍ | 294/2030 [02:29<15:37, 1.85it/s]
339
  15%|█▍ | 295/2030 [02:30<13:51, 2.09it/s]
340
  15%|█▍ | 296/2030 [02:30<13:08, 2.20it/s]
341
  15%|█▍ | 297/2030 [02:31<13:30, 2.14it/s]
342
  15%|█▍ | 298/2030 [02:31<13:08, 2.20it/s]
343
  15%|█▍ | 299/2030 [02:31<13:26, 2.15it/s]
344
  15%|█▍ | 300/2030 [02:32<14:33, 1.98it/s]
345
  15%|█▍ | 301/2030 [02:32<14:07, 2.04it/s]
346
  15%|█▍ | 302/2030 [02:33<13:49, 2.08it/s]
347
  15%|█▍ | 303/2030 [02:33<12:42, 2.26it/s]
348
  15%|█▍ | 304/2030 [02:34<11:59, 2.40it/s]
349
  15%|█▌ | 305/2030 [02:34<14:03, 2.04it/s]
350
  15%|█▌ | 306/2030 [02:35<13:33, 2.12it/s]
351
  15%|█▌ | 307/2030 [02:35<13:04, 2.20it/s]
352
  15%|█▌ | 308/2030 [02:36<13:12, 2.17it/s]
353
  15%|█▌ | 309/2030 [02:36<12:55, 2.22it/s]
354
  15%|█▌ | 310/2030 [02:37<13:23, 2.14it/s]
355
  15%|█▌ | 311/2030 [02:37<12:53, 2.22it/s]
 
1
+ 2024-09-09 11:53:51.396276: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-09-09 11:53:51.414891: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-09-09 11:53:51.436268: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
4
+ 2024-09-09 11:53:51.442683: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-09-09 11:53:51.458047: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-09-09 11:53:52.683988: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
9
+ warnings.warn(
10
+ 09/09/2024 11:53:54 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 09/09/2024 11:53:54 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ batch_eval_metrics=False,
20
+ bf16=False,
21
+ bf16_full_eval=False,
22
+ data_seed=None,
23
+ dataloader_drop_last=False,
24
+ dataloader_num_workers=0,
25
+ dataloader_persistent_workers=False,
26
+ dataloader_pin_memory=True,
27
+ dataloader_prefetch_factor=None,
28
+ ddp_backend=None,
29
+ ddp_broadcast_buffers=None,
30
+ ddp_bucket_cap_mb=None,
31
+ ddp_find_unused_parameters=None,
32
+ ddp_timeout=1800,
33
+ debug=[],
34
+ deepspeed=None,
35
+ disable_tqdm=False,
36
+ dispatch_batches=None,
37
+ do_eval=True,
38
+ do_predict=True,
39
+ do_train=True,
40
+ eval_accumulation_steps=None,
41
+ eval_delay=0,
42
+ eval_do_concat_batches=True,
43
+ eval_on_start=False,
44
+ eval_steps=None,
45
+ eval_strategy=epoch,
46
+ eval_use_gather_object=False,
47
+ evaluation_strategy=epoch,
48
+ fp16=False,
49
+ fp16_backend=auto,
50
+ fp16_full_eval=False,
51
+ fp16_opt_level=O1,
52
+ fsdp=[],
53
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
54
+ fsdp_min_num_params=0,
55
+ fsdp_transformer_layer_cls_to_wrap=None,
56
+ full_determinism=False,
57
+ gradient_accumulation_steps=2,
58
+ gradient_checkpointing=False,
59
+ gradient_checkpointing_kwargs=None,
60
+ greater_is_better=True,
61
+ group_by_length=False,
62
+ half_precision_backend=auto,
63
+ hub_always_push=False,
64
+ hub_model_id=None,
65
+ hub_private_repo=False,
66
+ hub_strategy=every_save,
67
+ hub_token=<HUB_TOKEN>,
68
+ ignore_data_skip=False,
69
+ include_inputs_for_metrics=False,
70
+ include_num_input_tokens_seen=False,
71
+ include_tokens_per_second=False,
72
+ jit_mode_eval=False,
73
+ label_names=None,
74
+ label_smoothing_factor=0.0,
75
+ learning_rate=5e-05,
76
+ length_column_name=length,
77
+ load_best_model_at_end=True,
78
+ local_rank=0,
79
+ log_level=passive,
80
+ log_level_replica=warning,
81
+ log_on_each_node=True,
82
+ logging_dir=/content/dissertation/scripts/ner/output/tb,
83
+ logging_first_step=False,
84
+ logging_nan_inf_filter=True,
85
+ logging_steps=500,
86
+ logging_strategy=steps,
87
+ lr_scheduler_kwargs={},
88
+ lr_scheduler_type=linear,
89
+ max_grad_norm=1.0,
90
+ max_steps=-1,
91
+ metric_for_best_model=f1,
92
+ mp_parameters=,
93
+ neftune_noise_alpha=None,
94
+ no_cuda=False,
95
+ num_train_epochs=10.0,
96
+ optim=adamw_torch,
97
+ optim_args=None,
98
+ optim_target_modules=None,
99
+ output_dir=/content/dissertation/scripts/ner/output,
100
+ overwrite_output_dir=True,
101
+ past_index=-1,
102
+ per_device_eval_batch_size=8,
103
+ per_device_train_batch_size=32,
104
+ prediction_loss_only=False,
105
+ push_to_hub=True,
106
+ push_to_hub_model_id=None,
107
+ push_to_hub_organization=None,
108
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
109
+ ray_scope=last,
110
+ remove_unused_columns=True,
111
+ report_to=['tensorboard'],
112
+ restore_callback_states_from_checkpoint=False,
113
+ resume_from_checkpoint=None,
114
+ run_name=/content/dissertation/scripts/ner/output,
115
+ save_on_each_node=False,
116
+ save_only_model=False,
117
+ save_safetensors=True,
118
+ save_steps=500,
119
+ save_strategy=epoch,
120
+ save_total_limit=None,
121
+ seed=42,
122
+ skip_memory_metrics=True,
123
+ split_batches=None,
124
+ tf32=None,
125
+ torch_compile=False,
126
+ torch_compile_backend=None,
127
+ torch_compile_mode=None,
128
+ torch_empty_cache_steps=None,
129
+ torchdynamo=None,
130
+ tpu_metrics_debug=False,
131
+ tpu_num_cores=None,
132
+ use_cpu=False,
133
+ use_ipex=False,
134
+ use_legacy_prediction_loop=False,
135
+ use_mps_device=False,
136
+ warmup_ratio=0.0,
137
+ warmup_steps=0,
138
+ weight_decay=0.0,
139
+ )
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ [INFO|configuration_utils.py:733] 2024-09-09 11:54:06,987 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
148
+ [INFO|configuration_utils.py:800] 2024-09-09 11:54:06,991 >> Model config RobertaConfig {
149
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
150
+ "architectures": [
151
+ "RobertaForMaskedLM"
152
+ ],
153
+ "attention_probs_dropout_prob": 0.1,
154
+ "bos_token_id": 0,
155
+ "classifier_dropout": null,
156
+ "eos_token_id": 2,
157
+ "finetuning_task": "ner",
158
+ "gradient_checkpointing": false,
159
+ "hidden_act": "gelu",
160
+ "hidden_dropout_prob": 0.1,
161
+ "hidden_size": 768,
162
+ "id2label": {
163
+ "0": "O",
164
+ "1": "B-SINTOMA",
165
+ "2": "I-SINTOMA"
166
+ },
167
+ "initializer_range": 0.02,
168
+ "intermediate_size": 3072,
169
+ "label2id": {
170
+ "B-SINTOMA": 1,
171
+ "I-SINTOMA": 2,
172
+ "O": 0
173
+ },
174
+ "layer_norm_eps": 1e-05,
175
+ "max_position_embeddings": 514,
176
+ "model_type": "roberta",
177
+ "num_attention_heads": 12,
178
+ "num_hidden_layers": 12,
179
+ "pad_token_id": 1,
180
+ "position_embedding_type": "absolute",
181
+ "transformers_version": "4.44.2",
182
+ "type_vocab_size": 1,
183
+ "use_cache": true,
184
+ "vocab_size": 50262
185
+ }
186
+
187
+ [INFO|configuration_utils.py:733] 2024-09-09 11:54:07,264 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
188
+ [INFO|configuration_utils.py:800] 2024-09-09 11:54:07,265 >> Model config RobertaConfig {
189
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
190
+ "architectures": [
191
+ "RobertaForMaskedLM"
192
+ ],
193
+ "attention_probs_dropout_prob": 0.1,
194
+ "bos_token_id": 0,
195
+ "classifier_dropout": null,
196
+ "eos_token_id": 2,
197
+ "gradient_checkpointing": false,
198
+ "hidden_act": "gelu",
199
+ "hidden_dropout_prob": 0.1,
200
+ "hidden_size": 768,
201
+ "initializer_range": 0.02,
202
+ "intermediate_size": 3072,
203
+ "layer_norm_eps": 1e-05,
204
+ "max_position_embeddings": 514,
205
+ "model_type": "roberta",
206
+ "num_attention_heads": 12,
207
+ "num_hidden_layers": 12,
208
+ "pad_token_id": 1,
209
+ "position_embedding_type": "absolute",
210
+ "transformers_version": "4.44.2",
211
+ "type_vocab_size": 1,
212
+ "use_cache": true,
213
+ "vocab_size": 50262
214
+ }
215
+
216
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 11:54:07,275 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/vocab.json
217
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 11:54:07,275 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/merges.txt
218
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 11:54:07,275 >> loading file tokenizer.json from cache at None
219
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 11:54:07,275 >> loading file added_tokens.json from cache at None
220
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 11:54:07,275 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/special_tokens_map.json
221
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 11:54:07,275 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/tokenizer_config.json
222
+ [INFO|configuration_utils.py:733] 2024-09-09 11:54:07,275 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
223
+ [INFO|configuration_utils.py:800] 2024-09-09 11:54:07,276 >> Model config RobertaConfig {
224
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
225
+ "architectures": [
226
+ "RobertaForMaskedLM"
227
+ ],
228
+ "attention_probs_dropout_prob": 0.1,
229
+ "bos_token_id": 0,
230
+ "classifier_dropout": null,
231
+ "eos_token_id": 2,
232
+ "gradient_checkpointing": false,
233
+ "hidden_act": "gelu",
234
+ "hidden_dropout_prob": 0.1,
235
+ "hidden_size": 768,
236
+ "initializer_range": 0.02,
237
+ "intermediate_size": 3072,
238
+ "layer_norm_eps": 1e-05,
239
+ "max_position_embeddings": 514,
240
+ "model_type": "roberta",
241
+ "num_attention_heads": 12,
242
+ "num_hidden_layers": 12,
243
+ "pad_token_id": 1,
244
+ "position_embedding_type": "absolute",
245
+ "transformers_version": "4.44.2",
246
+ "type_vocab_size": 1,
247
+ "use_cache": true,
248
+ "vocab_size": 50262
249
+ }
250
+
251
+ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
252
+ warnings.warn(
253
+ [INFO|configuration_utils.py:733] 2024-09-09 11:54:07,353 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
254
+ [INFO|configuration_utils.py:800] 2024-09-09 11:54:07,354 >> Model config RobertaConfig {
255
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
256
+ "architectures": [
257
+ "RobertaForMaskedLM"
258
+ ],
259
+ "attention_probs_dropout_prob": 0.1,
260
+ "bos_token_id": 0,
261
+ "classifier_dropout": null,
262
+ "eos_token_id": 2,
263
+ "gradient_checkpointing": false,
264
+ "hidden_act": "gelu",
265
+ "hidden_dropout_prob": 0.1,
266
+ "hidden_size": 768,
267
+ "initializer_range": 0.02,
268
+ "intermediate_size": 3072,
269
+ "layer_norm_eps": 1e-05,
270
+ "max_position_embeddings": 514,
271
+ "model_type": "roberta",
272
+ "num_attention_heads": 12,
273
+ "num_hidden_layers": 12,
274
+ "pad_token_id": 1,
275
+ "position_embedding_type": "absolute",
276
+ "transformers_version": "4.44.2",
277
+ "type_vocab_size": 1,
278
+ "use_cache": true,
279
+ "vocab_size": 50262
280
+ }
281
+
282
+ [INFO|modeling_utils.py:3678] 2024-09-09 11:54:07,676 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/pytorch_model.bin
283
+ [INFO|modeling_utils.py:4497] 2024-09-09 11:54:07,755 >> Some weights of the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es were not used when initializing RobertaForTokenClassification: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.decoder.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']
284
+ - This IS expected if you are initializing RobertaForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
285
+ - This IS NOT expected if you are initializing RobertaForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
286
+ [WARNING|modeling_utils.py:4509] 2024-09-09 11:54:07,755 >> Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es and are newly initialized: ['classifier.bias', 'classifier.weight']
287
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
288
+
289
+
290
+
291
+ /content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
292
+ metric = load_metric("seqeval", trust_remote_code=True)
293
+ [INFO|trainer.py:811] 2024-09-09 11:54:12,226 >> The following columns in the training set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
294
+ [INFO|trainer.py:2134] 2024-09-09 11:54:12,775 >> ***** Running training *****
295
+ [INFO|trainer.py:2135] 2024-09-09 11:54:12,776 >> Num examples = 13,013
296
+ [INFO|trainer.py:2136] 2024-09-09 11:54:12,776 >> Num Epochs = 10
297
+ [INFO|trainer.py:2137] 2024-09-09 11:54:12,776 >> Instantaneous batch size per device = 32
298
+ [INFO|trainer.py:2140] 2024-09-09 11:54:12,776 >> Total train batch size (w. parallel, distributed & accumulation) = 64
299
+ [INFO|trainer.py:2141] 2024-09-09 11:54:12,776 >> Gradient Accumulation steps = 2
300
+ [INFO|trainer.py:2142] 2024-09-09 11:54:12,776 >> Total optimization steps = 2,030
301
+ [INFO|trainer.py:2143] 2024-09-09 11:54:12,776 >> Number of trainable parameters = 124,055,043
302
+
303
  0%| | 0/2030 [00:00<?, ?it/s]
304
  0%| | 1/2030 [00:01<43:23, 1.28s/it]
305
  0%| | 2/2030 [00:01<27:30, 1.23it/s]
306
  0%| | 3/2030 [00:02<22:20, 1.51it/s]
307
  0%| | 4/2030 [00:02<20:58, 1.61it/s]
308
  0%| | 5/2030 [00:03<18:15, 1.85it/s]
309
  0%| | 6/2030 [00:03<16:47, 2.01it/s]
310
  0%| | 7/2030 [00:04<16:12, 2.08it/s]
311
  0%| | 8/2030 [00:04<16:25, 2.05it/s]
312
  0%| | 9/2030 [00:05<15:51, 2.12it/s]
313
  0%| | 10/2030 [00:05<16:55, 1.99it/s]
314
  1%| | 11/2030 [00:05<15:19, 2.20it/s]
315
  1%| | 12/2030 [00:06<17:18, 1.94it/s]
316
  1%| | 13/2030 [00:07<16:43, 2.01it/s]
317
  1%| | 14/2030 [00:07<18:38, 1.80it/s]
318
  1%| | 15/2030 [00:08<16:34, 2.03it/s]
319
  1%| | 16/2030 [00:08<17:35, 1.91it/s]
320
  1%| | 17/2030 [00:09<16:44, 2.00it/s]
321
  1%| | 18/2030 [00:09<18:13, 1.84it/s]
322
  1%| | 19/2030 [00:10<23:35, 1.42it/s]
323
  1%| | 20/2030 [00:11<22:07, 1.51it/s]
324
  1%| | 21/2030 [00:11<19:46, 1.69it/s]
325
  1%| | 22/2030 [00:12<17:22, 1.93it/s]
326
  1%| | 23/2030 [00:12<19:14, 1.74it/s]
327
  1%| | 24/2030 [00:13<18:36, 1.80it/s]
328
  1%| | 25/2030 [00:13<17:01, 1.96it/s]
329
  1%|▏ | 26/2030 [00:14<16:28, 2.03it/s]
330
  1%|▏ | 27/2030 [00:14<16:55, 1.97it/s]
331
  1%|▏ | 28/2030 [00:15<18:05, 1.84it/s]
332
  1%|▏ | 29/2030 [00:15<16:38, 2.00it/s]
333
  1%|▏ | 30/2030 [00:16<16:25, 2.03it/s]
334
  2%|▏ | 31/2030 [00:16<16:14, 2.05it/s]
335
  2%|▏ | 32/2030 [00:17<16:03, 2.07it/s]
336
  2%|▏ | 33/2030 [00:17<17:38, 1.89it/s]
337
  2%|▏ | 34/2030 [00:18<16:22, 2.03it/s]
338
  2%|▏ | 35/2030 [00:18<15:07, 2.20it/s]
339
  2%|▏ | 36/2030 [00:19<14:36, 2.28it/s]
340
  2%|▏ | 37/2030 [00:19<15:03, 2.21it/s]
341
  2%|▏ | 38/2030 [00:19<14:25, 2.30it/s]
342
  2%|▏ | 39/2030 [00:20<15:44, 2.11it/s]
343
  2%|▏ | 40/2030 [00:20<14:43, 2.25it/s]
344
  2%|▏ | 41/2030 [00:21<14:17, 2.32it/s]
345
  2%|▏ | 42/2030 [00:21<14:54, 2.22it/s]
346
  2%|▏ | 43/2030 [00:22<14:50, 2.23it/s]
347
  2%|▏ | 44/2030 [00:22<15:11, 2.18it/s]
348
  2%|▏ | 45/2030 [00:23<15:19, 2.16it/s]
349
  2%|▏ | 46/2030 [00:23<14:40, 2.25it/s]
350
  2%|▏ | 47/2030 [00:24<15:29, 2.13it/s]
351
  2%|▏ | 48/2030 [00:24<14:57, 2.21it/s]
352
  2%|▏ | 49/2030 [00:24<15:07, 2.18it/s]
353
  2%|▏ | 50/2030 [00:25<15:57, 2.07it/s]
354
  3%|▎ | 51/2030 [00:25<15:31, 2.12it/s]
355
  3%|▎ | 52/2030 [00:26<15:21, 2.15it/s]
356
  3%|▎ | 53/2030 [00:26<14:55, 2.21it/s]
357
  3%|▎ | 54/2030 [00:27<13:40, 2.41it/s]
358
  3%|▎ | 55/2030 [00:27<13:39, 2.41it/s]
359
  3%|▎ | 56/2030 [00:28<14:39, 2.25it/s]
360
  3%|▎ | 57/2030 [00:28<14:34, 2.26it/s]
361
  3%|▎ | 58/2030 [00:28<14:11, 2.32it/s]
362
  3%|▎ | 59/2030 [00:29<14:11, 2.31it/s]
363
  3%|▎ | 60/2030 [00:30<16:39, 1.97it/s]
364
  3%|▎ | 61/2030 [00:30<14:58, 2.19it/s]
365
  3%|▎ | 62/2030 [00:30<13:48, 2.38it/s]
366
  3%|▎ | 63/2030 [00:31<13:58, 2.35it/s]
367
  3%|▎ | 64/2030 [00:31<14:10, 2.31it/s]
368
  3%|▎ | 65/2030 [00:32<14:04, 2.33it/s]
369
  3%|▎ | 66/2030 [00:32<13:33, 2.41it/s]
370
  3%|▎ | 67/2030 [00:32<13:57, 2.34it/s]
371
  3%|▎ | 68/2030 [00:33<13:23, 2.44it/s]
372
  3%|▎ | 69/2030 [00:33<12:56, 2.53it/s]
373
  3%|▎ | 70/2030 [00:34<14:55, 2.19it/s]
374
  3%|▎ | 71/2030 [00:34<14:42, 2.22it/s]
375
  4%|▎ | 72/2030 [00:35<14:08, 2.31it/s]
376
  4%|▎ | 73/2030 [00:35<13:54, 2.34it/s]
377
  4%|▎ | 74/2030 [00:35<13:32, 2.41it/s]
378
  4%|▎ | 75/2030 [00:36<13:34, 2.40it/s]
379
  4%|▎ | 76/2030 [00:36<13:41, 2.38it/s]
380
  4%|▍ | 77/2030 [00:37<14:07, 2.30it/s]
381
  4%|▍ | 78/2030 [00:37<14:33, 2.24it/s]
382
  4%|▍ | 79/2030 [00:38<14:16, 2.28it/s]
383
  4%|▍ | 80/2030 [00:38<14:14, 2.28it/s]
384
  4%|▍ | 81/2030 [00:38<13:49, 2.35it/s]
385
  4%|▍ | 82/2030 [00:39<14:52, 2.18it/s]
386
  4%|▍ | 83/2030 [00:39<13:50, 2.34it/s]
387
  4%|▍ | 84/2030 [00:40<15:49, 2.05it/s]
388
  4%|▍ | 85/2030 [00:40<15:30, 2.09it/s]
389
  4%|▍ | 86/2030 [00:41<15:10, 2.14it/s]
390
  4%|▍ | 87/2030 [00:41<15:02, 2.15it/s]
391
  4%|▍ | 88/2030 [00:42<15:54, 2.04it/s]
392
  4%|▍ | 89/2030 [00:42<15:01, 2.15it/s]
393
  4%|▍ | 90/2030 [00:43<14:36, 2.21it/s]
394
  4%|▍ | 91/2030 [00:43<13:44, 2.35it/s]
395
  5%|▍ | 92/2030 [00:43<14:17, 2.26it/s]
396
  5%|▍ | 93/2030 [00:44<17:39, 1.83it/s]
397
  5%|▍ | 94/2030 [00:45<16:23, 1.97it/s]
398
  5%|▍ | 95/2030 [00:45<15:11, 2.12it/s]
399
  5%|▍ | 96/2030 [00:46<14:51, 2.17it/s]
400
  5%|▍ | 97/2030 [00:46<14:32, 2.21it/s]
401
  5%|▍ | 98/2030 [00:46<14:14, 2.26it/s]
402
  5%|▍ | 99/2030 [00:47<14:50, 2.17it/s]
403
  5%|▍ | 100/2030 [00:47<13:48, 2.33it/s]
404
  5%|▍ | 101/2030 [00:48<13:31, 2.38it/s]
405
  5%|▌ | 102/2030 [00:48<13:42, 2.34it/s]
406
  5%|▌ | 103/2030 [00:48<12:47, 2.51it/s]
407
  5%|▌ | 104/2030 [00:49<14:29, 2.22it/s]
408
  5%|▌ | 105/2030 [00:49<14:31, 2.21it/s]
409
  5%|▌ | 106/2030 [00:50<14:53, 2.15it/s]
410
  5%|▌ | 107/2030 [00:50<14:26, 2.22it/s]
411
  5%|▌ | 108/2030 [00:51<13:20, 2.40it/s]
412
  5%|▌ | 109/2030 [00:51<14:11, 2.25it/s]
413
  5%|▌ | 110/2030 [00:52<14:00, 2.28it/s]
414
  5%|▌ | 111/2030 [00:52<13:40, 2.34it/s]
415
  6%|▌ | 112/2030 [00:52<13:15, 2.41it/s]
416
  6%|▌ | 113/2030 [00:53<14:36, 2.19it/s]
417
  6%|▌ | 114/2030 [00:53<15:33, 2.05it/s]
418
  6%|▌ | 115/2030 [00:54<15:08, 2.11it/s]
419
  6%|▌ | 116/2030 [00:54<14:34, 2.19it/s]
420
  6%|▌ | 117/2030 [00:55<14:45, 2.16it/s]
421
  6%|▌ | 118/2030 [00:55<14:07, 2.26it/s]
422
  6%|▌ | 119/2030 [00:56<14:05, 2.26it/s]
423
  6%|▌ | 120/2030 [00:56<13:44, 2.32it/s]
424
  6%|▌ | 121/2030 [00:57<14:00, 2.27it/s]
425
  6%|▌ | 122/2030 [00:57<13:23, 2.37it/s]
426
  6%|▌ | 123/2030 [00:57<12:58, 2.45it/s]
427
  6%|▌ | 124/2030 [00:58<15:07, 2.10it/s]
428
  6%|▌ | 125/2030 [00:58<15:02, 2.11it/s]
429
  6%|▌ | 126/2030 [00:59<15:04, 2.11it/s]
430
  6%|▋ | 127/2030 [00:59<14:34, 2.18it/s]
431
  6%|▋ | 128/2030 [01:00<14:47, 2.14it/s]
432
  6%|▋ | 129/2030 [01:00<13:53, 2.28it/s]
433
  6%|▋ | 130/2030 [01:01<16:03, 1.97it/s]
434
  6%|▋ | 131/2030 [01:01<16:28, 1.92it/s]
435
  7%|▋ | 132/2030 [01:02<15:23, 2.06it/s]
436
  7%|▋ | 133/2030 [01:03<18:04, 1.75it/s]
437
  7%|▋ | 134/2030 [01:03<17:08, 1.84it/s]
438
  7%|▋ | 135/2030 [01:03<16:13, 1.95it/s]
439
  7%|▋ | 136/2030 [01:04<15:14, 2.07it/s]
440
  7%|▋ | 137/2030 [01:04<13:58, 2.26it/s]
441
  7%|▋ | 138/2030 [01:05<13:47, 2.29it/s]
442
  7%|▋ | 139/2030 [01:05<13:46, 2.29it/s]
443
  7%|▋ | 140/2030 [01:06<17:13, 1.83it/s]
444
  7%|▋ | 141/2030 [01:06<15:44, 2.00it/s]
445
  7%|▋ | 142/2030 [01:07<18:04, 1.74it/s]
446
  7%|▋ | 143/2030 [01:07<16:32, 1.90it/s]
447
  7%|▋ | 144/2030 [01:08<17:46, 1.77it/s]
448
  7%|▋ | 145/2030 [01:08<15:39, 2.01it/s]
449
  7%|▋ | 146/2030 [01:09<15:15, 2.06it/s]
450
  7%|▋ | 147/2030 [01:09<14:20, 2.19it/s]
451
  7%|▋ | 148/2030 [01:10<13:42, 2.29it/s]
452
  7%|▋ | 149/2030 [01:10<13:13, 2.37it/s]
453
  7%|▋ | 150/2030 [01:11<14:12, 2.21it/s]
454
  7%|▋ | 151/2030 [01:11<15:01, 2.08it/s]
455
  7%|▋ | 152/2030 [01:12<14:34, 2.15it/s]
456
  8%|▊ | 153/2030 [01:12<13:22, 2.34it/s]
457
  8%|▊ | 154/2030 [01:12<14:04, 2.22it/s]
458
  8%|▊ | 155/2030 [01:13<13:31, 2.31it/s]
459
  8%|▊ | 156/2030 [01:13<14:24, 2.17it/s]
460
  8%|▊ | 157/2030 [01:14<14:18, 2.18it/s]
461
  8%|▊ | 158/2030 [01:14<15:19, 2.04it/s]
462
  8%|▊ | 159/2030 [01:15<14:23, 2.17it/s]
463
  8%|▊ | 160/2030 [01:15<13:47, 2.26it/s]
464
  8%|▊ | 161/2030 [01:16<13:50, 2.25it/s]
465
  8%|▊ | 162/2030 [01:16<14:12, 2.19it/s]
466
  8%|▊ | 163/2030 [01:17<13:53, 2.24it/s]
467
  8%|▊ | 164/2030 [01:17<13:45, 2.26it/s]
468
  8%|▊ | 165/2030 [01:17<13:39, 2.28it/s]
469
  8%|▊ | 166/2030 [01:18<15:08, 2.05it/s]
470
  8%|▊ | 167/2030 [01:18<14:35, 2.13it/s]
471
  8%|▊ | 168/2030 [01:19<14:27, 2.15it/s]
472
  8%|▊ | 169/2030 [01:19<13:34, 2.29it/s]
473
  8%|▊ | 170/2030 [01:20<14:37, 2.12it/s]
474
  8%|▊ | 171/2030 [01:20<13:29, 2.30it/s]
475
  8%|▊ | 172/2030 [01:21<16:15, 1.90it/s]
476
  9%|▊ | 173/2030 [01:21<15:03, 2.06it/s]
477
  9%|▊ | 174/2030 [01:22<13:56, 2.22it/s]
478
  9%|▊ | 175/2030 [01:22<13:27, 2.30it/s]
479
  9%|▊ | 176/2030 [01:22<12:39, 2.44it/s]
480
  9%|▊ | 177/2030 [01:23<14:01, 2.20it/s]
481
  9%|▉ | 178/2030 [01:23<12:55, 2.39it/s]
482
  9%|▉ | 179/2030 [01:24<12:19, 2.50it/s]
483
  9%|▉ | 180/2030 [01:24<12:59, 2.37it/s]
484
  9%|▉ | 181/2030 [01:24<12:19, 2.50it/s]
485
  9%|▉ | 182/2030 [01:25<12:00, 2.56it/s]
486
  9%|▉ | 183/2030 [01:25<12:02, 2.56it/s]
487
  9%|▉ | 184/2030 [01:26<12:22, 2.49it/s]
488
  9%|▉ | 185/2030 [01:26<12:37, 2.44it/s]
489
  9%|▉ | 186/2030 [01:26<12:00, 2.56it/s]
490
  9%|▉ | 187/2030 [01:27<12:49, 2.39it/s]
491
  9%|▉ | 188/2030 [01:27<13:38, 2.25it/s]
492
  9%|▉ | 189/2030 [01:28<13:21, 2.30it/s]
493
  9%|▉ | 190/2030 [01:29<16:36, 1.85it/s]
494
  9%|▉ | 191/2030 [01:29<16:06, 1.90it/s]
495
  9%|▉ | 192/2030 [01:29<14:24, 2.13it/s]
496
  10%|▉ | 193/2030 [01:30<16:50, 1.82it/s]
497
  10%|▉ | 194/2030 [01:31<15:12, 2.01it/s]
498
  10%|▉ | 195/2030 [01:31<15:09, 2.02it/s]
499
  10%|▉ | 196/2030 [01:31<14:00, 2.18it/s]
500
  10%|▉ | 197/2030 [01:32<16:28, 1.85it/s]
501
  10%|▉ | 198/2030 [01:33<18:54, 1.62it/s]
502
  10%|▉ | 199/2030 [01:33<17:25, 1.75it/s]
503
  10%|▉ | 200/2030 [01:34<16:29, 1.85it/s]
504
  10%|▉ | 201/2030 [01:34<15:25, 1.98it/s]
505
  10%|▉ | 202/2030 [01:35<14:43, 2.07it/s]
506
  10%|█ | 203/2030 [01:35<14:58, 2.03it/s][INFO|trainer.py:811] 2024-09-09 11:55:48,641 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
507
+ [INFO|trainer.py:3819] 2024-09-09 11:55:48,644 >>
508
+ ***** Running Evaluation *****
509
+ [INFO|trainer.py:3821] 2024-09-09 11:55:48,644 >> Num examples = 2519
510
+ [INFO|trainer.py:3824] 2024-09-09 11:55:48,644 >> Batch size = 8
511
+
512
+
513
  0%| | 0/315 [00:00<?, ?it/s]
514
+
515
  3%|▎ | 8/315 [00:00<00:04, 76.12it/s]
516
+
517
  5%|▌ | 16/315 [00:00<00:04, 74.05it/s]
518
+
519
  8%|▊ | 24/315 [00:00<00:03, 75.18it/s]
520
+
521
  10%|█ | 32/315 [00:00<00:03, 70.92it/s]
522
+
523
  13%|█▎ | 40/315 [00:00<00:03, 73.74it/s]
524
+
525
  15%|█▌ | 48/315 [00:00<00:03, 74.41it/s]
526
+
527
  18%|█▊ | 56/315 [00:00<00:03, 73.32it/s]
528
+
529
  20%|██ | 64/315 [00:00<00:03, 71.03it/s]
530
+
531
  23%|██▎ | 72/315 [00:00<00:03, 73.04it/s]
532
+
533
  25%|██▌ | 80/315 [00:01<00:03, 69.62it/s]
534
+
535
  28%|██▊ | 88/315 [00:01<00:03, 67.05it/s]
536
+
537
  30%|███ | 96/315 [00:01<00:03, 70.09it/s]
538
+
539
  33%|███▎ | 104/315 [00:01<00:03, 67.36it/s]
540
+
541
  36%|███▌ | 112/315 [00:01<00:02, 69.60it/s]
542
+
543
  38%|███▊ | 120/315 [00:01<00:02, 69.30it/s]
544
+
545
  40%|████ | 127/315 [00:01<00:02, 68.58it/s]
546
+
547
  43%|████▎ | 134/315 [00:01<00:02, 67.97it/s]
548
+
549
  45%|████▍ | 141/315 [00:02<00:02, 68.37it/s]
550
+
551
  47%|████▋ | 149/315 [00:02<00:02, 70.96it/s]
552
+
553
  50%|█████ | 158/315 [00:02<00:02, 74.16it/s]
554
+
555
  53%|█████▎ | 166/315 [00:02<00:02, 72.11it/s]
556
+
557
  55%|█████▌ | 174/315 [00:02<00:01, 71.61it/s]
558
+
559
  58%|█████▊ | 182/315 [00:02<00:01, 68.73it/s]
560
+
561
  60%|██████ | 189/315 [00:02<00:01, 68.38it/s]
562
+
563
  62%|██████▏ | 196/315 [00:02<00:01, 67.76it/s]
564
+
565
  64%|██████▍ | 203/315 [00:02<00:01, 64.44it/s]
566
+
567
  67%|██████▋ | 210/315 [00:03<00:01, 64.84it/s]
568
+
569
  69%|██████▉ | 218/315 [00:03<00:01, 68.36it/s]
570
+
571
  72%|███████▏ | 226/315 [00:03<00:01, 70.84it/s]
572
+
573
  75%|███████▍ | 235/315 [00:03<00:01, 73.77it/s]
574
+
575
  77%|███████▋ | 243/315 [00:03<00:01, 70.62it/s]
576
+
577
  80%|███████▉ | 251/315 [00:03<00:00, 70.66it/s]
578
+
579
  82%|████████▏ | 259/315 [00:03<00:00, 69.14it/s]
580
+
581
  85%|████████▍ | 267/315 [00:03<00:00, 70.28it/s]
582
+
583
  88%|████████▊ | 276/315 [00:03<00:00, 73.48it/s]
584
+
585
  90%|█████████ | 284/315 [00:04<00:00, 73.87it/s]
586
+
587
  93%|█████████▎| 292/315 [00:04<00:00, 71.52it/s]
588
+
589
  95%|█████████▌| 300/315 [00:04<00:00, 71.25it/s]
590
+
591
  98%|█████████▊| 308/315 [00:04<00:00, 71.82it/s]
592
 
593
+
594
 
595
  10%|█ | 203/2030 [01:41<14:58, 2.03it/s]
596
+
597
+
598
  [INFO|trainer.py:3503] 2024-09-09 11:55:54,552 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-203
599
+ [INFO|configuration_utils.py:472] 2024-09-09 11:55:54,553 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-203/config.json
600
+ [INFO|modeling_utils.py:2799] 2024-09-09 11:55:55,568 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-203/model.safetensors
601
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 11:55:55,569 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-203/tokenizer_config.json
602
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 11:55:55,569 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-203/special_tokens_map.json
603
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 11:56:00,182 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
604
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 11:56:00,183 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
605
+
606
  10%|█ | 204/2030 [01:47<1:59:40, 3.93s/it]
607
  10%|█ | 205/2030 [01:48<1:28:45, 2.92s/it]
608
  10%|█ | 206/2030 [01:48<1:06:21, 2.18s/it]
609
  10%|█ | 207/2030 [01:49<50:53, 1.67s/it]
610
  10%|█ | 208/2030 [01:49<39:22, 1.30s/it]
611
  10%|█ | 209/2030 [01:49<30:44, 1.01s/it]
612
  10%|█ | 210/2030 [01:50<25:37, 1.18it/s]
613
  10%|█ | 211/2030 [01:51<24:14, 1.25it/s]
614
  10%|█ | 212/2030 [01:51<21:03, 1.44it/s]
615
  10%|█ | 213/2030 [01:51<18:36, 1.63it/s]
616
  11%|█ | 214/2030 [01:52<17:59, 1.68it/s]
617
  11%|█ | 215/2030 [01:52<16:37, 1.82it/s]
618
  11%|█ | 216/2030 [01:53<15:39, 1.93it/s]
619
  11%|█ | 217/2030 [01:54<19:55, 1.52it/s]
620
  11%|█ | 218/2030 [01:54<17:23, 1.74it/s]
621
  11%|█ | 219/2030 [01:55<16:28, 1.83it/s]
622
  11%|█ | 220/2030 [01:55<17:39, 1.71it/s]
623
  11%|█ | 221/2030 [01:56<15:31, 1.94it/s]
624
  11%|█ | 222/2030 [01:56<14:36, 2.06it/s]
625
  11%|█ | 223/2030 [01:57<14:18, 2.11it/s]
626
  11%|█ | 224/2030 [01:57<16:05, 1.87it/s]
627
  11%|█ | 225/2030 [01:58<15:11, 1.98it/s]
628
  11%|█ | 226/2030 [01:58<14:18, 2.10it/s]
629
  11%|█ | 227/2030 [01:59<14:05, 2.13it/s]
630
  11%|█ | 228/2030 [01:59<13:34, 2.21it/s]
631
  11%|█▏ | 229/2030 [01:59<12:44, 2.36it/s]
632
  11%|█▏ | 230/2030 [02:00<12:42, 2.36it/s]
633
  11%|█▏ | 231/2030 [02:00<12:22, 2.42it/s]
634
  11%|█▏ | 232/2030 [02:01<12:16, 2.44it/s]
635
  11%|█▏ | 233/2030 [02:01<12:45, 2.35it/s]
636
  12%|█▏ | 234/2030 [02:02<14:11, 2.11it/s]
637
  12%|█▏ | 235/2030 [02:02<13:37, 2.20it/s]
638
  12%|█▏ | 236/2030 [02:02<13:13, 2.26it/s]
639
  12%|█▏ | 237/2030 [02:03<13:48, 2.16it/s]
640
  12%|█▏ | 238/2030 [02:03<13:05, 2.28it/s]
641
  12%|█▏ | 239/2030 [02:04<12:34, 2.37it/s]
642
  12%|█▏ | 240/2030 [02:04<12:38, 2.36it/s]
643
  12%|█▏ | 241/2030 [02:05<12:12, 2.44it/s]
644
  12%|█▏ | 242/2030 [02:05<12:03, 2.47it/s]
645
  12%|█▏ | 243/2030 [02:05<13:09, 2.26it/s]
646
  12%|█▏ | 244/2030 [02:06<13:57, 2.13it/s]
647
  12%|█▏ | 245/2030 [02:06<12:28, 2.39it/s]
648
  12%|█▏ | 246/2030 [02:07<11:47, 2.52it/s]
649
  12%|█▏ | 247/2030 [02:07<12:04, 2.46it/s]
650
  12%|█▏ | 248/2030 [02:07<11:32, 2.57it/s]
651
  12%|█▏ | 249/2030 [02:08<12:22, 2.40it/s]
652
  12%|█▏ | 250/2030 [02:08<12:07, 2.45it/s]
653
  12%|█▏ | 251/2030 [02:09<11:40, 2.54it/s]
654
  12%|█▏ | 252/2030 [02:09<14:13, 2.08it/s]
655
  12%|█▏ | 253/2030 [02:10<15:51, 1.87it/s]
656
  13%|█▎ | 254/2030 [02:10<14:48, 2.00it/s]
657
  13%|█▎ | 255/2030 [02:11<16:12, 1.83it/s]
658
  13%|█▎ | 256/2030 [02:12<15:55, 1.86it/s]
659
  13%|█▎ | 257/2030 [02:12<15:12, 1.94it/s]
660
  13%|█▎ | 258/2030 [02:13<16:09, 1.83it/s]
661
  13%|█▎ | 259/2030 [02:13<14:20, 2.06it/s]
662
  13%|█▎ | 260/2030 [02:13<13:31, 2.18it/s]
663
  13%|█▎ | 261/2030 [02:14<16:16, 1.81it/s]
664
  13%|█▎ | 262/2030 [02:15<14:54, 1.98it/s]
665
  13%|█▎ | 263/2030 [02:15<14:32, 2.03it/s]
666
  13%|█▎ | 264/2030 [02:16<15:26, 1.91it/s]
667
  13%|█▎ | 265/2030 [02:16<14:04, 2.09it/s]
668
  13%|█▎ | 266/2030 [02:16<13:00, 2.26it/s]
669
  13%|█▎ | 267/2030 [02:17<12:11, 2.41it/s]
670
  13%|█▎ | 268/2030 [02:17<12:46, 2.30it/s]
671
  13%|█▎ | 269/2030 [02:18<11:57, 2.46it/s]
672
  13%|█▎ | 270/2030 [02:18<12:20, 2.38it/s]
673
  13%|█▎ | 271/2030 [02:19<12:47, 2.29it/s]
674
  13%|█▎ | 272/2030 [02:19<13:52, 2.11it/s]
675
  13%|█▎ | 273/2030 [02:20<13:54, 2.11it/s]
676
  13%|█▎ | 274/2030 [02:20<12:44, 2.30it/s]
677
  14%|█▎ | 275/2030 [02:20<12:38, 2.31it/s]
678
  14%|█▎ | 276/2030 [02:21<12:42, 2.30it/s]
679
  14%|█▎ | 277/2030 [02:21<12:34, 2.32it/s]
680
  14%|█▎ | 278/2030 [02:22<12:30, 2.33it/s]
681
  14%|█▎ | 279/2030 [02:22<12:28, 2.34it/s]
682
  14%|█▍ | 280/2030 [02:22<11:52, 2.46it/s]
683
  14%|█▍ | 281/2030 [02:23<12:37, 2.31it/s]
684
  14%|█▍ | 282/2030 [02:23<12:16, 2.37it/s]
685
  14%|█▍ | 283/2030 [02:24<12:33, 2.32it/s]
686
  14%|█▍ | 284/2030 [02:24<13:13, 2.20it/s]
687
  14%|█▍ | 285/2030 [02:25<13:08, 2.21it/s]
688
  14%|█▍ | 286/2030 [02:25<13:09, 2.21it/s]
689
  14%|█▍ | 287/2030 [02:26<12:27, 2.33it/s]
690
  14%|█▍ | 288/2030 [02:26<13:57, 2.08it/s]
691
  14%|█▍ | 289/2030 [02:27<13:51, 2.09it/s]
692
  14%|█▍ | 290/2030 [02:27<15:16, 1.90it/s]
693
  14%|█▍ | 291/2030 [02:28<14:18, 2.02it/s]
694
  14%|█▍ | 292/2030 [02:28<15:12, 1.91it/s]
695
  14%|█▍ | 293/2030 [02:29<14:05, 2.05it/s]
696
  14%|█▍ | 294/2030 [02:29<15:37, 1.85it/s]
697
  15%|█▍ | 295/2030 [02:30<13:51, 2.09it/s]
698
  15%|█▍ | 296/2030 [02:30<13:08, 2.20it/s]
699
  15%|█▍ | 297/2030 [02:31<13:30, 2.14it/s]
700
  15%|█▍ | 298/2030 [02:31<13:08, 2.20it/s]
701
  15%|█▍ | 299/2030 [02:31<13:26, 2.15it/s]
702
  15%|█▍ | 300/2030 [02:32<14:33, 1.98it/s]
703
  15%|█▍ | 301/2030 [02:32<14:07, 2.04it/s]
704
  15%|█▍ | 302/2030 [02:33<13:49, 2.08it/s]
705
  15%|█▍ | 303/2030 [02:33<12:42, 2.26it/s]
706
  15%|█▍ | 304/2030 [02:34<11:59, 2.40it/s]
707
  15%|█▌ | 305/2030 [02:34<14:03, 2.04it/s]
708
  15%|█▌ | 306/2030 [02:35<13:33, 2.12it/s]
709
  15%|█▌ | 307/2030 [02:35<13:04, 2.20it/s]
710
  15%|█▌ | 308/2030 [02:36<13:12, 2.17it/s]
711
  15%|█▌ | 309/2030 [02:36<12:55, 2.22it/s]
712
  15%|█▌ | 310/2030 [02:37<13:23, 2.14it/s]
713
  15%|█▌ | 311/2030 [02:37<12:53, 2.22it/s]
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 8092971627384348.0,
4
+ "train_loss": 0.033683168437591816,
5
+ "train_runtime": 1318.6544,
6
+ "train_samples": 16483,
7
+ "train_samples_per_second": 124.999,
8
+ "train_steps_per_second": 1.957
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.696671105193076,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-2322",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2580,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.9488273605184638,
14
+ "eval_f1": 0.6400434664493344,
15
+ "eval_loss": 0.15167976915836334,
16
+ "eval_precision": 0.6353829557713053,
17
+ "eval_recall": 0.6447728516694033,
18
+ "eval_runtime": 5.9858,
19
+ "eval_samples_per_second": 420.828,
20
+ "eval_steps_per_second": 52.624,
21
+ "step": 258
22
+ },
23
+ {
24
+ "epoch": 1.937984496124031,
25
+ "grad_norm": 0.791233479976654,
26
+ "learning_rate": 4.0310077519379843e-05,
27
+ "loss": 0.1357,
28
+ "step": 500
29
+ },
30
+ {
31
+ "epoch": 2.0,
32
+ "eval_accuracy": 0.945955917738779,
33
+ "eval_f1": 0.6695763799743261,
34
+ "eval_loss": 0.20252634584903717,
35
+ "eval_precision": 0.6305609284332688,
36
+ "eval_recall": 0.7137383689107827,
37
+ "eval_runtime": 5.9083,
38
+ "eval_samples_per_second": 426.351,
39
+ "eval_steps_per_second": 53.315,
40
+ "step": 516
41
+ },
42
+ {
43
+ "epoch": 3.0,
44
+ "eval_accuracy": 0.9495652731881036,
45
+ "eval_f1": 0.6838606753522999,
46
+ "eval_loss": 0.22940471768379211,
47
+ "eval_precision": 0.6649431230610134,
48
+ "eval_recall": 0.7038861521620142,
49
+ "eval_runtime": 5.8946,
50
+ "eval_samples_per_second": 427.339,
51
+ "eval_steps_per_second": 53.439,
52
+ "step": 774
53
+ },
54
+ {
55
+ "epoch": 3.875968992248062,
56
+ "grad_norm": 0.907940685749054,
57
+ "learning_rate": 3.062015503875969e-05,
58
+ "loss": 0.0238,
59
+ "step": 1000
60
+ },
61
+ {
62
+ "epoch": 4.0,
63
+ "eval_accuracy": 0.9491963168532838,
64
+ "eval_f1": 0.6872504657971785,
65
+ "eval_loss": 0.28175726532936096,
66
+ "eval_precision": 0.6689119170984456,
67
+ "eval_recall": 0.7066228790366721,
68
+ "eval_runtime": 5.8968,
69
+ "eval_samples_per_second": 427.179,
70
+ "eval_steps_per_second": 53.419,
71
+ "step": 1032
72
+ },
73
+ {
74
+ "epoch": 5.0,
75
+ "eval_accuracy": 0.9487311110398152,
76
+ "eval_f1": 0.6773768764814327,
77
+ "eval_loss": 0.27620697021484375,
78
+ "eval_precision": 0.6527918781725889,
79
+ "eval_recall": 0.7038861521620142,
80
+ "eval_runtime": 5.9102,
81
+ "eval_samples_per_second": 426.215,
82
+ "eval_steps_per_second": 53.298,
83
+ "step": 1290
84
+ },
85
+ {
86
+ "epoch": 5.813953488372093,
87
+ "grad_norm": 0.2446424663066864,
88
+ "learning_rate": 2.0930232558139536e-05,
89
+ "loss": 0.0081,
90
+ "step": 1500
91
+ },
92
+ {
93
+ "epoch": 6.0,
94
+ "eval_accuracy": 0.9483942378645449,
95
+ "eval_f1": 0.6922672277748553,
96
+ "eval_loss": 0.2938424348831177,
97
+ "eval_precision": 0.6663291139240506,
98
+ "eval_recall": 0.7203065134099617,
99
+ "eval_runtime": 5.9062,
100
+ "eval_samples_per_second": 426.502,
101
+ "eval_steps_per_second": 53.334,
102
+ "step": 1548
103
+ },
104
+ {
105
+ "epoch": 7.0,
106
+ "eval_accuracy": 0.9499181879431486,
107
+ "eval_f1": 0.6893020749124225,
108
+ "eval_loss": 0.3144644498825073,
109
+ "eval_precision": 0.6788747346072187,
110
+ "eval_recall": 0.7000547345374931,
111
+ "eval_runtime": 5.9264,
112
+ "eval_samples_per_second": 425.045,
113
+ "eval_steps_per_second": 53.152,
114
+ "step": 1806
115
+ },
116
+ {
117
+ "epoch": 7.751937984496124,
118
+ "grad_norm": 1.7770023345947266,
119
+ "learning_rate": 1.1240310077519382e-05,
120
+ "loss": 0.0039,
121
+ "step": 2000
122
+ },
123
+ {
124
+ "epoch": 8.0,
125
+ "eval_accuracy": 0.949100067374635,
126
+ "eval_f1": 0.6865512649800267,
127
+ "eval_loss": 0.32666969299316406,
128
+ "eval_precision": 0.6685684647302904,
129
+ "eval_recall": 0.705528188286809,
130
+ "eval_runtime": 5.9058,
131
+ "eval_samples_per_second": 426.528,
132
+ "eval_steps_per_second": 53.337,
133
+ "step": 2064
134
+ },
135
+ {
136
+ "epoch": 9.0,
137
+ "eval_accuracy": 0.9490359010555359,
138
+ "eval_f1": 0.696671105193076,
139
+ "eval_loss": 0.33743786811828613,
140
+ "eval_precision": 0.6784232365145229,
141
+ "eval_recall": 0.715927750410509,
142
+ "eval_runtime": 5.9091,
143
+ "eval_samples_per_second": 426.292,
144
+ "eval_steps_per_second": 53.308,
145
+ "step": 2322
146
+ },
147
+ {
148
+ "epoch": 9.689922480620154,
149
+ "grad_norm": 0.005967797711491585,
150
+ "learning_rate": 1.550387596899225e-06,
151
+ "loss": 0.0021,
152
+ "step": 2500
153
+ },
154
+ {
155
+ "epoch": 10.0,
156
+ "eval_accuracy": 0.9495011068690045,
157
+ "eval_f1": 0.6949744692287019,
158
+ "eval_loss": 0.33997026085853577,
159
+ "eval_precision": 0.6826821541710665,
160
+ "eval_recall": 0.7077175697865353,
161
+ "eval_runtime": 6.2732,
162
+ "eval_samples_per_second": 401.551,
163
+ "eval_steps_per_second": 50.214,
164
+ "step": 2580
165
+ },
166
+ {
167
+ "epoch": 10.0,
168
+ "step": 2580,
169
+ "total_flos": 8092971627384348.0,
170
+ "train_loss": 0.033683168437591816,
171
+ "train_runtime": 1318.6544,
172
+ "train_samples_per_second": 124.999,
173
+ "train_steps_per_second": 1.957
174
+ }
175
+ ],
176
+ "logging_steps": 500,
177
+ "max_steps": 2580,
178
+ "num_input_tokens_seen": 0,
179
+ "num_train_epochs": 10,
180
+ "save_steps": 500,
181
+ "stateful_callbacks": {
182
+ "TrainerControl": {
183
+ "args": {
184
+ "should_epoch_stop": false,
185
+ "should_evaluate": false,
186
+ "should_log": false,
187
+ "should_save": true,
188
+ "should_training_stop": true
189
+ },
190
+ "attributes": {}
191
+ }
192
+ },
193
+ "total_flos": 8092971627384348.0,
194
+ "train_batch_size": 32,
195
+ "trial_name": null,
196
+ "trial_params": null
197
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff