File size: 5,995 Bytes
1b2a50b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Eclipse-13B-dpo - GGUF
- Model creator: https://huggingface.co/Xenon1/
- Original model: https://huggingface.co/Xenon1/Eclipse-13B-dpo/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Eclipse-13B-dpo.Q2_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q2_K.gguf) | Q2_K | 4.43GB |
| [Eclipse-13B-dpo.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.IQ3_XS.gguf) | IQ3_XS | 3.08GB |
| [Eclipse-13B-dpo.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.IQ3_S.gguf) | IQ3_S | 5.22GB |
| [Eclipse-13B-dpo.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q3_K_S.gguf) | Q3_K_S | 5.2GB |
| [Eclipse-13B-dpo.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.IQ3_M.gguf) | IQ3_M | 5.35GB |
| [Eclipse-13B-dpo.Q3_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q3_K.gguf) | Q3_K | 5.78GB |
| [Eclipse-13B-dpo.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q3_K_M.gguf) | Q3_K_M | 5.78GB |
| [Eclipse-13B-dpo.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q3_K_L.gguf) | Q3_K_L | 6.27GB |
| [Eclipse-13B-dpo.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.IQ4_XS.gguf) | IQ4_XS | 6.5GB |
| [Eclipse-13B-dpo.Q4_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q4_0.gguf) | Q4_0 | 6.78GB |
| [Eclipse-13B-dpo.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.IQ4_NL.gguf) | IQ4_NL | 6.85GB |
| [Eclipse-13B-dpo.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q4_K_S.gguf) | Q4_K_S | 6.84GB |
| [Eclipse-13B-dpo.Q4_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q4_K.gguf) | Q4_K | 7.25GB |
| [Eclipse-13B-dpo.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q4_K_M.gguf) | Q4_K_M | 7.25GB |
| [Eclipse-13B-dpo.Q4_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q4_1.gguf) | Q4_1 | 7.52GB |
| [Eclipse-13B-dpo.Q5_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q5_0.gguf) | Q5_0 | 8.26GB |
| [Eclipse-13B-dpo.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q5_K_S.gguf) | Q5_K_S | 8.26GB |
| [Eclipse-13B-dpo.Q5_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q5_K.gguf) | Q5_K | 8.51GB |
| [Eclipse-13B-dpo.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q5_K_M.gguf) | Q5_K_M | 8.51GB |
| [Eclipse-13B-dpo.Q5_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q5_1.gguf) | Q5_1 | 9.01GB |
| [Eclipse-13B-dpo.Q6_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q6_K.gguf) | Q6_K | 9.84GB |
| [Eclipse-13B-dpo.Q8_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Eclipse-13B-dpo-gguf/blob/main/Eclipse-13B-dpo.Q8_0.gguf) | Q8_0 | 12.75GB |
Original model description:
---
language:
- en
license: apache-2.0
tags:
- mistral
- Eclipse-13B-dpo
pipeline_tag: text-generation
---
# Model Card for Eclipse-13B-dpo
Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020).
## Instruction format
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
E.g.
```
text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"
```
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Xenon1/Eclipse-13B-dpo")
tokenizer = AutoTokenizer.from_pretrained("Xenon1/Eclipse-13B-dpo")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## Model Architecture
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
|