RichardErkhov commited on
Commit
d793ffc
1 Parent(s): 0604852

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +2653 -0
README.md ADDED
@@ -0,0 +1,2653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ GritLM-7B - bnb 4bits
11
+ - Model creator: https://huggingface.co/GritLM/
12
+ - Original model: https://huggingface.co/GritLM/GritLM-7B/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ pipeline_tag: text-generation
20
+ inference: true
21
+ license: apache-2.0
22
+ datasets:
23
+ - GritLM/tulu2
24
+ tags:
25
+ - mteb
26
+ model-index:
27
+ - name: GritLM-7B
28
+ results:
29
+ - task:
30
+ type: Classification
31
+ dataset:
32
+ type: mteb/amazon_counterfactual
33
+ name: MTEB AmazonCounterfactualClassification (en)
34
+ config: en
35
+ split: test
36
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
37
+ metrics:
38
+ - type: accuracy
39
+ value: 81.17910447761194
40
+ - type: ap
41
+ value: 46.26260671758199
42
+ - type: f1
43
+ value: 75.44565719934167
44
+ - task:
45
+ type: Classification
46
+ dataset:
47
+ type: mteb/amazon_polarity
48
+ name: MTEB AmazonPolarityClassification
49
+ config: default
50
+ split: test
51
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
52
+ metrics:
53
+ - type: accuracy
54
+ value: 96.5161
55
+ - type: ap
56
+ value: 94.79131981460425
57
+ - type: f1
58
+ value: 96.51506148413065
59
+ - task:
60
+ type: Classification
61
+ dataset:
62
+ type: mteb/amazon_reviews_multi
63
+ name: MTEB AmazonReviewsClassification (en)
64
+ config: en
65
+ split: test
66
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
67
+ metrics:
68
+ - type: accuracy
69
+ value: 57.806000000000004
70
+ - type: f1
71
+ value: 56.78350156257903
72
+ - task:
73
+ type: Retrieval
74
+ dataset:
75
+ type: arguana
76
+ name: MTEB ArguAna
77
+ config: default
78
+ split: test
79
+ revision: None
80
+ metrics:
81
+ - type: map_at_1
82
+ value: 38.478
83
+ - type: map_at_10
84
+ value: 54.955
85
+ - type: map_at_100
86
+ value: 54.955
87
+ - type: map_at_1000
88
+ value: 54.955
89
+ - type: map_at_3
90
+ value: 50.888999999999996
91
+ - type: map_at_5
92
+ value: 53.349999999999994
93
+ - type: mrr_at_1
94
+ value: 39.757999999999996
95
+ - type: mrr_at_10
96
+ value: 55.449000000000005
97
+ - type: mrr_at_100
98
+ value: 55.449000000000005
99
+ - type: mrr_at_1000
100
+ value: 55.449000000000005
101
+ - type: mrr_at_3
102
+ value: 51.37500000000001
103
+ - type: mrr_at_5
104
+ value: 53.822
105
+ - type: ndcg_at_1
106
+ value: 38.478
107
+ - type: ndcg_at_10
108
+ value: 63.239999999999995
109
+ - type: ndcg_at_100
110
+ value: 63.239999999999995
111
+ - type: ndcg_at_1000
112
+ value: 63.239999999999995
113
+ - type: ndcg_at_3
114
+ value: 54.935
115
+ - type: ndcg_at_5
116
+ value: 59.379000000000005
117
+ - type: precision_at_1
118
+ value: 38.478
119
+ - type: precision_at_10
120
+ value: 8.933
121
+ - type: precision_at_100
122
+ value: 0.893
123
+ - type: precision_at_1000
124
+ value: 0.089
125
+ - type: precision_at_3
126
+ value: 22.214
127
+ - type: precision_at_5
128
+ value: 15.491
129
+ - type: recall_at_1
130
+ value: 38.478
131
+ - type: recall_at_10
132
+ value: 89.331
133
+ - type: recall_at_100
134
+ value: 89.331
135
+ - type: recall_at_1000
136
+ value: 89.331
137
+ - type: recall_at_3
138
+ value: 66.643
139
+ - type: recall_at_5
140
+ value: 77.45400000000001
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ type: mteb/arxiv-clustering-p2p
145
+ name: MTEB ArxivClusteringP2P
146
+ config: default
147
+ split: test
148
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
149
+ metrics:
150
+ - type: v_measure
151
+ value: 51.67144081472449
152
+ - task:
153
+ type: Clustering
154
+ dataset:
155
+ type: mteb/arxiv-clustering-s2s
156
+ name: MTEB ArxivClusteringS2S
157
+ config: default
158
+ split: test
159
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
160
+ metrics:
161
+ - type: v_measure
162
+ value: 48.11256154264126
163
+ - task:
164
+ type: Reranking
165
+ dataset:
166
+ type: mteb/askubuntudupquestions-reranking
167
+ name: MTEB AskUbuntuDupQuestions
168
+ config: default
169
+ split: test
170
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
171
+ metrics:
172
+ - type: map
173
+ value: 67.33801955487878
174
+ - type: mrr
175
+ value: 80.71549487754474
176
+ - task:
177
+ type: STS
178
+ dataset:
179
+ type: mteb/biosses-sts
180
+ name: MTEB BIOSSES
181
+ config: default
182
+ split: test
183
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
184
+ metrics:
185
+ - type: cos_sim_pearson
186
+ value: 88.1935203751726
187
+ - type: cos_sim_spearman
188
+ value: 86.35497970498659
189
+ - type: euclidean_pearson
190
+ value: 85.46910708503744
191
+ - type: euclidean_spearman
192
+ value: 85.13928935405485
193
+ - type: manhattan_pearson
194
+ value: 85.68373836333303
195
+ - type: manhattan_spearman
196
+ value: 85.40013867117746
197
+ - task:
198
+ type: Classification
199
+ dataset:
200
+ type: mteb/banking77
201
+ name: MTEB Banking77Classification
202
+ config: default
203
+ split: test
204
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
205
+ metrics:
206
+ - type: accuracy
207
+ value: 88.46753246753248
208
+ - type: f1
209
+ value: 88.43006344981134
210
+ - task:
211
+ type: Clustering
212
+ dataset:
213
+ type: mteb/biorxiv-clustering-p2p
214
+ name: MTEB BiorxivClusteringP2P
215
+ config: default
216
+ split: test
217
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
218
+ metrics:
219
+ - type: v_measure
220
+ value: 40.86793640310432
221
+ - task:
222
+ type: Clustering
223
+ dataset:
224
+ type: mteb/biorxiv-clustering-s2s
225
+ name: MTEB BiorxivClusteringS2S
226
+ config: default
227
+ split: test
228
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
229
+ metrics:
230
+ - type: v_measure
231
+ value: 39.80291334130727
232
+ - task:
233
+ type: Retrieval
234
+ dataset:
235
+ type: BeIR/cqadupstack
236
+ name: MTEB CQADupstackAndroidRetrieval
237
+ config: default
238
+ split: test
239
+ revision: None
240
+ metrics:
241
+ - type: map_at_1
242
+ value: 38.421
243
+ - type: map_at_10
244
+ value: 52.349000000000004
245
+ - type: map_at_100
246
+ value: 52.349000000000004
247
+ - type: map_at_1000
248
+ value: 52.349000000000004
249
+ - type: map_at_3
250
+ value: 48.17
251
+ - type: map_at_5
252
+ value: 50.432
253
+ - type: mrr_at_1
254
+ value: 47.353
255
+ - type: mrr_at_10
256
+ value: 58.387
257
+ - type: mrr_at_100
258
+ value: 58.387
259
+ - type: mrr_at_1000
260
+ value: 58.387
261
+ - type: mrr_at_3
262
+ value: 56.199
263
+ - type: mrr_at_5
264
+ value: 57.487
265
+ - type: ndcg_at_1
266
+ value: 47.353
267
+ - type: ndcg_at_10
268
+ value: 59.202
269
+ - type: ndcg_at_100
270
+ value: 58.848
271
+ - type: ndcg_at_1000
272
+ value: 58.831999999999994
273
+ - type: ndcg_at_3
274
+ value: 54.112
275
+ - type: ndcg_at_5
276
+ value: 56.312
277
+ - type: precision_at_1
278
+ value: 47.353
279
+ - type: precision_at_10
280
+ value: 11.459
281
+ - type: precision_at_100
282
+ value: 1.146
283
+ - type: precision_at_1000
284
+ value: 0.11499999999999999
285
+ - type: precision_at_3
286
+ value: 26.133
287
+ - type: precision_at_5
288
+ value: 18.627
289
+ - type: recall_at_1
290
+ value: 38.421
291
+ - type: recall_at_10
292
+ value: 71.89
293
+ - type: recall_at_100
294
+ value: 71.89
295
+ - type: recall_at_1000
296
+ value: 71.89
297
+ - type: recall_at_3
298
+ value: 56.58
299
+ - type: recall_at_5
300
+ value: 63.125
301
+ - task:
302
+ type: Retrieval
303
+ dataset:
304
+ type: BeIR/cqadupstack
305
+ name: MTEB CQADupstackEnglishRetrieval
306
+ config: default
307
+ split: test
308
+ revision: None
309
+ metrics:
310
+ - type: map_at_1
311
+ value: 38.025999999999996
312
+ - type: map_at_10
313
+ value: 50.590999999999994
314
+ - type: map_at_100
315
+ value: 51.99700000000001
316
+ - type: map_at_1000
317
+ value: 52.11599999999999
318
+ - type: map_at_3
319
+ value: 47.435
320
+ - type: map_at_5
321
+ value: 49.236000000000004
322
+ - type: mrr_at_1
323
+ value: 48.28
324
+ - type: mrr_at_10
325
+ value: 56.814
326
+ - type: mrr_at_100
327
+ value: 57.446
328
+ - type: mrr_at_1000
329
+ value: 57.476000000000006
330
+ - type: mrr_at_3
331
+ value: 54.958
332
+ - type: mrr_at_5
333
+ value: 56.084999999999994
334
+ - type: ndcg_at_1
335
+ value: 48.28
336
+ - type: ndcg_at_10
337
+ value: 56.442
338
+ - type: ndcg_at_100
339
+ value: 60.651999999999994
340
+ - type: ndcg_at_1000
341
+ value: 62.187000000000005
342
+ - type: ndcg_at_3
343
+ value: 52.866
344
+ - type: ndcg_at_5
345
+ value: 54.515
346
+ - type: precision_at_1
347
+ value: 48.28
348
+ - type: precision_at_10
349
+ value: 10.586
350
+ - type: precision_at_100
351
+ value: 1.6310000000000002
352
+ - type: precision_at_1000
353
+ value: 0.20600000000000002
354
+ - type: precision_at_3
355
+ value: 25.945
356
+ - type: precision_at_5
357
+ value: 18.076
358
+ - type: recall_at_1
359
+ value: 38.025999999999996
360
+ - type: recall_at_10
361
+ value: 66.11399999999999
362
+ - type: recall_at_100
363
+ value: 83.339
364
+ - type: recall_at_1000
365
+ value: 92.413
366
+ - type: recall_at_3
367
+ value: 54.493
368
+ - type: recall_at_5
369
+ value: 59.64699999999999
370
+ - task:
371
+ type: Retrieval
372
+ dataset:
373
+ type: BeIR/cqadupstack
374
+ name: MTEB CQADupstackGamingRetrieval
375
+ config: default
376
+ split: test
377
+ revision: None
378
+ metrics:
379
+ - type: map_at_1
380
+ value: 47.905
381
+ - type: map_at_10
382
+ value: 61.58
383
+ - type: map_at_100
384
+ value: 62.605
385
+ - type: map_at_1000
386
+ value: 62.637
387
+ - type: map_at_3
388
+ value: 58.074000000000005
389
+ - type: map_at_5
390
+ value: 60.260000000000005
391
+ - type: mrr_at_1
392
+ value: 54.42
393
+ - type: mrr_at_10
394
+ value: 64.847
395
+ - type: mrr_at_100
396
+ value: 65.403
397
+ - type: mrr_at_1000
398
+ value: 65.41900000000001
399
+ - type: mrr_at_3
400
+ value: 62.675000000000004
401
+ - type: mrr_at_5
402
+ value: 64.101
403
+ - type: ndcg_at_1
404
+ value: 54.42
405
+ - type: ndcg_at_10
406
+ value: 67.394
407
+ - type: ndcg_at_100
408
+ value: 70.846
409
+ - type: ndcg_at_1000
410
+ value: 71.403
411
+ - type: ndcg_at_3
412
+ value: 62.025
413
+ - type: ndcg_at_5
414
+ value: 65.032
415
+ - type: precision_at_1
416
+ value: 54.42
417
+ - type: precision_at_10
418
+ value: 10.646
419
+ - type: precision_at_100
420
+ value: 1.325
421
+ - type: precision_at_1000
422
+ value: 0.13999999999999999
423
+ - type: precision_at_3
424
+ value: 27.398
425
+ - type: precision_at_5
426
+ value: 18.796
427
+ - type: recall_at_1
428
+ value: 47.905
429
+ - type: recall_at_10
430
+ value: 80.84599999999999
431
+ - type: recall_at_100
432
+ value: 95.078
433
+ - type: recall_at_1000
434
+ value: 98.878
435
+ - type: recall_at_3
436
+ value: 67.05600000000001
437
+ - type: recall_at_5
438
+ value: 74.261
439
+ - task:
440
+ type: Retrieval
441
+ dataset:
442
+ type: BeIR/cqadupstack
443
+ name: MTEB CQADupstackGisRetrieval
444
+ config: default
445
+ split: test
446
+ revision: None
447
+ metrics:
448
+ - type: map_at_1
449
+ value: 30.745
450
+ - type: map_at_10
451
+ value: 41.021
452
+ - type: map_at_100
453
+ value: 41.021
454
+ - type: map_at_1000
455
+ value: 41.021
456
+ - type: map_at_3
457
+ value: 37.714999999999996
458
+ - type: map_at_5
459
+ value: 39.766
460
+ - type: mrr_at_1
461
+ value: 33.559
462
+ - type: mrr_at_10
463
+ value: 43.537
464
+ - type: mrr_at_100
465
+ value: 43.537
466
+ - type: mrr_at_1000
467
+ value: 43.537
468
+ - type: mrr_at_3
469
+ value: 40.546
470
+ - type: mrr_at_5
471
+ value: 42.439
472
+ - type: ndcg_at_1
473
+ value: 33.559
474
+ - type: ndcg_at_10
475
+ value: 46.781
476
+ - type: ndcg_at_100
477
+ value: 46.781
478
+ - type: ndcg_at_1000
479
+ value: 46.781
480
+ - type: ndcg_at_3
481
+ value: 40.516000000000005
482
+ - type: ndcg_at_5
483
+ value: 43.957
484
+ - type: precision_at_1
485
+ value: 33.559
486
+ - type: precision_at_10
487
+ value: 7.198
488
+ - type: precision_at_100
489
+ value: 0.72
490
+ - type: precision_at_1000
491
+ value: 0.07200000000000001
492
+ - type: precision_at_3
493
+ value: 17.1
494
+ - type: precision_at_5
495
+ value: 12.316
496
+ - type: recall_at_1
497
+ value: 30.745
498
+ - type: recall_at_10
499
+ value: 62.038000000000004
500
+ - type: recall_at_100
501
+ value: 62.038000000000004
502
+ - type: recall_at_1000
503
+ value: 62.038000000000004
504
+ - type: recall_at_3
505
+ value: 45.378
506
+ - type: recall_at_5
507
+ value: 53.580000000000005
508
+ - task:
509
+ type: Retrieval
510
+ dataset:
511
+ type: BeIR/cqadupstack
512
+ name: MTEB CQADupstackMathematicaRetrieval
513
+ config: default
514
+ split: test
515
+ revision: None
516
+ metrics:
517
+ - type: map_at_1
518
+ value: 19.637999999999998
519
+ - type: map_at_10
520
+ value: 31.05
521
+ - type: map_at_100
522
+ value: 31.05
523
+ - type: map_at_1000
524
+ value: 31.05
525
+ - type: map_at_3
526
+ value: 27.628000000000004
527
+ - type: map_at_5
528
+ value: 29.767
529
+ - type: mrr_at_1
530
+ value: 25.0
531
+ - type: mrr_at_10
532
+ value: 36.131
533
+ - type: mrr_at_100
534
+ value: 36.131
535
+ - type: mrr_at_1000
536
+ value: 36.131
537
+ - type: mrr_at_3
538
+ value: 33.333
539
+ - type: mrr_at_5
540
+ value: 35.143
541
+ - type: ndcg_at_1
542
+ value: 25.0
543
+ - type: ndcg_at_10
544
+ value: 37.478
545
+ - type: ndcg_at_100
546
+ value: 37.469
547
+ - type: ndcg_at_1000
548
+ value: 37.469
549
+ - type: ndcg_at_3
550
+ value: 31.757999999999996
551
+ - type: ndcg_at_5
552
+ value: 34.821999999999996
553
+ - type: precision_at_1
554
+ value: 25.0
555
+ - type: precision_at_10
556
+ value: 7.188999999999999
557
+ - type: precision_at_100
558
+ value: 0.719
559
+ - type: precision_at_1000
560
+ value: 0.07200000000000001
561
+ - type: precision_at_3
562
+ value: 15.837000000000002
563
+ - type: precision_at_5
564
+ value: 11.841
565
+ - type: recall_at_1
566
+ value: 19.637999999999998
567
+ - type: recall_at_10
568
+ value: 51.836000000000006
569
+ - type: recall_at_100
570
+ value: 51.836000000000006
571
+ - type: recall_at_1000
572
+ value: 51.836000000000006
573
+ - type: recall_at_3
574
+ value: 36.384
575
+ - type: recall_at_5
576
+ value: 43.964
577
+ - task:
578
+ type: Retrieval
579
+ dataset:
580
+ type: BeIR/cqadupstack
581
+ name: MTEB CQADupstackPhysicsRetrieval
582
+ config: default
583
+ split: test
584
+ revision: None
585
+ metrics:
586
+ - type: map_at_1
587
+ value: 34.884
588
+ - type: map_at_10
589
+ value: 47.88
590
+ - type: map_at_100
591
+ value: 47.88
592
+ - type: map_at_1000
593
+ value: 47.88
594
+ - type: map_at_3
595
+ value: 43.85
596
+ - type: map_at_5
597
+ value: 46.414
598
+ - type: mrr_at_1
599
+ value: 43.022
600
+ - type: mrr_at_10
601
+ value: 53.569
602
+ - type: mrr_at_100
603
+ value: 53.569
604
+ - type: mrr_at_1000
605
+ value: 53.569
606
+ - type: mrr_at_3
607
+ value: 51.075
608
+ - type: mrr_at_5
609
+ value: 52.725
610
+ - type: ndcg_at_1
611
+ value: 43.022
612
+ - type: ndcg_at_10
613
+ value: 54.461000000000006
614
+ - type: ndcg_at_100
615
+ value: 54.388000000000005
616
+ - type: ndcg_at_1000
617
+ value: 54.388000000000005
618
+ - type: ndcg_at_3
619
+ value: 48.864999999999995
620
+ - type: ndcg_at_5
621
+ value: 52.032000000000004
622
+ - type: precision_at_1
623
+ value: 43.022
624
+ - type: precision_at_10
625
+ value: 9.885
626
+ - type: precision_at_100
627
+ value: 0.988
628
+ - type: precision_at_1000
629
+ value: 0.099
630
+ - type: precision_at_3
631
+ value: 23.612
632
+ - type: precision_at_5
633
+ value: 16.997
634
+ - type: recall_at_1
635
+ value: 34.884
636
+ - type: recall_at_10
637
+ value: 68.12899999999999
638
+ - type: recall_at_100
639
+ value: 68.12899999999999
640
+ - type: recall_at_1000
641
+ value: 68.12899999999999
642
+ - type: recall_at_3
643
+ value: 52.428
644
+ - type: recall_at_5
645
+ value: 60.662000000000006
646
+ - task:
647
+ type: Retrieval
648
+ dataset:
649
+ type: BeIR/cqadupstack
650
+ name: MTEB CQADupstackProgrammersRetrieval
651
+ config: default
652
+ split: test
653
+ revision: None
654
+ metrics:
655
+ - type: map_at_1
656
+ value: 31.588
657
+ - type: map_at_10
658
+ value: 43.85
659
+ - type: map_at_100
660
+ value: 45.317
661
+ - type: map_at_1000
662
+ value: 45.408
663
+ - type: map_at_3
664
+ value: 39.73
665
+ - type: map_at_5
666
+ value: 42.122
667
+ - type: mrr_at_1
668
+ value: 38.927
669
+ - type: mrr_at_10
670
+ value: 49.582
671
+ - type: mrr_at_100
672
+ value: 50.39
673
+ - type: mrr_at_1000
674
+ value: 50.426
675
+ - type: mrr_at_3
676
+ value: 46.518
677
+ - type: mrr_at_5
678
+ value: 48.271
679
+ - type: ndcg_at_1
680
+ value: 38.927
681
+ - type: ndcg_at_10
682
+ value: 50.605999999999995
683
+ - type: ndcg_at_100
684
+ value: 56.22200000000001
685
+ - type: ndcg_at_1000
686
+ value: 57.724
687
+ - type: ndcg_at_3
688
+ value: 44.232
689
+ - type: ndcg_at_5
690
+ value: 47.233999999999995
691
+ - type: precision_at_1
692
+ value: 38.927
693
+ - type: precision_at_10
694
+ value: 9.429
695
+ - type: precision_at_100
696
+ value: 1.435
697
+ - type: precision_at_1000
698
+ value: 0.172
699
+ - type: precision_at_3
700
+ value: 21.271
701
+ - type: precision_at_5
702
+ value: 15.434000000000001
703
+ - type: recall_at_1
704
+ value: 31.588
705
+ - type: recall_at_10
706
+ value: 64.836
707
+ - type: recall_at_100
708
+ value: 88.066
709
+ - type: recall_at_1000
710
+ value: 97.748
711
+ - type: recall_at_3
712
+ value: 47.128
713
+ - type: recall_at_5
714
+ value: 54.954
715
+ - task:
716
+ type: Retrieval
717
+ dataset:
718
+ type: BeIR/cqadupstack
719
+ name: MTEB CQADupstackRetrieval
720
+ config: default
721
+ split: test
722
+ revision: None
723
+ metrics:
724
+ - type: map_at_1
725
+ value: 31.956083333333336
726
+ - type: map_at_10
727
+ value: 43.33483333333333
728
+ - type: map_at_100
729
+ value: 44.64883333333333
730
+ - type: map_at_1000
731
+ value: 44.75
732
+ - type: map_at_3
733
+ value: 39.87741666666666
734
+ - type: map_at_5
735
+ value: 41.86766666666667
736
+ - type: mrr_at_1
737
+ value: 38.06341666666667
738
+ - type: mrr_at_10
739
+ value: 47.839666666666666
740
+ - type: mrr_at_100
741
+ value: 48.644000000000005
742
+ - type: mrr_at_1000
743
+ value: 48.68566666666667
744
+ - type: mrr_at_3
745
+ value: 45.26358333333334
746
+ - type: mrr_at_5
747
+ value: 46.790000000000006
748
+ - type: ndcg_at_1
749
+ value: 38.06341666666667
750
+ - type: ndcg_at_10
751
+ value: 49.419333333333334
752
+ - type: ndcg_at_100
753
+ value: 54.50166666666667
754
+ - type: ndcg_at_1000
755
+ value: 56.161166666666674
756
+ - type: ndcg_at_3
757
+ value: 43.982416666666666
758
+ - type: ndcg_at_5
759
+ value: 46.638083333333334
760
+ - type: precision_at_1
761
+ value: 38.06341666666667
762
+ - type: precision_at_10
763
+ value: 8.70858333333333
764
+ - type: precision_at_100
765
+ value: 1.327
766
+ - type: precision_at_1000
767
+ value: 0.165
768
+ - type: precision_at_3
769
+ value: 20.37816666666667
770
+ - type: precision_at_5
771
+ value: 14.516333333333334
772
+ - type: recall_at_1
773
+ value: 31.956083333333336
774
+ - type: recall_at_10
775
+ value: 62.69458333333334
776
+ - type: recall_at_100
777
+ value: 84.46433333333334
778
+ - type: recall_at_1000
779
+ value: 95.58449999999999
780
+ - type: recall_at_3
781
+ value: 47.52016666666666
782
+ - type: recall_at_5
783
+ value: 54.36066666666666
784
+ - task:
785
+ type: Retrieval
786
+ dataset:
787
+ type: BeIR/cqadupstack
788
+ name: MTEB CQADupstackStatsRetrieval
789
+ config: default
790
+ split: test
791
+ revision: None
792
+ metrics:
793
+ - type: map_at_1
794
+ value: 28.912
795
+ - type: map_at_10
796
+ value: 38.291
797
+ - type: map_at_100
798
+ value: 39.44
799
+ - type: map_at_1000
800
+ value: 39.528
801
+ - type: map_at_3
802
+ value: 35.638
803
+ - type: map_at_5
804
+ value: 37.218
805
+ - type: mrr_at_1
806
+ value: 32.822
807
+ - type: mrr_at_10
808
+ value: 41.661
809
+ - type: mrr_at_100
810
+ value: 42.546
811
+ - type: mrr_at_1000
812
+ value: 42.603
813
+ - type: mrr_at_3
814
+ value: 39.238
815
+ - type: mrr_at_5
816
+ value: 40.726
817
+ - type: ndcg_at_1
818
+ value: 32.822
819
+ - type: ndcg_at_10
820
+ value: 43.373
821
+ - type: ndcg_at_100
822
+ value: 48.638
823
+ - type: ndcg_at_1000
824
+ value: 50.654999999999994
825
+ - type: ndcg_at_3
826
+ value: 38.643
827
+ - type: ndcg_at_5
828
+ value: 41.126000000000005
829
+ - type: precision_at_1
830
+ value: 32.822
831
+ - type: precision_at_10
832
+ value: 6.8709999999999996
833
+ - type: precision_at_100
834
+ value: 1.032
835
+ - type: precision_at_1000
836
+ value: 0.128
837
+ - type: precision_at_3
838
+ value: 16.82
839
+ - type: precision_at_5
840
+ value: 11.718
841
+ - type: recall_at_1
842
+ value: 28.912
843
+ - type: recall_at_10
844
+ value: 55.376999999999995
845
+ - type: recall_at_100
846
+ value: 79.066
847
+ - type: recall_at_1000
848
+ value: 93.664
849
+ - type: recall_at_3
850
+ value: 42.569
851
+ - type: recall_at_5
852
+ value: 48.719
853
+ - task:
854
+ type: Retrieval
855
+ dataset:
856
+ type: BeIR/cqadupstack
857
+ name: MTEB CQADupstackTexRetrieval
858
+ config: default
859
+ split: test
860
+ revision: None
861
+ metrics:
862
+ - type: map_at_1
863
+ value: 22.181
864
+ - type: map_at_10
865
+ value: 31.462
866
+ - type: map_at_100
867
+ value: 32.73
868
+ - type: map_at_1000
869
+ value: 32.848
870
+ - type: map_at_3
871
+ value: 28.57
872
+ - type: map_at_5
873
+ value: 30.182
874
+ - type: mrr_at_1
875
+ value: 27.185
876
+ - type: mrr_at_10
877
+ value: 35.846000000000004
878
+ - type: mrr_at_100
879
+ value: 36.811
880
+ - type: mrr_at_1000
881
+ value: 36.873
882
+ - type: mrr_at_3
883
+ value: 33.437
884
+ - type: mrr_at_5
885
+ value: 34.813
886
+ - type: ndcg_at_1
887
+ value: 27.185
888
+ - type: ndcg_at_10
889
+ value: 36.858000000000004
890
+ - type: ndcg_at_100
891
+ value: 42.501
892
+ - type: ndcg_at_1000
893
+ value: 44.945
894
+ - type: ndcg_at_3
895
+ value: 32.066
896
+ - type: ndcg_at_5
897
+ value: 34.29
898
+ - type: precision_at_1
899
+ value: 27.185
900
+ - type: precision_at_10
901
+ value: 6.752
902
+ - type: precision_at_100
903
+ value: 1.111
904
+ - type: precision_at_1000
905
+ value: 0.151
906
+ - type: precision_at_3
907
+ value: 15.290000000000001
908
+ - type: precision_at_5
909
+ value: 11.004999999999999
910
+ - type: recall_at_1
911
+ value: 22.181
912
+ - type: recall_at_10
913
+ value: 48.513
914
+ - type: recall_at_100
915
+ value: 73.418
916
+ - type: recall_at_1000
917
+ value: 90.306
918
+ - type: recall_at_3
919
+ value: 35.003
920
+ - type: recall_at_5
921
+ value: 40.876000000000005
922
+ - task:
923
+ type: Retrieval
924
+ dataset:
925
+ type: BeIR/cqadupstack
926
+ name: MTEB CQADupstackUnixRetrieval
927
+ config: default
928
+ split: test
929
+ revision: None
930
+ metrics:
931
+ - type: map_at_1
932
+ value: 33.934999999999995
933
+ - type: map_at_10
934
+ value: 44.727
935
+ - type: map_at_100
936
+ value: 44.727
937
+ - type: map_at_1000
938
+ value: 44.727
939
+ - type: map_at_3
940
+ value: 40.918
941
+ - type: map_at_5
942
+ value: 42.961
943
+ - type: mrr_at_1
944
+ value: 39.646
945
+ - type: mrr_at_10
946
+ value: 48.898
947
+ - type: mrr_at_100
948
+ value: 48.898
949
+ - type: mrr_at_1000
950
+ value: 48.898
951
+ - type: mrr_at_3
952
+ value: 45.896
953
+ - type: mrr_at_5
954
+ value: 47.514
955
+ - type: ndcg_at_1
956
+ value: 39.646
957
+ - type: ndcg_at_10
958
+ value: 50.817
959
+ - type: ndcg_at_100
960
+ value: 50.803
961
+ - type: ndcg_at_1000
962
+ value: 50.803
963
+ - type: ndcg_at_3
964
+ value: 44.507999999999996
965
+ - type: ndcg_at_5
966
+ value: 47.259
967
+ - type: precision_at_1
968
+ value: 39.646
969
+ - type: precision_at_10
970
+ value: 8.759
971
+ - type: precision_at_100
972
+ value: 0.876
973
+ - type: precision_at_1000
974
+ value: 0.08800000000000001
975
+ - type: precision_at_3
976
+ value: 20.274
977
+ - type: precision_at_5
978
+ value: 14.366000000000001
979
+ - type: recall_at_1
980
+ value: 33.934999999999995
981
+ - type: recall_at_10
982
+ value: 65.037
983
+ - type: recall_at_100
984
+ value: 65.037
985
+ - type: recall_at_1000
986
+ value: 65.037
987
+ - type: recall_at_3
988
+ value: 47.439
989
+ - type: recall_at_5
990
+ value: 54.567
991
+ - task:
992
+ type: Retrieval
993
+ dataset:
994
+ type: BeIR/cqadupstack
995
+ name: MTEB CQADupstackWebmastersRetrieval
996
+ config: default
997
+ split: test
998
+ revision: None
999
+ metrics:
1000
+ - type: map_at_1
1001
+ value: 32.058
1002
+ - type: map_at_10
1003
+ value: 43.137
1004
+ - type: map_at_100
1005
+ value: 43.137
1006
+ - type: map_at_1000
1007
+ value: 43.137
1008
+ - type: map_at_3
1009
+ value: 39.882
1010
+ - type: map_at_5
1011
+ value: 41.379
1012
+ - type: mrr_at_1
1013
+ value: 38.933
1014
+ - type: mrr_at_10
1015
+ value: 48.344
1016
+ - type: mrr_at_100
1017
+ value: 48.344
1018
+ - type: mrr_at_1000
1019
+ value: 48.344
1020
+ - type: mrr_at_3
1021
+ value: 45.652
1022
+ - type: mrr_at_5
1023
+ value: 46.877
1024
+ - type: ndcg_at_1
1025
+ value: 38.933
1026
+ - type: ndcg_at_10
1027
+ value: 49.964
1028
+ - type: ndcg_at_100
1029
+ value: 49.242000000000004
1030
+ - type: ndcg_at_1000
1031
+ value: 49.222
1032
+ - type: ndcg_at_3
1033
+ value: 44.605
1034
+ - type: ndcg_at_5
1035
+ value: 46.501999999999995
1036
+ - type: precision_at_1
1037
+ value: 38.933
1038
+ - type: precision_at_10
1039
+ value: 9.427000000000001
1040
+ - type: precision_at_100
1041
+ value: 0.943
1042
+ - type: precision_at_1000
1043
+ value: 0.094
1044
+ - type: precision_at_3
1045
+ value: 20.685000000000002
1046
+ - type: precision_at_5
1047
+ value: 14.585
1048
+ - type: recall_at_1
1049
+ value: 32.058
1050
+ - type: recall_at_10
1051
+ value: 63.074
1052
+ - type: recall_at_100
1053
+ value: 63.074
1054
+ - type: recall_at_1000
1055
+ value: 63.074
1056
+ - type: recall_at_3
1057
+ value: 47.509
1058
+ - type: recall_at_5
1059
+ value: 52.455
1060
+ - task:
1061
+ type: Retrieval
1062
+ dataset:
1063
+ type: BeIR/cqadupstack
1064
+ name: MTEB CQADupstackWordpressRetrieval
1065
+ config: default
1066
+ split: test
1067
+ revision: None
1068
+ metrics:
1069
+ - type: map_at_1
1070
+ value: 26.029000000000003
1071
+ - type: map_at_10
1072
+ value: 34.646
1073
+ - type: map_at_100
1074
+ value: 34.646
1075
+ - type: map_at_1000
1076
+ value: 34.646
1077
+ - type: map_at_3
1078
+ value: 31.456
1079
+ - type: map_at_5
1080
+ value: 33.138
1081
+ - type: mrr_at_1
1082
+ value: 28.281
1083
+ - type: mrr_at_10
1084
+ value: 36.905
1085
+ - type: mrr_at_100
1086
+ value: 36.905
1087
+ - type: mrr_at_1000
1088
+ value: 36.905
1089
+ - type: mrr_at_3
1090
+ value: 34.011
1091
+ - type: mrr_at_5
1092
+ value: 35.638
1093
+ - type: ndcg_at_1
1094
+ value: 28.281
1095
+ - type: ndcg_at_10
1096
+ value: 40.159
1097
+ - type: ndcg_at_100
1098
+ value: 40.159
1099
+ - type: ndcg_at_1000
1100
+ value: 40.159
1101
+ - type: ndcg_at_3
1102
+ value: 33.995
1103
+ - type: ndcg_at_5
1104
+ value: 36.836999999999996
1105
+ - type: precision_at_1
1106
+ value: 28.281
1107
+ - type: precision_at_10
1108
+ value: 6.358999999999999
1109
+ - type: precision_at_100
1110
+ value: 0.636
1111
+ - type: precision_at_1000
1112
+ value: 0.064
1113
+ - type: precision_at_3
1114
+ value: 14.233
1115
+ - type: precision_at_5
1116
+ value: 10.314
1117
+ - type: recall_at_1
1118
+ value: 26.029000000000003
1119
+ - type: recall_at_10
1120
+ value: 55.08
1121
+ - type: recall_at_100
1122
+ value: 55.08
1123
+ - type: recall_at_1000
1124
+ value: 55.08
1125
+ - type: recall_at_3
1126
+ value: 38.487
1127
+ - type: recall_at_5
1128
+ value: 45.308
1129
+ - task:
1130
+ type: Retrieval
1131
+ dataset:
1132
+ type: climate-fever
1133
+ name: MTEB ClimateFEVER
1134
+ config: default
1135
+ split: test
1136
+ revision: None
1137
+ metrics:
1138
+ - type: map_at_1
1139
+ value: 12.842999999999998
1140
+ - type: map_at_10
1141
+ value: 22.101000000000003
1142
+ - type: map_at_100
1143
+ value: 24.319
1144
+ - type: map_at_1000
1145
+ value: 24.51
1146
+ - type: map_at_3
1147
+ value: 18.372
1148
+ - type: map_at_5
1149
+ value: 20.323
1150
+ - type: mrr_at_1
1151
+ value: 27.948
1152
+ - type: mrr_at_10
1153
+ value: 40.321
1154
+ - type: mrr_at_100
1155
+ value: 41.262
1156
+ - type: mrr_at_1000
1157
+ value: 41.297
1158
+ - type: mrr_at_3
1159
+ value: 36.558
1160
+ - type: mrr_at_5
1161
+ value: 38.824999999999996
1162
+ - type: ndcg_at_1
1163
+ value: 27.948
1164
+ - type: ndcg_at_10
1165
+ value: 30.906
1166
+ - type: ndcg_at_100
1167
+ value: 38.986
1168
+ - type: ndcg_at_1000
1169
+ value: 42.136
1170
+ - type: ndcg_at_3
1171
+ value: 24.911
1172
+ - type: ndcg_at_5
1173
+ value: 27.168999999999997
1174
+ - type: precision_at_1
1175
+ value: 27.948
1176
+ - type: precision_at_10
1177
+ value: 9.798
1178
+ - type: precision_at_100
1179
+ value: 1.8399999999999999
1180
+ - type: precision_at_1000
1181
+ value: 0.243
1182
+ - type: precision_at_3
1183
+ value: 18.328
1184
+ - type: precision_at_5
1185
+ value: 14.502
1186
+ - type: recall_at_1
1187
+ value: 12.842999999999998
1188
+ - type: recall_at_10
1189
+ value: 37.245
1190
+ - type: recall_at_100
1191
+ value: 64.769
1192
+ - type: recall_at_1000
1193
+ value: 82.055
1194
+ - type: recall_at_3
1195
+ value: 23.159
1196
+ - type: recall_at_5
1197
+ value: 29.113
1198
+ - task:
1199
+ type: Retrieval
1200
+ dataset:
1201
+ type: dbpedia-entity
1202
+ name: MTEB DBPedia
1203
+ config: default
1204
+ split: test
1205
+ revision: None
1206
+ metrics:
1207
+ - type: map_at_1
1208
+ value: 8.934000000000001
1209
+ - type: map_at_10
1210
+ value: 21.915000000000003
1211
+ - type: map_at_100
1212
+ value: 21.915000000000003
1213
+ - type: map_at_1000
1214
+ value: 21.915000000000003
1215
+ - type: map_at_3
1216
+ value: 14.623
1217
+ - type: map_at_5
1218
+ value: 17.841
1219
+ - type: mrr_at_1
1220
+ value: 71.25
1221
+ - type: mrr_at_10
1222
+ value: 78.994
1223
+ - type: mrr_at_100
1224
+ value: 78.994
1225
+ - type: mrr_at_1000
1226
+ value: 78.994
1227
+ - type: mrr_at_3
1228
+ value: 77.208
1229
+ - type: mrr_at_5
1230
+ value: 78.55799999999999
1231
+ - type: ndcg_at_1
1232
+ value: 60.62499999999999
1233
+ - type: ndcg_at_10
1234
+ value: 46.604
1235
+ - type: ndcg_at_100
1236
+ value: 35.653
1237
+ - type: ndcg_at_1000
1238
+ value: 35.531
1239
+ - type: ndcg_at_3
1240
+ value: 50.605
1241
+ - type: ndcg_at_5
1242
+ value: 48.730000000000004
1243
+ - type: precision_at_1
1244
+ value: 71.25
1245
+ - type: precision_at_10
1246
+ value: 37.75
1247
+ - type: precision_at_100
1248
+ value: 3.775
1249
+ - type: precision_at_1000
1250
+ value: 0.377
1251
+ - type: precision_at_3
1252
+ value: 54.417
1253
+ - type: precision_at_5
1254
+ value: 48.15
1255
+ - type: recall_at_1
1256
+ value: 8.934000000000001
1257
+ - type: recall_at_10
1258
+ value: 28.471000000000004
1259
+ - type: recall_at_100
1260
+ value: 28.471000000000004
1261
+ - type: recall_at_1000
1262
+ value: 28.471000000000004
1263
+ - type: recall_at_3
1264
+ value: 16.019
1265
+ - type: recall_at_5
1266
+ value: 21.410999999999998
1267
+ - task:
1268
+ type: Classification
1269
+ dataset:
1270
+ type: mteb/emotion
1271
+ name: MTEB EmotionClassification
1272
+ config: default
1273
+ split: test
1274
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1275
+ metrics:
1276
+ - type: accuracy
1277
+ value: 52.81
1278
+ - type: f1
1279
+ value: 47.987573380720114
1280
+ - task:
1281
+ type: Retrieval
1282
+ dataset:
1283
+ type: fever
1284
+ name: MTEB FEVER
1285
+ config: default
1286
+ split: test
1287
+ revision: None
1288
+ metrics:
1289
+ - type: map_at_1
1290
+ value: 66.81899999999999
1291
+ - type: map_at_10
1292
+ value: 78.034
1293
+ - type: map_at_100
1294
+ value: 78.034
1295
+ - type: map_at_1000
1296
+ value: 78.034
1297
+ - type: map_at_3
1298
+ value: 76.43100000000001
1299
+ - type: map_at_5
1300
+ value: 77.515
1301
+ - type: mrr_at_1
1302
+ value: 71.542
1303
+ - type: mrr_at_10
1304
+ value: 81.638
1305
+ - type: mrr_at_100
1306
+ value: 81.638
1307
+ - type: mrr_at_1000
1308
+ value: 81.638
1309
+ - type: mrr_at_3
1310
+ value: 80.403
1311
+ - type: mrr_at_5
1312
+ value: 81.256
1313
+ - type: ndcg_at_1
1314
+ value: 71.542
1315
+ - type: ndcg_at_10
1316
+ value: 82.742
1317
+ - type: ndcg_at_100
1318
+ value: 82.741
1319
+ - type: ndcg_at_1000
1320
+ value: 82.741
1321
+ - type: ndcg_at_3
1322
+ value: 80.039
1323
+ - type: ndcg_at_5
1324
+ value: 81.695
1325
+ - type: precision_at_1
1326
+ value: 71.542
1327
+ - type: precision_at_10
1328
+ value: 10.387
1329
+ - type: precision_at_100
1330
+ value: 1.039
1331
+ - type: precision_at_1000
1332
+ value: 0.104
1333
+ - type: precision_at_3
1334
+ value: 31.447999999999997
1335
+ - type: precision_at_5
1336
+ value: 19.91
1337
+ - type: recall_at_1
1338
+ value: 66.81899999999999
1339
+ - type: recall_at_10
1340
+ value: 93.372
1341
+ - type: recall_at_100
1342
+ value: 93.372
1343
+ - type: recall_at_1000
1344
+ value: 93.372
1345
+ - type: recall_at_3
1346
+ value: 86.33
1347
+ - type: recall_at_5
1348
+ value: 90.347
1349
+ - task:
1350
+ type: Retrieval
1351
+ dataset:
1352
+ type: fiqa
1353
+ name: MTEB FiQA2018
1354
+ config: default
1355
+ split: test
1356
+ revision: None
1357
+ metrics:
1358
+ - type: map_at_1
1359
+ value: 31.158
1360
+ - type: map_at_10
1361
+ value: 52.017
1362
+ - type: map_at_100
1363
+ value: 54.259
1364
+ - type: map_at_1000
1365
+ value: 54.367
1366
+ - type: map_at_3
1367
+ value: 45.738
1368
+ - type: map_at_5
1369
+ value: 49.283
1370
+ - type: mrr_at_1
1371
+ value: 57.87
1372
+ - type: mrr_at_10
1373
+ value: 66.215
1374
+ - type: mrr_at_100
1375
+ value: 66.735
1376
+ - type: mrr_at_1000
1377
+ value: 66.75
1378
+ - type: mrr_at_3
1379
+ value: 64.043
1380
+ - type: mrr_at_5
1381
+ value: 65.116
1382
+ - type: ndcg_at_1
1383
+ value: 57.87
1384
+ - type: ndcg_at_10
1385
+ value: 59.946999999999996
1386
+ - type: ndcg_at_100
1387
+ value: 66.31099999999999
1388
+ - type: ndcg_at_1000
1389
+ value: 67.75999999999999
1390
+ - type: ndcg_at_3
1391
+ value: 55.483000000000004
1392
+ - type: ndcg_at_5
1393
+ value: 56.891000000000005
1394
+ - type: precision_at_1
1395
+ value: 57.87
1396
+ - type: precision_at_10
1397
+ value: 16.497
1398
+ - type: precision_at_100
1399
+ value: 2.321
1400
+ - type: precision_at_1000
1401
+ value: 0.258
1402
+ - type: precision_at_3
1403
+ value: 37.14
1404
+ - type: precision_at_5
1405
+ value: 27.067999999999998
1406
+ - type: recall_at_1
1407
+ value: 31.158
1408
+ - type: recall_at_10
1409
+ value: 67.381
1410
+ - type: recall_at_100
1411
+ value: 89.464
1412
+ - type: recall_at_1000
1413
+ value: 97.989
1414
+ - type: recall_at_3
1415
+ value: 50.553000000000004
1416
+ - type: recall_at_5
1417
+ value: 57.824
1418
+ - task:
1419
+ type: Retrieval
1420
+ dataset:
1421
+ type: hotpotqa
1422
+ name: MTEB HotpotQA
1423
+ config: default
1424
+ split: test
1425
+ revision: None
1426
+ metrics:
1427
+ - type: map_at_1
1428
+ value: 42.073
1429
+ - type: map_at_10
1430
+ value: 72.418
1431
+ - type: map_at_100
1432
+ value: 73.175
1433
+ - type: map_at_1000
1434
+ value: 73.215
1435
+ - type: map_at_3
1436
+ value: 68.791
1437
+ - type: map_at_5
1438
+ value: 71.19
1439
+ - type: mrr_at_1
1440
+ value: 84.146
1441
+ - type: mrr_at_10
1442
+ value: 88.994
1443
+ - type: mrr_at_100
1444
+ value: 89.116
1445
+ - type: mrr_at_1000
1446
+ value: 89.12
1447
+ - type: mrr_at_3
1448
+ value: 88.373
1449
+ - type: mrr_at_5
1450
+ value: 88.82
1451
+ - type: ndcg_at_1
1452
+ value: 84.146
1453
+ - type: ndcg_at_10
1454
+ value: 79.404
1455
+ - type: ndcg_at_100
1456
+ value: 81.83200000000001
1457
+ - type: ndcg_at_1000
1458
+ value: 82.524
1459
+ - type: ndcg_at_3
1460
+ value: 74.595
1461
+ - type: ndcg_at_5
1462
+ value: 77.474
1463
+ - type: precision_at_1
1464
+ value: 84.146
1465
+ - type: precision_at_10
1466
+ value: 16.753999999999998
1467
+ - type: precision_at_100
1468
+ value: 1.8599999999999999
1469
+ - type: precision_at_1000
1470
+ value: 0.19499999999999998
1471
+ - type: precision_at_3
1472
+ value: 48.854
1473
+ - type: precision_at_5
1474
+ value: 31.579
1475
+ - type: recall_at_1
1476
+ value: 42.073
1477
+ - type: recall_at_10
1478
+ value: 83.768
1479
+ - type: recall_at_100
1480
+ value: 93.018
1481
+ - type: recall_at_1000
1482
+ value: 97.481
1483
+ - type: recall_at_3
1484
+ value: 73.282
1485
+ - type: recall_at_5
1486
+ value: 78.947
1487
+ - task:
1488
+ type: Classification
1489
+ dataset:
1490
+ type: mteb/imdb
1491
+ name: MTEB ImdbClassification
1492
+ config: default
1493
+ split: test
1494
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1495
+ metrics:
1496
+ - type: accuracy
1497
+ value: 94.9968
1498
+ - type: ap
1499
+ value: 92.93892195862824
1500
+ - type: f1
1501
+ value: 94.99327998213761
1502
+ - task:
1503
+ type: Retrieval
1504
+ dataset:
1505
+ type: msmarco
1506
+ name: MTEB MSMARCO
1507
+ config: default
1508
+ split: dev
1509
+ revision: None
1510
+ metrics:
1511
+ - type: map_at_1
1512
+ value: 21.698
1513
+ - type: map_at_10
1514
+ value: 34.585
1515
+ - type: map_at_100
1516
+ value: 35.782000000000004
1517
+ - type: map_at_1000
1518
+ value: 35.825
1519
+ - type: map_at_3
1520
+ value: 30.397999999999996
1521
+ - type: map_at_5
1522
+ value: 32.72
1523
+ - type: mrr_at_1
1524
+ value: 22.192
1525
+ - type: mrr_at_10
1526
+ value: 35.085
1527
+ - type: mrr_at_100
1528
+ value: 36.218
1529
+ - type: mrr_at_1000
1530
+ value: 36.256
1531
+ - type: mrr_at_3
1532
+ value: 30.986000000000004
1533
+ - type: mrr_at_5
1534
+ value: 33.268
1535
+ - type: ndcg_at_1
1536
+ value: 22.192
1537
+ - type: ndcg_at_10
1538
+ value: 41.957
1539
+ - type: ndcg_at_100
1540
+ value: 47.658
1541
+ - type: ndcg_at_1000
1542
+ value: 48.697
1543
+ - type: ndcg_at_3
1544
+ value: 33.433
1545
+ - type: ndcg_at_5
1546
+ value: 37.551
1547
+ - type: precision_at_1
1548
+ value: 22.192
1549
+ - type: precision_at_10
1550
+ value: 6.781
1551
+ - type: precision_at_100
1552
+ value: 0.963
1553
+ - type: precision_at_1000
1554
+ value: 0.105
1555
+ - type: precision_at_3
1556
+ value: 14.365
1557
+ - type: precision_at_5
1558
+ value: 10.713000000000001
1559
+ - type: recall_at_1
1560
+ value: 21.698
1561
+ - type: recall_at_10
1562
+ value: 64.79
1563
+ - type: recall_at_100
1564
+ value: 91.071
1565
+ - type: recall_at_1000
1566
+ value: 98.883
1567
+ - type: recall_at_3
1568
+ value: 41.611
1569
+ - type: recall_at_5
1570
+ value: 51.459999999999994
1571
+ - task:
1572
+ type: Classification
1573
+ dataset:
1574
+ type: mteb/mtop_domain
1575
+ name: MTEB MTOPDomainClassification (en)
1576
+ config: en
1577
+ split: test
1578
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1579
+ metrics:
1580
+ - type: accuracy
1581
+ value: 96.15823073415413
1582
+ - type: f1
1583
+ value: 96.00362034963248
1584
+ - task:
1585
+ type: Classification
1586
+ dataset:
1587
+ type: mteb/mtop_intent
1588
+ name: MTEB MTOPIntentClassification (en)
1589
+ config: en
1590
+ split: test
1591
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1592
+ metrics:
1593
+ - type: accuracy
1594
+ value: 87.12722298221614
1595
+ - type: f1
1596
+ value: 70.46888967516227
1597
+ - task:
1598
+ type: Classification
1599
+ dataset:
1600
+ type: mteb/amazon_massive_intent
1601
+ name: MTEB MassiveIntentClassification (en)
1602
+ config: en
1603
+ split: test
1604
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1605
+ metrics:
1606
+ - type: accuracy
1607
+ value: 80.77673167451245
1608
+ - type: f1
1609
+ value: 77.60202561132175
1610
+ - task:
1611
+ type: Classification
1612
+ dataset:
1613
+ type: mteb/amazon_massive_scenario
1614
+ name: MTEB MassiveScenarioClassification (en)
1615
+ config: en
1616
+ split: test
1617
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1618
+ metrics:
1619
+ - type: accuracy
1620
+ value: 82.09145931405514
1621
+ - type: f1
1622
+ value: 81.7701921473406
1623
+ - task:
1624
+ type: Clustering
1625
+ dataset:
1626
+ type: mteb/medrxiv-clustering-p2p
1627
+ name: MTEB MedrxivClusteringP2P
1628
+ config: default
1629
+ split: test
1630
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1631
+ metrics:
1632
+ - type: v_measure
1633
+ value: 36.52153488185864
1634
+ - task:
1635
+ type: Clustering
1636
+ dataset:
1637
+ type: mteb/medrxiv-clustering-s2s
1638
+ name: MTEB MedrxivClusteringS2S
1639
+ config: default
1640
+ split: test
1641
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1642
+ metrics:
1643
+ - type: v_measure
1644
+ value: 36.80090398444147
1645
+ - task:
1646
+ type: Reranking
1647
+ dataset:
1648
+ type: mteb/mind_small
1649
+ name: MTEB MindSmallReranking
1650
+ config: default
1651
+ split: test
1652
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1653
+ metrics:
1654
+ - type: map
1655
+ value: 31.807141746058605
1656
+ - type: mrr
1657
+ value: 32.85025611455029
1658
+ - task:
1659
+ type: Retrieval
1660
+ dataset:
1661
+ type: nfcorpus
1662
+ name: MTEB NFCorpus
1663
+ config: default
1664
+ split: test
1665
+ revision: None
1666
+ metrics:
1667
+ - type: map_at_1
1668
+ value: 6.920999999999999
1669
+ - type: map_at_10
1670
+ value: 16.049
1671
+ - type: map_at_100
1672
+ value: 16.049
1673
+ - type: map_at_1000
1674
+ value: 16.049
1675
+ - type: map_at_3
1676
+ value: 11.865
1677
+ - type: map_at_5
1678
+ value: 13.657
1679
+ - type: mrr_at_1
1680
+ value: 53.87
1681
+ - type: mrr_at_10
1682
+ value: 62.291
1683
+ - type: mrr_at_100
1684
+ value: 62.291
1685
+ - type: mrr_at_1000
1686
+ value: 62.291
1687
+ - type: mrr_at_3
1688
+ value: 60.681
1689
+ - type: mrr_at_5
1690
+ value: 61.61
1691
+ - type: ndcg_at_1
1692
+ value: 51.23799999999999
1693
+ - type: ndcg_at_10
1694
+ value: 40.892
1695
+ - type: ndcg_at_100
1696
+ value: 26.951999999999998
1697
+ - type: ndcg_at_1000
1698
+ value: 26.474999999999998
1699
+ - type: ndcg_at_3
1700
+ value: 46.821
1701
+ - type: ndcg_at_5
1702
+ value: 44.333
1703
+ - type: precision_at_1
1704
+ value: 53.251000000000005
1705
+ - type: precision_at_10
1706
+ value: 30.124000000000002
1707
+ - type: precision_at_100
1708
+ value: 3.012
1709
+ - type: precision_at_1000
1710
+ value: 0.301
1711
+ - type: precision_at_3
1712
+ value: 43.55
1713
+ - type: precision_at_5
1714
+ value: 38.266
1715
+ - type: recall_at_1
1716
+ value: 6.920999999999999
1717
+ - type: recall_at_10
1718
+ value: 20.852
1719
+ - type: recall_at_100
1720
+ value: 20.852
1721
+ - type: recall_at_1000
1722
+ value: 20.852
1723
+ - type: recall_at_3
1724
+ value: 13.628000000000002
1725
+ - type: recall_at_5
1726
+ value: 16.273
1727
+ - task:
1728
+ type: Retrieval
1729
+ dataset:
1730
+ type: nq
1731
+ name: MTEB NQ
1732
+ config: default
1733
+ split: test
1734
+ revision: None
1735
+ metrics:
1736
+ - type: map_at_1
1737
+ value: 46.827999999999996
1738
+ - type: map_at_10
1739
+ value: 63.434000000000005
1740
+ - type: map_at_100
1741
+ value: 63.434000000000005
1742
+ - type: map_at_1000
1743
+ value: 63.434000000000005
1744
+ - type: map_at_3
1745
+ value: 59.794000000000004
1746
+ - type: map_at_5
1747
+ value: 62.08
1748
+ - type: mrr_at_1
1749
+ value: 52.288999999999994
1750
+ - type: mrr_at_10
1751
+ value: 65.95
1752
+ - type: mrr_at_100
1753
+ value: 65.95
1754
+ - type: mrr_at_1000
1755
+ value: 65.95
1756
+ - type: mrr_at_3
1757
+ value: 63.413
1758
+ - type: mrr_at_5
1759
+ value: 65.08
1760
+ - type: ndcg_at_1
1761
+ value: 52.288999999999994
1762
+ - type: ndcg_at_10
1763
+ value: 70.301
1764
+ - type: ndcg_at_100
1765
+ value: 70.301
1766
+ - type: ndcg_at_1000
1767
+ value: 70.301
1768
+ - type: ndcg_at_3
1769
+ value: 63.979
1770
+ - type: ndcg_at_5
1771
+ value: 67.582
1772
+ - type: precision_at_1
1773
+ value: 52.288999999999994
1774
+ - type: precision_at_10
1775
+ value: 10.576
1776
+ - type: precision_at_100
1777
+ value: 1.058
1778
+ - type: precision_at_1000
1779
+ value: 0.106
1780
+ - type: precision_at_3
1781
+ value: 28.177000000000003
1782
+ - type: precision_at_5
1783
+ value: 19.073
1784
+ - type: recall_at_1
1785
+ value: 46.827999999999996
1786
+ - type: recall_at_10
1787
+ value: 88.236
1788
+ - type: recall_at_100
1789
+ value: 88.236
1790
+ - type: recall_at_1000
1791
+ value: 88.236
1792
+ - type: recall_at_3
1793
+ value: 72.371
1794
+ - type: recall_at_5
1795
+ value: 80.56
1796
+ - task:
1797
+ type: Retrieval
1798
+ dataset:
1799
+ type: quora
1800
+ name: MTEB QuoraRetrieval
1801
+ config: default
1802
+ split: test
1803
+ revision: None
1804
+ metrics:
1805
+ - type: map_at_1
1806
+ value: 71.652
1807
+ - type: map_at_10
1808
+ value: 85.953
1809
+ - type: map_at_100
1810
+ value: 85.953
1811
+ - type: map_at_1000
1812
+ value: 85.953
1813
+ - type: map_at_3
1814
+ value: 83.05399999999999
1815
+ - type: map_at_5
1816
+ value: 84.89
1817
+ - type: mrr_at_1
1818
+ value: 82.42
1819
+ - type: mrr_at_10
1820
+ value: 88.473
1821
+ - type: mrr_at_100
1822
+ value: 88.473
1823
+ - type: mrr_at_1000
1824
+ value: 88.473
1825
+ - type: mrr_at_3
1826
+ value: 87.592
1827
+ - type: mrr_at_5
1828
+ value: 88.211
1829
+ - type: ndcg_at_1
1830
+ value: 82.44
1831
+ - type: ndcg_at_10
1832
+ value: 89.467
1833
+ - type: ndcg_at_100
1834
+ value: 89.33
1835
+ - type: ndcg_at_1000
1836
+ value: 89.33
1837
+ - type: ndcg_at_3
1838
+ value: 86.822
1839
+ - type: ndcg_at_5
1840
+ value: 88.307
1841
+ - type: precision_at_1
1842
+ value: 82.44
1843
+ - type: precision_at_10
1844
+ value: 13.616
1845
+ - type: precision_at_100
1846
+ value: 1.362
1847
+ - type: precision_at_1000
1848
+ value: 0.136
1849
+ - type: precision_at_3
1850
+ value: 38.117000000000004
1851
+ - type: precision_at_5
1852
+ value: 25.05
1853
+ - type: recall_at_1
1854
+ value: 71.652
1855
+ - type: recall_at_10
1856
+ value: 96.224
1857
+ - type: recall_at_100
1858
+ value: 96.224
1859
+ - type: recall_at_1000
1860
+ value: 96.224
1861
+ - type: recall_at_3
1862
+ value: 88.571
1863
+ - type: recall_at_5
1864
+ value: 92.812
1865
+ - task:
1866
+ type: Clustering
1867
+ dataset:
1868
+ type: mteb/reddit-clustering
1869
+ name: MTEB RedditClustering
1870
+ config: default
1871
+ split: test
1872
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1873
+ metrics:
1874
+ - type: v_measure
1875
+ value: 61.295010338050474
1876
+ - task:
1877
+ type: Clustering
1878
+ dataset:
1879
+ type: mteb/reddit-clustering-p2p
1880
+ name: MTEB RedditClusteringP2P
1881
+ config: default
1882
+ split: test
1883
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1884
+ metrics:
1885
+ - type: v_measure
1886
+ value: 67.26380819328142
1887
+ - task:
1888
+ type: Retrieval
1889
+ dataset:
1890
+ type: scidocs
1891
+ name: MTEB SCIDOCS
1892
+ config: default
1893
+ split: test
1894
+ revision: None
1895
+ metrics:
1896
+ - type: map_at_1
1897
+ value: 5.683
1898
+ - type: map_at_10
1899
+ value: 14.924999999999999
1900
+ - type: map_at_100
1901
+ value: 17.532
1902
+ - type: map_at_1000
1903
+ value: 17.875
1904
+ - type: map_at_3
1905
+ value: 10.392
1906
+ - type: map_at_5
1907
+ value: 12.592
1908
+ - type: mrr_at_1
1909
+ value: 28.000000000000004
1910
+ - type: mrr_at_10
1911
+ value: 39.951
1912
+ - type: mrr_at_100
1913
+ value: 41.025
1914
+ - type: mrr_at_1000
1915
+ value: 41.056
1916
+ - type: mrr_at_3
1917
+ value: 36.317
1918
+ - type: mrr_at_5
1919
+ value: 38.412
1920
+ - type: ndcg_at_1
1921
+ value: 28.000000000000004
1922
+ - type: ndcg_at_10
1923
+ value: 24.410999999999998
1924
+ - type: ndcg_at_100
1925
+ value: 33.79
1926
+ - type: ndcg_at_1000
1927
+ value: 39.035
1928
+ - type: ndcg_at_3
1929
+ value: 22.845
1930
+ - type: ndcg_at_5
1931
+ value: 20.080000000000002
1932
+ - type: precision_at_1
1933
+ value: 28.000000000000004
1934
+ - type: precision_at_10
1935
+ value: 12.790000000000001
1936
+ - type: precision_at_100
1937
+ value: 2.633
1938
+ - type: precision_at_1000
1939
+ value: 0.388
1940
+ - type: precision_at_3
1941
+ value: 21.367
1942
+ - type: precision_at_5
1943
+ value: 17.7
1944
+ - type: recall_at_1
1945
+ value: 5.683
1946
+ - type: recall_at_10
1947
+ value: 25.91
1948
+ - type: recall_at_100
1949
+ value: 53.443
1950
+ - type: recall_at_1000
1951
+ value: 78.73
1952
+ - type: recall_at_3
1953
+ value: 13.003
1954
+ - type: recall_at_5
1955
+ value: 17.932000000000002
1956
+ - task:
1957
+ type: STS
1958
+ dataset:
1959
+ type: mteb/sickr-sts
1960
+ name: MTEB SICK-R
1961
+ config: default
1962
+ split: test
1963
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1964
+ metrics:
1965
+ - type: cos_sim_pearson
1966
+ value: 84.677978681023
1967
+ - type: cos_sim_spearman
1968
+ value: 83.13093441058189
1969
+ - type: euclidean_pearson
1970
+ value: 83.35535759341572
1971
+ - type: euclidean_spearman
1972
+ value: 83.42583744219611
1973
+ - type: manhattan_pearson
1974
+ value: 83.2243124045889
1975
+ - type: manhattan_spearman
1976
+ value: 83.39801618652632
1977
+ - task:
1978
+ type: STS
1979
+ dataset:
1980
+ type: mteb/sts12-sts
1981
+ name: MTEB STS12
1982
+ config: default
1983
+ split: test
1984
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1985
+ metrics:
1986
+ - type: cos_sim_pearson
1987
+ value: 81.68960206569666
1988
+ - type: cos_sim_spearman
1989
+ value: 77.3368966488535
1990
+ - type: euclidean_pearson
1991
+ value: 77.62828980560303
1992
+ - type: euclidean_spearman
1993
+ value: 76.77951481444651
1994
+ - type: manhattan_pearson
1995
+ value: 77.88637240839041
1996
+ - type: manhattan_spearman
1997
+ value: 77.22157841466188
1998
+ - task:
1999
+ type: STS
2000
+ dataset:
2001
+ type: mteb/sts13-sts
2002
+ name: MTEB STS13
2003
+ config: default
2004
+ split: test
2005
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2006
+ metrics:
2007
+ - type: cos_sim_pearson
2008
+ value: 84.18745821650724
2009
+ - type: cos_sim_spearman
2010
+ value: 85.04423285574542
2011
+ - type: euclidean_pearson
2012
+ value: 85.46604816931023
2013
+ - type: euclidean_spearman
2014
+ value: 85.5230593932974
2015
+ - type: manhattan_pearson
2016
+ value: 85.57912805986261
2017
+ - type: manhattan_spearman
2018
+ value: 85.65955905111873
2019
+ - task:
2020
+ type: STS
2021
+ dataset:
2022
+ type: mteb/sts14-sts
2023
+ name: MTEB STS14
2024
+ config: default
2025
+ split: test
2026
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2027
+ metrics:
2028
+ - type: cos_sim_pearson
2029
+ value: 83.6715333300355
2030
+ - type: cos_sim_spearman
2031
+ value: 82.9058522514908
2032
+ - type: euclidean_pearson
2033
+ value: 83.9640357424214
2034
+ - type: euclidean_spearman
2035
+ value: 83.60415457472637
2036
+ - type: manhattan_pearson
2037
+ value: 84.05621005853469
2038
+ - type: manhattan_spearman
2039
+ value: 83.87077724707746
2040
+ - task:
2041
+ type: STS
2042
+ dataset:
2043
+ type: mteb/sts15-sts
2044
+ name: MTEB STS15
2045
+ config: default
2046
+ split: test
2047
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2048
+ metrics:
2049
+ - type: cos_sim_pearson
2050
+ value: 87.82422928098886
2051
+ - type: cos_sim_spearman
2052
+ value: 88.12660311894628
2053
+ - type: euclidean_pearson
2054
+ value: 87.50974805056555
2055
+ - type: euclidean_spearman
2056
+ value: 87.91957275596677
2057
+ - type: manhattan_pearson
2058
+ value: 87.74119404878883
2059
+ - type: manhattan_spearman
2060
+ value: 88.2808922165719
2061
+ - task:
2062
+ type: STS
2063
+ dataset:
2064
+ type: mteb/sts16-sts
2065
+ name: MTEB STS16
2066
+ config: default
2067
+ split: test
2068
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2069
+ metrics:
2070
+ - type: cos_sim_pearson
2071
+ value: 84.80605838552093
2072
+ - type: cos_sim_spearman
2073
+ value: 86.24123388765678
2074
+ - type: euclidean_pearson
2075
+ value: 85.32648347339814
2076
+ - type: euclidean_spearman
2077
+ value: 85.60046671950158
2078
+ - type: manhattan_pearson
2079
+ value: 85.53800168487811
2080
+ - type: manhattan_spearman
2081
+ value: 85.89542420480763
2082
+ - task:
2083
+ type: STS
2084
+ dataset:
2085
+ type: mteb/sts17-crosslingual-sts
2086
+ name: MTEB STS17 (en-en)
2087
+ config: en-en
2088
+ split: test
2089
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2090
+ metrics:
2091
+ - type: cos_sim_pearson
2092
+ value: 89.87540978988132
2093
+ - type: cos_sim_spearman
2094
+ value: 90.12715295099461
2095
+ - type: euclidean_pearson
2096
+ value: 91.61085993525275
2097
+ - type: euclidean_spearman
2098
+ value: 91.31835942311758
2099
+ - type: manhattan_pearson
2100
+ value: 91.57500202032934
2101
+ - type: manhattan_spearman
2102
+ value: 91.1790925526635
2103
+ - task:
2104
+ type: STS
2105
+ dataset:
2106
+ type: mteb/sts22-crosslingual-sts
2107
+ name: MTEB STS22 (en)
2108
+ config: en
2109
+ split: test
2110
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2111
+ metrics:
2112
+ - type: cos_sim_pearson
2113
+ value: 69.87136205329556
2114
+ - type: cos_sim_spearman
2115
+ value: 68.6253154635078
2116
+ - type: euclidean_pearson
2117
+ value: 68.91536015034222
2118
+ - type: euclidean_spearman
2119
+ value: 67.63744649352542
2120
+ - type: manhattan_pearson
2121
+ value: 69.2000713045275
2122
+ - type: manhattan_spearman
2123
+ value: 68.16002901587316
2124
+ - task:
2125
+ type: STS
2126
+ dataset:
2127
+ type: mteb/stsbenchmark-sts
2128
+ name: MTEB STSBenchmark
2129
+ config: default
2130
+ split: test
2131
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2132
+ metrics:
2133
+ - type: cos_sim_pearson
2134
+ value: 85.21849551039082
2135
+ - type: cos_sim_spearman
2136
+ value: 85.6392959372461
2137
+ - type: euclidean_pearson
2138
+ value: 85.92050852609488
2139
+ - type: euclidean_spearman
2140
+ value: 85.97205649009734
2141
+ - type: manhattan_pearson
2142
+ value: 86.1031154802254
2143
+ - type: manhattan_spearman
2144
+ value: 86.26791155517466
2145
+ - task:
2146
+ type: Reranking
2147
+ dataset:
2148
+ type: mteb/scidocs-reranking
2149
+ name: MTEB SciDocsRR
2150
+ config: default
2151
+ split: test
2152
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2153
+ metrics:
2154
+ - type: map
2155
+ value: 86.83953958636627
2156
+ - type: mrr
2157
+ value: 96.71167612344082
2158
+ - task:
2159
+ type: Retrieval
2160
+ dataset:
2161
+ type: scifact
2162
+ name: MTEB SciFact
2163
+ config: default
2164
+ split: test
2165
+ revision: None
2166
+ metrics:
2167
+ - type: map_at_1
2168
+ value: 64.994
2169
+ - type: map_at_10
2170
+ value: 74.763
2171
+ - type: map_at_100
2172
+ value: 75.127
2173
+ - type: map_at_1000
2174
+ value: 75.143
2175
+ - type: map_at_3
2176
+ value: 71.824
2177
+ - type: map_at_5
2178
+ value: 73.71
2179
+ - type: mrr_at_1
2180
+ value: 68.333
2181
+ - type: mrr_at_10
2182
+ value: 75.749
2183
+ - type: mrr_at_100
2184
+ value: 75.922
2185
+ - type: mrr_at_1000
2186
+ value: 75.938
2187
+ - type: mrr_at_3
2188
+ value: 73.556
2189
+ - type: mrr_at_5
2190
+ value: 74.739
2191
+ - type: ndcg_at_1
2192
+ value: 68.333
2193
+ - type: ndcg_at_10
2194
+ value: 79.174
2195
+ - type: ndcg_at_100
2196
+ value: 80.41
2197
+ - type: ndcg_at_1000
2198
+ value: 80.804
2199
+ - type: ndcg_at_3
2200
+ value: 74.361
2201
+ - type: ndcg_at_5
2202
+ value: 76.861
2203
+ - type: precision_at_1
2204
+ value: 68.333
2205
+ - type: precision_at_10
2206
+ value: 10.333
2207
+ - type: precision_at_100
2208
+ value: 1.0999999999999999
2209
+ - type: precision_at_1000
2210
+ value: 0.11299999999999999
2211
+ - type: precision_at_3
2212
+ value: 28.778
2213
+ - type: precision_at_5
2214
+ value: 19.067
2215
+ - type: recall_at_1
2216
+ value: 64.994
2217
+ - type: recall_at_10
2218
+ value: 91.822
2219
+ - type: recall_at_100
2220
+ value: 97.0
2221
+ - type: recall_at_1000
2222
+ value: 100.0
2223
+ - type: recall_at_3
2224
+ value: 78.878
2225
+ - type: recall_at_5
2226
+ value: 85.172
2227
+ - task:
2228
+ type: PairClassification
2229
+ dataset:
2230
+ type: mteb/sprintduplicatequestions-pairclassification
2231
+ name: MTEB SprintDuplicateQuestions
2232
+ config: default
2233
+ split: test
2234
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2235
+ metrics:
2236
+ - type: cos_sim_accuracy
2237
+ value: 99.72079207920792
2238
+ - type: cos_sim_ap
2239
+ value: 93.00265215525152
2240
+ - type: cos_sim_f1
2241
+ value: 85.06596306068602
2242
+ - type: cos_sim_precision
2243
+ value: 90.05586592178771
2244
+ - type: cos_sim_recall
2245
+ value: 80.60000000000001
2246
+ - type: dot_accuracy
2247
+ value: 99.66039603960397
2248
+ - type: dot_ap
2249
+ value: 91.22371407479089
2250
+ - type: dot_f1
2251
+ value: 82.34693877551021
2252
+ - type: dot_precision
2253
+ value: 84.0625
2254
+ - type: dot_recall
2255
+ value: 80.7
2256
+ - type: euclidean_accuracy
2257
+ value: 99.71881188118812
2258
+ - type: euclidean_ap
2259
+ value: 92.88449963304728
2260
+ - type: euclidean_f1
2261
+ value: 85.19480519480518
2262
+ - type: euclidean_precision
2263
+ value: 88.64864864864866
2264
+ - type: euclidean_recall
2265
+ value: 82.0
2266
+ - type: manhattan_accuracy
2267
+ value: 99.73267326732673
2268
+ - type: manhattan_ap
2269
+ value: 93.23055393056883
2270
+ - type: manhattan_f1
2271
+ value: 85.88957055214725
2272
+ - type: manhattan_precision
2273
+ value: 87.86610878661088
2274
+ - type: manhattan_recall
2275
+ value: 84.0
2276
+ - type: max_accuracy
2277
+ value: 99.73267326732673
2278
+ - type: max_ap
2279
+ value: 93.23055393056883
2280
+ - type: max_f1
2281
+ value: 85.88957055214725
2282
+ - task:
2283
+ type: Clustering
2284
+ dataset:
2285
+ type: mteb/stackexchange-clustering
2286
+ name: MTEB StackExchangeClustering
2287
+ config: default
2288
+ split: test
2289
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2290
+ metrics:
2291
+ - type: v_measure
2292
+ value: 77.3305735900358
2293
+ - task:
2294
+ type: Clustering
2295
+ dataset:
2296
+ type: mteb/stackexchange-clustering-p2p
2297
+ name: MTEB StackExchangeClusteringP2P
2298
+ config: default
2299
+ split: test
2300
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2301
+ metrics:
2302
+ - type: v_measure
2303
+ value: 41.32967136540674
2304
+ - task:
2305
+ type: Reranking
2306
+ dataset:
2307
+ type: mteb/stackoverflowdupquestions-reranking
2308
+ name: MTEB StackOverflowDupQuestions
2309
+ config: default
2310
+ split: test
2311
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2312
+ metrics:
2313
+ - type: map
2314
+ value: 55.95514866379359
2315
+ - type: mrr
2316
+ value: 56.95423245055598
2317
+ - task:
2318
+ type: Summarization
2319
+ dataset:
2320
+ type: mteb/summeval
2321
+ name: MTEB SummEval
2322
+ config: default
2323
+ split: test
2324
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2325
+ metrics:
2326
+ - type: cos_sim_pearson
2327
+ value: 30.783007208997144
2328
+ - type: cos_sim_spearman
2329
+ value: 30.373444721540533
2330
+ - type: dot_pearson
2331
+ value: 29.210604111143905
2332
+ - type: dot_spearman
2333
+ value: 29.98809758085659
2334
+ - task:
2335
+ type: Retrieval
2336
+ dataset:
2337
+ type: trec-covid
2338
+ name: MTEB TRECCOVID
2339
+ config: default
2340
+ split: test
2341
+ revision: None
2342
+ metrics:
2343
+ - type: map_at_1
2344
+ value: 0.234
2345
+ - type: map_at_10
2346
+ value: 1.894
2347
+ - type: map_at_100
2348
+ value: 1.894
2349
+ - type: map_at_1000
2350
+ value: 1.894
2351
+ - type: map_at_3
2352
+ value: 0.636
2353
+ - type: map_at_5
2354
+ value: 1.0
2355
+ - type: mrr_at_1
2356
+ value: 88.0
2357
+ - type: mrr_at_10
2358
+ value: 93.667
2359
+ - type: mrr_at_100
2360
+ value: 93.667
2361
+ - type: mrr_at_1000
2362
+ value: 93.667
2363
+ - type: mrr_at_3
2364
+ value: 93.667
2365
+ - type: mrr_at_5
2366
+ value: 93.667
2367
+ - type: ndcg_at_1
2368
+ value: 85.0
2369
+ - type: ndcg_at_10
2370
+ value: 74.798
2371
+ - type: ndcg_at_100
2372
+ value: 16.462
2373
+ - type: ndcg_at_1000
2374
+ value: 7.0889999999999995
2375
+ - type: ndcg_at_3
2376
+ value: 80.754
2377
+ - type: ndcg_at_5
2378
+ value: 77.319
2379
+ - type: precision_at_1
2380
+ value: 88.0
2381
+ - type: precision_at_10
2382
+ value: 78.0
2383
+ - type: precision_at_100
2384
+ value: 7.8
2385
+ - type: precision_at_1000
2386
+ value: 0.7799999999999999
2387
+ - type: precision_at_3
2388
+ value: 83.333
2389
+ - type: precision_at_5
2390
+ value: 80.80000000000001
2391
+ - type: recall_at_1
2392
+ value: 0.234
2393
+ - type: recall_at_10
2394
+ value: 2.093
2395
+ - type: recall_at_100
2396
+ value: 2.093
2397
+ - type: recall_at_1000
2398
+ value: 2.093
2399
+ - type: recall_at_3
2400
+ value: 0.662
2401
+ - type: recall_at_5
2402
+ value: 1.0739999999999998
2403
+ - task:
2404
+ type: Retrieval
2405
+ dataset:
2406
+ type: webis-touche2020
2407
+ name: MTEB Touche2020
2408
+ config: default
2409
+ split: test
2410
+ revision: None
2411
+ metrics:
2412
+ - type: map_at_1
2413
+ value: 2.703
2414
+ - type: map_at_10
2415
+ value: 10.866000000000001
2416
+ - type: map_at_100
2417
+ value: 10.866000000000001
2418
+ - type: map_at_1000
2419
+ value: 10.866000000000001
2420
+ - type: map_at_3
2421
+ value: 5.909
2422
+ - type: map_at_5
2423
+ value: 7.35
2424
+ - type: mrr_at_1
2425
+ value: 36.735
2426
+ - type: mrr_at_10
2427
+ value: 53.583000000000006
2428
+ - type: mrr_at_100
2429
+ value: 53.583000000000006
2430
+ - type: mrr_at_1000
2431
+ value: 53.583000000000006
2432
+ - type: mrr_at_3
2433
+ value: 49.32
2434
+ - type: mrr_at_5
2435
+ value: 51.769
2436
+ - type: ndcg_at_1
2437
+ value: 34.694
2438
+ - type: ndcg_at_10
2439
+ value: 27.926000000000002
2440
+ - type: ndcg_at_100
2441
+ value: 22.701
2442
+ - type: ndcg_at_1000
2443
+ value: 22.701
2444
+ - type: ndcg_at_3
2445
+ value: 32.073
2446
+ - type: ndcg_at_5
2447
+ value: 28.327999999999996
2448
+ - type: precision_at_1
2449
+ value: 36.735
2450
+ - type: precision_at_10
2451
+ value: 24.694
2452
+ - type: precision_at_100
2453
+ value: 2.469
2454
+ - type: precision_at_1000
2455
+ value: 0.247
2456
+ - type: precision_at_3
2457
+ value: 31.973000000000003
2458
+ - type: precision_at_5
2459
+ value: 26.939
2460
+ - type: recall_at_1
2461
+ value: 2.703
2462
+ - type: recall_at_10
2463
+ value: 17.702
2464
+ - type: recall_at_100
2465
+ value: 17.702
2466
+ - type: recall_at_1000
2467
+ value: 17.702
2468
+ - type: recall_at_3
2469
+ value: 7.208
2470
+ - type: recall_at_5
2471
+ value: 9.748999999999999
2472
+ - task:
2473
+ type: Classification
2474
+ dataset:
2475
+ type: mteb/toxic_conversations_50k
2476
+ name: MTEB ToxicConversationsClassification
2477
+ config: default
2478
+ split: test
2479
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2480
+ metrics:
2481
+ - type: accuracy
2482
+ value: 70.79960000000001
2483
+ - type: ap
2484
+ value: 15.467565415565815
2485
+ - type: f1
2486
+ value: 55.28639823443618
2487
+ - task:
2488
+ type: Classification
2489
+ dataset:
2490
+ type: mteb/tweet_sentiment_extraction
2491
+ name: MTEB TweetSentimentExtractionClassification
2492
+ config: default
2493
+ split: test
2494
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2495
+ metrics:
2496
+ - type: accuracy
2497
+ value: 64.7792869269949
2498
+ - type: f1
2499
+ value: 65.08597154774318
2500
+ - task:
2501
+ type: Clustering
2502
+ dataset:
2503
+ type: mteb/twentynewsgroups-clustering
2504
+ name: MTEB TwentyNewsgroupsClustering
2505
+ config: default
2506
+ split: test
2507
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2508
+ metrics:
2509
+ - type: v_measure
2510
+ value: 55.70352297774293
2511
+ - task:
2512
+ type: PairClassification
2513
+ dataset:
2514
+ type: mteb/twittersemeval2015-pairclassification
2515
+ name: MTEB TwitterSemEval2015
2516
+ config: default
2517
+ split: test
2518
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2519
+ metrics:
2520
+ - type: cos_sim_accuracy
2521
+ value: 88.27561542588067
2522
+ - type: cos_sim_ap
2523
+ value: 81.08262141256193
2524
+ - type: cos_sim_f1
2525
+ value: 73.82341501361338
2526
+ - type: cos_sim_precision
2527
+ value: 72.5720112159062
2528
+ - type: cos_sim_recall
2529
+ value: 75.11873350923483
2530
+ - type: dot_accuracy
2531
+ value: 86.66030875603504
2532
+ - type: dot_ap
2533
+ value: 76.6052349228621
2534
+ - type: dot_f1
2535
+ value: 70.13897280966768
2536
+ - type: dot_precision
2537
+ value: 64.70457079152732
2538
+ - type: dot_recall
2539
+ value: 76.56992084432717
2540
+ - type: euclidean_accuracy
2541
+ value: 88.37098408535495
2542
+ - type: euclidean_ap
2543
+ value: 81.12515230092113
2544
+ - type: euclidean_f1
2545
+ value: 74.10338225909379
2546
+ - type: euclidean_precision
2547
+ value: 71.76761433868974
2548
+ - type: euclidean_recall
2549
+ value: 76.59630606860158
2550
+ - type: manhattan_accuracy
2551
+ value: 88.34118137926924
2552
+ - type: manhattan_ap
2553
+ value: 80.95751834536561
2554
+ - type: manhattan_f1
2555
+ value: 73.9119496855346
2556
+ - type: manhattan_precision
2557
+ value: 70.625
2558
+ - type: manhattan_recall
2559
+ value: 77.5197889182058
2560
+ - type: max_accuracy
2561
+ value: 88.37098408535495
2562
+ - type: max_ap
2563
+ value: 81.12515230092113
2564
+ - type: max_f1
2565
+ value: 74.10338225909379
2566
+ - task:
2567
+ type: PairClassification
2568
+ dataset:
2569
+ type: mteb/twitterurlcorpus-pairclassification
2570
+ name: MTEB TwitterURLCorpus
2571
+ config: default
2572
+ split: test
2573
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2574
+ metrics:
2575
+ - type: cos_sim_accuracy
2576
+ value: 89.79896767182831
2577
+ - type: cos_sim_ap
2578
+ value: 87.40071784061065
2579
+ - type: cos_sim_f1
2580
+ value: 79.87753144712087
2581
+ - type: cos_sim_precision
2582
+ value: 76.67304015296367
2583
+ - type: cos_sim_recall
2584
+ value: 83.3615645210964
2585
+ - type: dot_accuracy
2586
+ value: 88.95486474948578
2587
+ - type: dot_ap
2588
+ value: 86.00227979119943
2589
+ - type: dot_f1
2590
+ value: 78.54601474525914
2591
+ - type: dot_precision
2592
+ value: 75.00525394045535
2593
+ - type: dot_recall
2594
+ value: 82.43763473975977
2595
+ - type: euclidean_accuracy
2596
+ value: 89.7892653393876
2597
+ - type: euclidean_ap
2598
+ value: 87.42174706480819
2599
+ - type: euclidean_f1
2600
+ value: 80.07283321194465
2601
+ - type: euclidean_precision
2602
+ value: 75.96738529574351
2603
+ - type: euclidean_recall
2604
+ value: 84.6473668001232
2605
+ - type: manhattan_accuracy
2606
+ value: 89.8474793340319
2607
+ - type: manhattan_ap
2608
+ value: 87.47814292587448
2609
+ - type: manhattan_f1
2610
+ value: 80.15461150280949
2611
+ - type: manhattan_precision
2612
+ value: 74.88798234468
2613
+ - type: manhattan_recall
2614
+ value: 86.21804742839544
2615
+ - type: max_accuracy
2616
+ value: 89.8474793340319
2617
+ - type: max_ap
2618
+ value: 87.47814292587448
2619
+ - type: max_f1
2620
+ value: 80.15461150280949
2621
+ ---
2622
+
2623
+ # Model Summary
2624
+
2625
+ > GritLM is a generative representational instruction tuned language model. It unifies text representation (embedding) and text generation into a single model achieving state-of-the-art performance on both types of tasks.
2626
+
2627
+ - **Repository:** [ContextualAI/gritlm](https://github.com/ContextualAI/gritlm)
2628
+ - **Paper:** https://arxiv.org/abs/2402.09906
2629
+ - **Logs:** https://wandb.ai/muennighoff/gritlm/runs/0uui712t/overview
2630
+ - **Script:** https://github.com/ContextualAI/gritlm/blob/main/scripts/training/train_gritlm_7b.sh
2631
+
2632
+ | Model | Description |
2633
+ |-------|-------------|
2634
+ | [GritLM 7B](https://hf.co/GritLM/GritLM-7B) | Mistral 7B finetuned using GRIT |
2635
+ | [GritLM 8x7B](https://hf.co/GritLM/GritLM-8x7B) | Mixtral 8x7B finetuned using GRIT |
2636
+
2637
+ # Use
2638
+
2639
+ The model usage is documented [here](https://github.com/ContextualAI/gritlm?tab=readme-ov-file#inference).
2640
+
2641
+ # Citation
2642
+
2643
+ ```bibtex
2644
+ @misc{muennighoff2024generative,
2645
+ title={Generative Representational Instruction Tuning},
2646
+ author={Niklas Muennighoff and Hongjin Su and Liang Wang and Nan Yang and Furu Wei and Tao Yu and Amanpreet Singh and Douwe Kiela},
2647
+ year={2024},
2648
+ eprint={2402.09906},
2649
+ archivePrefix={arXiv},
2650
+ primaryClass={cs.CL}
2651
+ }
2652
+ ```
2653
+