RicardoLee commited on
Commit
c10861e
1 Parent(s): 3c0ddff

Llama2-base 7B Chinese chat ver 0.01

Browse files
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - llama2
7
+ - llama2-base
8
+ - llama2-base-7B
9
+ ---
10
+ # 7B Chinese Chatbot trained based on LLama2-base 7B
11
+
12
+ ## Introduction
13
+
14
+ 在完成了[Llama2-chat 7B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-Chinese-50W) 和 [Llama2-chat 13B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-13B-Chinese-50W) 的训练后,我非常好奇能否直接基于Llama2-base 系列直接进行SFT训练。这也是本模型仓库的初衷。
15
+
16
+ 但是在实际操作中,在用了原先chat模型的LoRA训练框架后,我发现基于Llama2 base的 LoRA 训练非常难以收敛,随时处于梯度爆炸的边缘。DeepSpeed 会频繁触发reduce scale 操作,最终scale太小越界导致训练崩溃。我遍历了LR 1e-5 - 2e-4,LoRA rank \[4, 8, 64\],LoRA Alpha \[1,4,8,16,32\],LoRA Dropout \[0.05, 0.1\] ,Warmup Ratio \[0.01, 0.03, 0.05\]等超参数,均无法稳定训练。因此,本模型重新回归了全参数SFT训练。其难以进行LoRA训练的原因还待分析。
17
+
18
+ 由于网上存在使用LoRA 在英文SFT数据集上基于Llama2-base 进行SFT训练成功的样例,因此我怀疑难以训练的原因可能是扩中文词表embedding导致训练难度大幅度提升。
19
+
20
+ 为了方便后来人一起分析,本模型仓库特地将训练的全部loss/LR信息附在[Material](trainer_state.json)中。
21
+
22
+ 训练数据使用[BELLE](https://huggingface.co/BelleGroup)项目中采样的50万SFT数据进行SFT训练。
23
+
24
+ After finishing the training of [Llama2-chat 7B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-Chinese-50W) and [Llama2-chat 13B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-13B-Chinese-50W), I am deeply intrigued by the possibility of conducting SFT (Style-Fine-Tuning) training directly based on the Llama2-base series. This is the fundamental purpose of this model repository.
25
+
26
+ **However**, in real practice, I have observed that conducting LoRA training based on the Llama2 base model, within the framework of the previous Llama2-chat SFT project, presents significant challenges in achieving convergence. The gradient explosion happens in every training step and casue reducing scale operation in Deepspeed. In the end, the scale is too small and out of bounds, causing the training to crash. I have traversed LR 1e-5 - 2e-4,LoRA rank \[4, 8, 64\],LoRA Alpha \[1,4,8,16,32\],LoRA Dropout \[0.05, 0.1\] ,Warmup Ratio \[0.01, 0.03, 0.05\] and other hyperparameters, all of which cannot be trained stably. Therefore, this model has reverted to full-parameter SFT training. The reasons behind the difficulties encountered during LoRA training require further analysis.
27
+
28
+ As there are instances online where successful LoRA training on English SFT datasets using Llama2-base has been demonstrated, I suspect that the challenge in training might be attributed to the expansion of the Chinese word embedding, resulting in a substantial increase in training difficulty.
29
+
30
+ In order to facilitate collaborative analysis for future researchers, this model repository has thoughtfully appended all training-related loss/LR information in [Material](trainer_state.json).
31
+
32
+ The training data is sampled from [BELLE](https://huggingface.co/BelleGroup) project, which consists of 500,000 SFT samples.
33
+
34
+ ## Train Detail
35
+
36
+ 一些训练上的细节:
37
+
38
+ 1. 训练框架:该模型采用全参数SFT训练,而非LoRA
39
+ 2. Tokenizer:该模型使用了Chinese-Alpaca-Plus模型的tokenizer.model。这是因为LLama2本身的tokenizer.model同LLama1是一摸一样的。因此理论上可以完全复用Chinese-LLaMa项目的tokenizer而不会产生如何错位问题。
40
+ 3. 训练参数:受限于资源,本模型只训练了1 epoch。其LR 为2e-4。Warmup ratio 为0.01。可以看到这是一个非常激进的训练,因此本模型仓库被命名为了预发布版本。未来会接着放出3 epoch版本。
41
+ 4. 训练资源:8卡V100。21个小时
42
+ 5. 训练起始的loss:参见[Material](trainer_state.json)
43
+ 6. 训练终止的loss:参见[Material](trainer_state.json)
44
+
45
+ Some details in training:
46
+
47
+ 1. Trianing Framework: This model adopts full-parameter SFT training instead of LoRA.
48
+ 2. Tokenizer: This model utilizes the tokenizer.model from the Chinese-Alpaca-Plus model. The reason for this choice is that the tokenizer.model in LLama2 is identical to the one used in LLama1. As a result, it is theoretically feasible to entirely reuse the tokenizer from the Chinese-LLaMa project without encountering any issues related to token misalignment.
49
+ 3. Training Parameters: Constrained by limited resources, this model was trained for only 1 epoch, with a learning rate of 2e-4 and a warmup ratio of 0.01. Obviously, this is an exceedingly aggressive training schema, hence this model repository has been labeled as the 'pre-release' version. In the future, a 3-epoch version will be released subsequently for the comparison of previous Llama2-chat Chinese models.
50
+ 4. Training Resource: 8\*V100, 21 hours.
51
+ 5. Initial Loss: Please refer to [Material](trainer_state.json)
52
+ 6. Train Loss: Please refer to [Material](trainer_state.json)
53
+
54
+ ## Licence
55
+
56
+ 本仓库的模型依照 Apache-2.0 协议开源,模型的权重的使用则需要遵循LLama2[MODEL LICENCE](LICENSE)。
57
+
58
+ This repository's models are open-sourced under the Apache-2.0 license, and their weight usage must adhere to LLama2 [MODEL LICENCE](LICENSE) license.
59
+
60
+ ## Future Work
61
+
62
+ 将会在近期逐步放出
63
+
64
+ 1. 更大SFT数据规模训练下的模型。
65
+ 2. 13B及以下的LLama2 同LLama2-chat的模型,以供大家对比。
66
+
67
+ I will release the following models:
68
+
69
+ 1. Models trained on larger data scale.
70
+ 2. Models trained on LLama2 and LLama2-chat (under the 13B, since I only have V100), for comparison.
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 1.3428778648376465,
4
+ "eval_runtime": 2.0111,
5
+ "eval_samples": 100,
6
+ "eval_samples_per_second": 49.725,
7
+ "eval_steps_per_second": 1.989,
8
+ "perplexity": 3.830050026427415,
9
+ "train_loss": 1.9416432221974707,
10
+ "train_runtime": 74872.2082,
11
+ "train_samples": 500000,
12
+ "train_samples_per_second": 6.678,
13
+ "train_steps_per_second": 0.052
14
+ }
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "RicardoLee/Llama2-base-7B-Chinese-50W-pre_release",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 32,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.31.0",
24
+ "use_cache": true,
25
+ "vocab_size": 49954
26
+ }
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 1.3428778648376465,
4
+ "eval_runtime": 2.0111,
5
+ "eval_samples": 100,
6
+ "eval_samples_per_second": 49.725,
7
+ "eval_steps_per_second": 1.989,
8
+ "perplexity": 3.830050026427415
9
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.31.0"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step3906
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3fb0d89aa054853f5572d10c0297a29ea5a4289232837a8efaf11b1836d3126
3
+ size 9991794123
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:495cc56568d3147a85eb2aba08f80b832da26ee21ca6171608830e350706d115
3
+ size 9894802738
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2620260c3425b384632c4fe17c2e1bfae8e509320fd188c37a0804fdee2e8dc6
3
+ size 7655505659
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 27541987328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
328
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
329
+ }
330
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d967e855b1213a439df6c8ce2791f869c84b4f3b6cfacf22b86440b8192a2f8
3
+ size 757972
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": true,
22
+ "model_max_length": 1000000000000000019884624838656,
23
+ "pad_token": null,
24
+ "sp_model_kwargs": {},
25
+ "tokenizer_class": "LlamaTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "use_fast": true
35
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 1.9416432221974707,
4
+ "train_runtime": 74872.2082,
5
+ "train_samples": 500000,
6
+ "train_samples_per_second": 6.678,
7
+ "train_steps_per_second": 0.052
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9998720081914757,
5
+ "global_step": 3906,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 0.0,
13
+ "loss": 9.2076,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 2e-05,
19
+ "loss": 9.3403,
20
+ "step": 10
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 4.5e-05,
25
+ "loss": 7.9144,
26
+ "step": 20
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 7.500000000000001e-05,
31
+ "loss": 6.7554,
32
+ "step": 30
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 0.00012,
37
+ "loss": 5.7716,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 0.00017,
43
+ "loss": 5.0089,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.02,
48
+ "learning_rate": 0.00019999947171819797,
49
+ "loss": 4.383,
50
+ "step": 60
51
+ },
52
+ {
53
+ "epoch": 0.02,
54
+ "learning_rate": 0.00019999352861202634,
55
+ "loss": 4.1286,
56
+ "step": 70
57
+ },
58
+ {
59
+ "epoch": 0.02,
60
+ "learning_rate": 0.0001999809824411913,
61
+ "loss": 3.7428,
62
+ "step": 80
63
+ },
64
+ {
65
+ "epoch": 0.02,
66
+ "learning_rate": 0.0001999618340341782,
67
+ "loss": 3.4558,
68
+ "step": 90
69
+ },
70
+ {
71
+ "epoch": 0.03,
72
+ "learning_rate": 0.00019993608465545054,
73
+ "loss": 3.3284,
74
+ "step": 100
75
+ },
76
+ {
77
+ "epoch": 0.03,
78
+ "learning_rate": 0.00019990373600536657,
79
+ "loss": 3.202,
80
+ "step": 110
81
+ },
82
+ {
83
+ "epoch": 0.03,
84
+ "learning_rate": 0.00019986479022006677,
85
+ "loss": 3.1471,
86
+ "step": 120
87
+ },
88
+ {
89
+ "epoch": 0.03,
90
+ "learning_rate": 0.00019981924987133289,
91
+ "loss": 3.0477,
92
+ "step": 130
93
+ },
94
+ {
95
+ "epoch": 0.04,
96
+ "learning_rate": 0.00019976711796641832,
97
+ "loss": 2.9572,
98
+ "step": 140
99
+ },
100
+ {
101
+ "epoch": 0.04,
102
+ "learning_rate": 0.00019970839794784917,
103
+ "loss": 2.9283,
104
+ "step": 150
105
+ },
106
+ {
107
+ "epoch": 0.04,
108
+ "learning_rate": 0.00019964309369319722,
109
+ "loss": 2.882,
110
+ "step": 160
111
+ },
112
+ {
113
+ "epoch": 0.04,
114
+ "learning_rate": 0.00019957120951482363,
115
+ "loss": 2.799,
116
+ "step": 170
117
+ },
118
+ {
119
+ "epoch": 0.05,
120
+ "learning_rate": 0.00019949275015959442,
121
+ "loss": 2.7808,
122
+ "step": 180
123
+ },
124
+ {
125
+ "epoch": 0.05,
126
+ "learning_rate": 0.0001994077208085668,
127
+ "loss": 2.7251,
128
+ "step": 190
129
+ },
130
+ {
131
+ "epoch": 0.05,
132
+ "learning_rate": 0.0001993161270766472,
133
+ "loss": 2.6977,
134
+ "step": 200
135
+ },
136
+ {
137
+ "epoch": 0.05,
138
+ "learning_rate": 0.00019921797501222036,
139
+ "loss": 2.7366,
140
+ "step": 210
141
+ },
142
+ {
143
+ "epoch": 0.06,
144
+ "learning_rate": 0.00019911327109675003,
145
+ "loss": 2.7007,
146
+ "step": 220
147
+ },
148
+ {
149
+ "epoch": 0.06,
150
+ "learning_rate": 0.00019900202224435086,
151
+ "loss": 2.6237,
152
+ "step": 230
153
+ },
154
+ {
155
+ "epoch": 0.06,
156
+ "learning_rate": 0.00019888423580133194,
157
+ "loss": 2.4928,
158
+ "step": 240
159
+ },
160
+ {
161
+ "epoch": 0.06,
162
+ "learning_rate": 0.0001987599195457116,
163
+ "loss": 2.6081,
164
+ "step": 250
165
+ },
166
+ {
167
+ "epoch": 0.07,
168
+ "learning_rate": 0.00019862908168670384,
169
+ "loss": 2.59,
170
+ "step": 260
171
+ },
172
+ {
173
+ "epoch": 0.07,
174
+ "learning_rate": 0.00019849173086417622,
175
+ "loss": 2.5477,
176
+ "step": 270
177
+ },
178
+ {
179
+ "epoch": 0.07,
180
+ "learning_rate": 0.0001983478761480793,
181
+ "loss": 2.5678,
182
+ "step": 280
183
+ },
184
+ {
185
+ "epoch": 0.07,
186
+ "learning_rate": 0.00019819752703784777,
187
+ "loss": 2.4678,
188
+ "step": 290
189
+ },
190
+ {
191
+ "epoch": 0.08,
192
+ "learning_rate": 0.0001980406934617731,
193
+ "loss": 2.4486,
194
+ "step": 300
195
+ },
196
+ {
197
+ "epoch": 0.08,
198
+ "learning_rate": 0.00019787738577634794,
199
+ "loss": 2.5024,
200
+ "step": 310
201
+ },
202
+ {
203
+ "epoch": 0.08,
204
+ "learning_rate": 0.00019770761476558223,
205
+ "loss": 2.5042,
206
+ "step": 320
207
+ },
208
+ {
209
+ "epoch": 0.08,
210
+ "learning_rate": 0.00019753139164029108,
211
+ "loss": 2.4463,
212
+ "step": 330
213
+ },
214
+ {
215
+ "epoch": 0.09,
216
+ "learning_rate": 0.00019734872803735444,
217
+ "loss": 2.4035,
218
+ "step": 340
219
+ },
220
+ {
221
+ "epoch": 0.09,
222
+ "learning_rate": 0.0001971596360189488,
223
+ "loss": 2.4444,
224
+ "step": 350
225
+ },
226
+ {
227
+ "epoch": 0.09,
228
+ "learning_rate": 0.0001969641280717504,
229
+ "loss": 2.4404,
230
+ "step": 360
231
+ },
232
+ {
233
+ "epoch": 0.09,
234
+ "learning_rate": 0.00019676221710611093,
235
+ "loss": 2.4378,
236
+ "step": 370
237
+ },
238
+ {
239
+ "epoch": 0.1,
240
+ "learning_rate": 0.00019655391645520486,
241
+ "loss": 2.3842,
242
+ "step": 380
243
+ },
244
+ {
245
+ "epoch": 0.1,
246
+ "learning_rate": 0.000196339239874149,
247
+ "loss": 2.3743,
248
+ "step": 390
249
+ },
250
+ {
251
+ "epoch": 0.1,
252
+ "learning_rate": 0.00019611820153909418,
253
+ "loss": 2.3983,
254
+ "step": 400
255
+ },
256
+ {
257
+ "epoch": 0.1,
258
+ "learning_rate": 0.0001958908160462892,
259
+ "loss": 2.3224,
260
+ "step": 410
261
+ },
262
+ {
263
+ "epoch": 0.11,
264
+ "learning_rate": 0.0001956570984111169,
265
+ "loss": 2.3779,
266
+ "step": 420
267
+ },
268
+ {
269
+ "epoch": 0.11,
270
+ "learning_rate": 0.00019541706406710256,
271
+ "loss": 2.3706,
272
+ "step": 430
273
+ },
274
+ {
275
+ "epoch": 0.11,
276
+ "learning_rate": 0.000195170728864895,
277
+ "loss": 2.3213,
278
+ "step": 440
279
+ },
280
+ {
281
+ "epoch": 0.12,
282
+ "learning_rate": 0.0001949181090712195,
283
+ "loss": 2.3222,
284
+ "step": 450
285
+ },
286
+ {
287
+ "epoch": 0.12,
288
+ "learning_rate": 0.00019465922136780396,
289
+ "loss": 2.3018,
290
+ "step": 460
291
+ },
292
+ {
293
+ "epoch": 0.12,
294
+ "learning_rate": 0.00019439408285027717,
295
+ "loss": 2.3268,
296
+ "step": 470
297
+ },
298
+ {
299
+ "epoch": 0.12,
300
+ "learning_rate": 0.00019412271102703992,
301
+ "loss": 2.2956,
302
+ "step": 480
303
+ },
304
+ {
305
+ "epoch": 0.13,
306
+ "learning_rate": 0.00019384512381810887,
307
+ "loss": 2.2676,
308
+ "step": 490
309
+ },
310
+ {
311
+ "epoch": 0.13,
312
+ "learning_rate": 0.00019356133955393312,
313
+ "loss": 2.2877,
314
+ "step": 500
315
+ },
316
+ {
317
+ "epoch": 0.13,
318
+ "learning_rate": 0.0001932713769741839,
319
+ "loss": 2.3348,
320
+ "step": 510
321
+ },
322
+ {
323
+ "epoch": 0.13,
324
+ "learning_rate": 0.0001929752552265169,
325
+ "loss": 2.3026,
326
+ "step": 520
327
+ },
328
+ {
329
+ "epoch": 0.14,
330
+ "learning_rate": 0.00019267299386530813,
331
+ "loss": 2.3344,
332
+ "step": 530
333
+ },
334
+ {
335
+ "epoch": 0.14,
336
+ "learning_rate": 0.00019236461285036233,
337
+ "loss": 2.258,
338
+ "step": 540
339
+ },
340
+ {
341
+ "epoch": 0.14,
342
+ "learning_rate": 0.0001920501325455952,
343
+ "loss": 2.2424,
344
+ "step": 550
345
+ },
346
+ {
347
+ "epoch": 0.14,
348
+ "learning_rate": 0.00019172957371768848,
349
+ "loss": 2.2824,
350
+ "step": 560
351
+ },
352
+ {
353
+ "epoch": 0.15,
354
+ "learning_rate": 0.00019140295753471872,
355
+ "loss": 2.2618,
356
+ "step": 570
357
+ },
358
+ {
359
+ "epoch": 0.15,
360
+ "learning_rate": 0.0001910703055647595,
361
+ "loss": 2.243,
362
+ "step": 580
363
+ },
364
+ {
365
+ "epoch": 0.15,
366
+ "learning_rate": 0.00019073163977445696,
367
+ "loss": 2.2295,
368
+ "step": 590
369
+ },
370
+ {
371
+ "epoch": 0.15,
372
+ "learning_rate": 0.00019038698252757952,
373
+ "loss": 2.2533,
374
+ "step": 600
375
+ },
376
+ {
377
+ "epoch": 0.16,
378
+ "learning_rate": 0.00019003635658354094,
379
+ "loss": 2.2098,
380
+ "step": 610
381
+ },
382
+ {
383
+ "epoch": 0.16,
384
+ "learning_rate": 0.0001896797850958973,
385
+ "loss": 2.3026,
386
+ "step": 620
387
+ },
388
+ {
389
+ "epoch": 0.16,
390
+ "learning_rate": 0.00018931729161081835,
391
+ "loss": 2.19,
392
+ "step": 630
393
+ },
394
+ {
395
+ "epoch": 0.16,
396
+ "learning_rate": 0.00018894890006553237,
397
+ "loss": 2.1298,
398
+ "step": 640
399
+ },
400
+ {
401
+ "epoch": 0.17,
402
+ "learning_rate": 0.00018857463478674552,
403
+ "loss": 2.1882,
404
+ "step": 650
405
+ },
406
+ {
407
+ "epoch": 0.17,
408
+ "learning_rate": 0.00018819452048903561,
409
+ "loss": 2.1378,
410
+ "step": 660
411
+ },
412
+ {
413
+ "epoch": 0.17,
414
+ "learning_rate": 0.00018780858227321988,
415
+ "loss": 2.1886,
416
+ "step": 670
417
+ },
418
+ {
419
+ "epoch": 0.17,
420
+ "learning_rate": 0.0001874168456246975,
421
+ "loss": 2.1542,
422
+ "step": 680
423
+ },
424
+ {
425
+ "epoch": 0.18,
426
+ "learning_rate": 0.00018701933641176676,
427
+ "loss": 2.1299,
428
+ "step": 690
429
+ },
430
+ {
431
+ "epoch": 0.18,
432
+ "learning_rate": 0.00018661608088391671,
433
+ "loss": 2.164,
434
+ "step": 700
435
+ },
436
+ {
437
+ "epoch": 0.18,
438
+ "learning_rate": 0.0001862071056700939,
439
+ "loss": 2.1497,
440
+ "step": 710
441
+ },
442
+ {
443
+ "epoch": 0.18,
444
+ "learning_rate": 0.00018579243777694387,
445
+ "loss": 2.1869,
446
+ "step": 720
447
+ },
448
+ {
449
+ "epoch": 0.19,
450
+ "learning_rate": 0.00018537210458702773,
451
+ "loss": 2.1317,
452
+ "step": 730
453
+ },
454
+ {
455
+ "epoch": 0.19,
456
+ "learning_rate": 0.00018494613385701408,
457
+ "loss": 2.138,
458
+ "step": 740
459
+ },
460
+ {
461
+ "epoch": 0.19,
462
+ "learning_rate": 0.00018451455371584603,
463
+ "loss": 2.1337,
464
+ "step": 750
465
+ },
466
+ {
467
+ "epoch": 0.19,
468
+ "learning_rate": 0.00018407739266288365,
469
+ "loss": 2.1062,
470
+ "step": 760
471
+ },
472
+ {
473
+ "epoch": 0.2,
474
+ "learning_rate": 0.00018363467956602206,
475
+ "loss": 2.0968,
476
+ "step": 770
477
+ },
478
+ {
479
+ "epoch": 0.2,
480
+ "learning_rate": 0.0001831864436597853,
481
+ "loss": 2.095,
482
+ "step": 780
483
+ },
484
+ {
485
+ "epoch": 0.2,
486
+ "learning_rate": 0.00018273271454339552,
487
+ "loss": 2.1348,
488
+ "step": 790
489
+ },
490
+ {
491
+ "epoch": 0.2,
492
+ "learning_rate": 0.0001822735221788186,
493
+ "loss": 2.0977,
494
+ "step": 800
495
+ },
496
+ {
497
+ "epoch": 0.21,
498
+ "learning_rate": 0.0001818088968887857,
499
+ "loss": 2.1029,
500
+ "step": 810
501
+ },
502
+ {
503
+ "epoch": 0.21,
504
+ "learning_rate": 0.00018133886935479057,
505
+ "loss": 2.1493,
506
+ "step": 820
507
+ },
508
+ {
509
+ "epoch": 0.21,
510
+ "learning_rate": 0.0001808634706150639,
511
+ "loss": 2.088,
512
+ "step": 830
513
+ },
514
+ {
515
+ "epoch": 0.22,
516
+ "learning_rate": 0.0001803827320625234,
517
+ "loss": 2.1212,
518
+ "step": 840
519
+ },
520
+ {
521
+ "epoch": 0.22,
522
+ "learning_rate": 0.00017989668544270097,
523
+ "loss": 2.0288,
524
+ "step": 850
525
+ },
526
+ {
527
+ "epoch": 0.22,
528
+ "learning_rate": 0.0001794053628516462,
529
+ "loss": 2.0432,
530
+ "step": 860
531
+ },
532
+ {
533
+ "epoch": 0.22,
534
+ "learning_rate": 0.00017890879673380719,
535
+ "loss": 2.0355,
536
+ "step": 870
537
+ },
538
+ {
539
+ "epoch": 0.23,
540
+ "learning_rate": 0.00017840701987988772,
541
+ "loss": 2.0755,
542
+ "step": 880
543
+ },
544
+ {
545
+ "epoch": 0.23,
546
+ "learning_rate": 0.0001779000654246823,
547
+ "loss": 2.0453,
548
+ "step": 890
549
+ },
550
+ {
551
+ "epoch": 0.23,
552
+ "learning_rate": 0.00017738796684488772,
553
+ "loss": 2.0582,
554
+ "step": 900
555
+ },
556
+ {
557
+ "epoch": 0.23,
558
+ "learning_rate": 0.00017687075795689278,
559
+ "loss": 2.0768,
560
+ "step": 910
561
+ },
562
+ {
563
+ "epoch": 0.24,
564
+ "learning_rate": 0.00017634847291454503,
565
+ "loss": 2.091,
566
+ "step": 920
567
+ },
568
+ {
569
+ "epoch": 0.24,
570
+ "learning_rate": 0.0001758211462068955,
571
+ "loss": 2.0577,
572
+ "step": 930
573
+ },
574
+ {
575
+ "epoch": 0.24,
576
+ "learning_rate": 0.00017528881265592108,
577
+ "loss": 2.0704,
578
+ "step": 940
579
+ },
580
+ {
581
+ "epoch": 0.24,
582
+ "learning_rate": 0.00017475150741422528,
583
+ "loss": 2.0305,
584
+ "step": 950
585
+ },
586
+ {
587
+ "epoch": 0.25,
588
+ "learning_rate": 0.0001742092659627167,
589
+ "loss": 2.0256,
590
+ "step": 960
591
+ },
592
+ {
593
+ "epoch": 0.25,
594
+ "learning_rate": 0.0001736621241082663,
595
+ "loss": 2.0357,
596
+ "step": 970
597
+ },
598
+ {
599
+ "epoch": 0.25,
600
+ "learning_rate": 0.00017311011798134263,
601
+ "loss": 1.9873,
602
+ "step": 980
603
+ },
604
+ {
605
+ "epoch": 0.25,
606
+ "learning_rate": 0.00017255328403362606,
607
+ "loss": 2.0248,
608
+ "step": 990
609
+ },
610
+ {
611
+ "epoch": 0.26,
612
+ "learning_rate": 0.00017199165903560192,
613
+ "loss": 1.9927,
614
+ "step": 1000
615
+ },
616
+ {
617
+ "epoch": 0.26,
618
+ "eval_loss": 1.7968560457229614,
619
+ "eval_runtime": 2.032,
620
+ "eval_samples_per_second": 49.213,
621
+ "eval_steps_per_second": 1.969,
622
+ "step": 1000
623
+ },
624
+ {
625
+ "epoch": 0.26,
626
+ "learning_rate": 0.00017142528007413192,
627
+ "loss": 1.9916,
628
+ "step": 1010
629
+ },
630
+ {
631
+ "epoch": 0.26,
632
+ "learning_rate": 0.00017085418455000553,
633
+ "loss": 2.0123,
634
+ "step": 1020
635
+ },
636
+ {
637
+ "epoch": 0.26,
638
+ "learning_rate": 0.00017027841017546998,
639
+ "loss": 2.0141,
640
+ "step": 1030
641
+ },
642
+ {
643
+ "epoch": 0.27,
644
+ "learning_rate": 0.00016969799497174005,
645
+ "loss": 1.976,
646
+ "step": 1040
647
+ },
648
+ {
649
+ "epoch": 0.27,
650
+ "learning_rate": 0.0001691129772664873,
651
+ "loss": 1.9943,
652
+ "step": 1050
653
+ },
654
+ {
655
+ "epoch": 0.27,
656
+ "learning_rate": 0.00016852339569130905,
657
+ "loss": 1.9607,
658
+ "step": 1060
659
+ },
660
+ {
661
+ "epoch": 0.27,
662
+ "learning_rate": 0.00016792928917917755,
663
+ "loss": 1.9793,
664
+ "step": 1070
665
+ },
666
+ {
667
+ "epoch": 0.28,
668
+ "learning_rate": 0.00016733069696186868,
669
+ "loss": 1.988,
670
+ "step": 1080
671
+ },
672
+ {
673
+ "epoch": 0.28,
674
+ "learning_rate": 0.00016672765856737178,
675
+ "loss": 1.9143,
676
+ "step": 1090
677
+ },
678
+ {
679
+ "epoch": 0.28,
680
+ "learning_rate": 0.00016612021381727887,
681
+ "loss": 1.9971,
682
+ "step": 1100
683
+ },
684
+ {
685
+ "epoch": 0.28,
686
+ "learning_rate": 0.0001655084028241555,
687
+ "loss": 1.9675,
688
+ "step": 1110
689
+ },
690
+ {
691
+ "epoch": 0.29,
692
+ "learning_rate": 0.0001648922659888916,
693
+ "loss": 2.0046,
694
+ "step": 1120
695
+ },
696
+ {
697
+ "epoch": 0.29,
698
+ "learning_rate": 0.00016427184399803383,
699
+ "loss": 2.018,
700
+ "step": 1130
701
+ },
702
+ {
703
+ "epoch": 0.29,
704
+ "learning_rate": 0.0001636471778210988,
705
+ "loss": 1.999,
706
+ "step": 1140
707
+ },
708
+ {
709
+ "epoch": 0.29,
710
+ "learning_rate": 0.00016301830870786742,
711
+ "loss": 1.9143,
712
+ "step": 1150
713
+ },
714
+ {
715
+ "epoch": 0.3,
716
+ "learning_rate": 0.00016238527818566138,
717
+ "loss": 1.9324,
718
+ "step": 1160
719
+ },
720
+ {
721
+ "epoch": 0.3,
722
+ "learning_rate": 0.0001617481280566005,
723
+ "loss": 1.9493,
724
+ "step": 1170
725
+ },
726
+ {
727
+ "epoch": 0.3,
728
+ "learning_rate": 0.00016110690039484267,
729
+ "loss": 1.9507,
730
+ "step": 1180
731
+ },
732
+ {
733
+ "epoch": 0.3,
734
+ "learning_rate": 0.00016046163754380514,
735
+ "loss": 1.9408,
736
+ "step": 1190
737
+ },
738
+ {
739
+ "epoch": 0.31,
740
+ "learning_rate": 0.00015981238211336873,
741
+ "loss": 2.0009,
742
+ "step": 1200
743
+ },
744
+ {
745
+ "epoch": 0.31,
746
+ "learning_rate": 0.00015915917697706386,
747
+ "loss": 1.9684,
748
+ "step": 1210
749
+ },
750
+ {
751
+ "epoch": 0.31,
752
+ "learning_rate": 0.0001585020652692394,
753
+ "loss": 1.9373,
754
+ "step": 1220
755
+ },
756
+ {
757
+ "epoch": 0.31,
758
+ "learning_rate": 0.0001578410903822145,
759
+ "loss": 1.9038,
760
+ "step": 1230
761
+ },
762
+ {
763
+ "epoch": 0.32,
764
+ "learning_rate": 0.00015717629596341288,
765
+ "loss": 1.9065,
766
+ "step": 1240
767
+ },
768
+ {
769
+ "epoch": 0.32,
770
+ "learning_rate": 0.00015650772591248085,
771
+ "loss": 1.9327,
772
+ "step": 1250
773
+ },
774
+ {
775
+ "epoch": 0.32,
776
+ "learning_rate": 0.0001558354243783882,
777
+ "loss": 1.935,
778
+ "step": 1260
779
+ },
780
+ {
781
+ "epoch": 0.33,
782
+ "learning_rate": 0.000155159435756513,
783
+ "loss": 1.9339,
784
+ "step": 1270
785
+ },
786
+ {
787
+ "epoch": 0.33,
788
+ "learning_rate": 0.00015447980468570979,
789
+ "loss": 1.929,
790
+ "step": 1280
791
+ },
792
+ {
793
+ "epoch": 0.33,
794
+ "learning_rate": 0.00015379657604536203,
795
+ "loss": 1.9184,
796
+ "step": 1290
797
+ },
798
+ {
799
+ "epoch": 0.33,
800
+ "learning_rate": 0.00015310979495241825,
801
+ "loss": 1.9242,
802
+ "step": 1300
803
+ },
804
+ {
805
+ "epoch": 0.34,
806
+ "learning_rate": 0.00015241950675841306,
807
+ "loss": 1.9133,
808
+ "step": 1310
809
+ },
810
+ {
811
+ "epoch": 0.34,
812
+ "learning_rate": 0.0001517257570464721,
813
+ "loss": 1.9014,
814
+ "step": 1320
815
+ },
816
+ {
817
+ "epoch": 0.34,
818
+ "learning_rate": 0.00015102859162830209,
819
+ "loss": 1.9283,
820
+ "step": 1330
821
+ },
822
+ {
823
+ "epoch": 0.34,
824
+ "learning_rate": 0.00015032805654116566,
825
+ "loss": 1.8821,
826
+ "step": 1340
827
+ },
828
+ {
829
+ "epoch": 0.35,
830
+ "learning_rate": 0.00014962419804484127,
831
+ "loss": 1.8956,
832
+ "step": 1350
833
+ },
834
+ {
835
+ "epoch": 0.35,
836
+ "learning_rate": 0.00014891706261856844,
837
+ "loss": 1.9166,
838
+ "step": 1360
839
+ },
840
+ {
841
+ "epoch": 0.35,
842
+ "learning_rate": 0.00014820669695797843,
843
+ "loss": 1.9385,
844
+ "step": 1370
845
+ },
846
+ {
847
+ "epoch": 0.35,
848
+ "learning_rate": 0.00014749314797201084,
849
+ "loss": 1.9325,
850
+ "step": 1380
851
+ },
852
+ {
853
+ "epoch": 0.36,
854
+ "learning_rate": 0.00014677646277981593,
855
+ "loss": 1.8642,
856
+ "step": 1390
857
+ },
858
+ {
859
+ "epoch": 0.36,
860
+ "learning_rate": 0.00014605668870764293,
861
+ "loss": 1.8964,
862
+ "step": 1400
863
+ },
864
+ {
865
+ "epoch": 0.36,
866
+ "learning_rate": 0.0001453338732857152,
867
+ "loss": 1.8727,
868
+ "step": 1410
869
+ },
870
+ {
871
+ "epoch": 0.36,
872
+ "learning_rate": 0.00014460806424509132,
873
+ "loss": 1.8644,
874
+ "step": 1420
875
+ },
876
+ {
877
+ "epoch": 0.37,
878
+ "learning_rate": 0.0001438793095145132,
879
+ "loss": 1.8591,
880
+ "step": 1430
881
+ },
882
+ {
883
+ "epoch": 0.37,
884
+ "learning_rate": 0.00014314765721724118,
885
+ "loss": 1.8931,
886
+ "step": 1440
887
+ },
888
+ {
889
+ "epoch": 0.37,
890
+ "learning_rate": 0.00014241315566787617,
891
+ "loss": 1.8953,
892
+ "step": 1450
893
+ },
894
+ {
895
+ "epoch": 0.37,
896
+ "learning_rate": 0.00014167585336916926,
897
+ "loss": 1.8672,
898
+ "step": 1460
899
+ },
900
+ {
901
+ "epoch": 0.38,
902
+ "learning_rate": 0.0001409357990088188,
903
+ "loss": 1.8414,
904
+ "step": 1470
905
+ },
906
+ {
907
+ "epoch": 0.38,
908
+ "learning_rate": 0.00014019304145625517,
909
+ "loss": 1.8838,
910
+ "step": 1480
911
+ },
912
+ {
913
+ "epoch": 0.38,
914
+ "learning_rate": 0.00013944762975941403,
915
+ "loss": 1.856,
916
+ "step": 1490
917
+ },
918
+ {
919
+ "epoch": 0.38,
920
+ "learning_rate": 0.00013877453061830693,
921
+ "loss": 1.8715,
922
+ "step": 1500
923
+ },
924
+ {
925
+ "epoch": 0.39,
926
+ "learning_rate": 0.00013802421179949775,
927
+ "loss": 1.8323,
928
+ "step": 1510
929
+ },
930
+ {
931
+ "epoch": 0.39,
932
+ "learning_rate": 0.00013727138205490392,
933
+ "loss": 1.898,
934
+ "step": 1520
935
+ },
936
+ {
937
+ "epoch": 0.39,
938
+ "learning_rate": 0.00013651609109757744,
939
+ "loss": 1.8455,
940
+ "step": 1530
941
+ },
942
+ {
943
+ "epoch": 0.39,
944
+ "learning_rate": 0.00013575838880309623,
945
+ "loss": 1.8788,
946
+ "step": 1540
947
+ },
948
+ {
949
+ "epoch": 0.4,
950
+ "learning_rate": 0.00013499832520627076,
951
+ "loss": 1.8881,
952
+ "step": 1550
953
+ },
954
+ {
955
+ "epoch": 0.4,
956
+ "learning_rate": 0.00013423595049783974,
957
+ "loss": 1.8326,
958
+ "step": 1560
959
+ },
960
+ {
961
+ "epoch": 0.4,
962
+ "learning_rate": 0.00013347131502115616,
963
+ "loss": 1.845,
964
+ "step": 1570
965
+ },
966
+ {
967
+ "epoch": 0.4,
968
+ "learning_rate": 0.00013270446926886252,
969
+ "loss": 1.8768,
970
+ "step": 1580
971
+ },
972
+ {
973
+ "epoch": 0.41,
974
+ "learning_rate": 0.00013193546387955672,
975
+ "loss": 1.8571,
976
+ "step": 1590
977
+ },
978
+ {
979
+ "epoch": 0.41,
980
+ "learning_rate": 0.00013116434963444815,
981
+ "loss": 1.8596,
982
+ "step": 1600
983
+ },
984
+ {
985
+ "epoch": 0.41,
986
+ "learning_rate": 0.00013039117745400426,
987
+ "loss": 1.8515,
988
+ "step": 1610
989
+ },
990
+ {
991
+ "epoch": 0.41,
992
+ "learning_rate": 0.00012961599839458825,
993
+ "loss": 1.8281,
994
+ "step": 1620
995
+ },
996
+ {
997
+ "epoch": 0.42,
998
+ "learning_rate": 0.00012883886364508718,
999
+ "loss": 1.7872,
1000
+ "step": 1630
1001
+ },
1002
+ {
1003
+ "epoch": 0.42,
1004
+ "learning_rate": 0.00012805982452353213,
1005
+ "loss": 1.8333,
1006
+ "step": 1640
1007
+ },
1008
+ {
1009
+ "epoch": 0.42,
1010
+ "learning_rate": 0.00012727893247370918,
1011
+ "loss": 1.7989,
1012
+ "step": 1650
1013
+ },
1014
+ {
1015
+ "epoch": 0.42,
1016
+ "learning_rate": 0.00012657458799214414,
1017
+ "loss": 1.8662,
1018
+ "step": 1660
1019
+ },
1020
+ {
1021
+ "epoch": 0.43,
1022
+ "learning_rate": 0.00012579031754172398,
1023
+ "loss": 1.8667,
1024
+ "step": 1670
1025
+ },
1026
+ {
1027
+ "epoch": 0.43,
1028
+ "learning_rate": 0.0001250043440297479,
1029
+ "loss": 1.821,
1030
+ "step": 1680
1031
+ },
1032
+ {
1033
+ "epoch": 0.43,
1034
+ "learning_rate": 0.0001242167193579139,
1035
+ "loss": 1.8333,
1036
+ "step": 1690
1037
+ },
1038
+ {
1039
+ "epoch": 0.44,
1040
+ "learning_rate": 0.00012342749553695423,
1041
+ "loss": 1.8554,
1042
+ "step": 1700
1043
+ },
1044
+ {
1045
+ "epoch": 0.44,
1046
+ "learning_rate": 0.0001226367246832007,
1047
+ "loss": 1.8308,
1048
+ "step": 1710
1049
+ },
1050
+ {
1051
+ "epoch": 0.44,
1052
+ "learning_rate": 0.00012184445901514343,
1053
+ "loss": 1.8215,
1054
+ "step": 1720
1055
+ },
1056
+ {
1057
+ "epoch": 0.44,
1058
+ "learning_rate": 0.00012105075084998242,
1059
+ "loss": 1.8347,
1060
+ "step": 1730
1061
+ },
1062
+ {
1063
+ "epoch": 0.45,
1064
+ "learning_rate": 0.00012025565260017291,
1065
+ "loss": 1.7671,
1066
+ "step": 1740
1067
+ },
1068
+ {
1069
+ "epoch": 0.45,
1070
+ "learning_rate": 0.00011945921676996417,
1071
+ "loss": 1.8035,
1072
+ "step": 1750
1073
+ },
1074
+ {
1075
+ "epoch": 0.45,
1076
+ "learning_rate": 0.00011866149595193254,
1077
+ "loss": 1.8008,
1078
+ "step": 1760
1079
+ },
1080
+ {
1081
+ "epoch": 0.45,
1082
+ "learning_rate": 0.0001178625428235085,
1083
+ "loss": 1.8057,
1084
+ "step": 1770
1085
+ },
1086
+ {
1087
+ "epoch": 0.46,
1088
+ "learning_rate": 0.00011706241014349788,
1089
+ "loss": 1.8286,
1090
+ "step": 1780
1091
+ },
1092
+ {
1093
+ "epoch": 0.46,
1094
+ "learning_rate": 0.00011626115074859829,
1095
+ "loss": 1.7838,
1096
+ "step": 1790
1097
+ },
1098
+ {
1099
+ "epoch": 0.46,
1100
+ "learning_rate": 0.00011545881754990972,
1101
+ "loss": 1.7678,
1102
+ "step": 1800
1103
+ },
1104
+ {
1105
+ "epoch": 0.46,
1106
+ "learning_rate": 0.00011465546352944083,
1107
+ "loss": 1.8015,
1108
+ "step": 1810
1109
+ },
1110
+ {
1111
+ "epoch": 0.47,
1112
+ "learning_rate": 0.00011385114173661003,
1113
+ "loss": 1.773,
1114
+ "step": 1820
1115
+ },
1116
+ {
1117
+ "epoch": 0.47,
1118
+ "learning_rate": 0.00011304590528474257,
1119
+ "loss": 1.7528,
1120
+ "step": 1830
1121
+ },
1122
+ {
1123
+ "epoch": 0.47,
1124
+ "learning_rate": 0.00011223980734756319,
1125
+ "loss": 1.7651,
1126
+ "step": 1840
1127
+ },
1128
+ {
1129
+ "epoch": 0.47,
1130
+ "learning_rate": 0.00011143290115568473,
1131
+ "loss": 1.7817,
1132
+ "step": 1850
1133
+ },
1134
+ {
1135
+ "epoch": 0.48,
1136
+ "learning_rate": 0.00011062523999309291,
1137
+ "loss": 1.7699,
1138
+ "step": 1860
1139
+ },
1140
+ {
1141
+ "epoch": 0.48,
1142
+ "learning_rate": 0.00010981687719362807,
1143
+ "loss": 1.7672,
1144
+ "step": 1870
1145
+ },
1146
+ {
1147
+ "epoch": 0.48,
1148
+ "learning_rate": 0.00010900786613746299,
1149
+ "loss": 1.789,
1150
+ "step": 1880
1151
+ },
1152
+ {
1153
+ "epoch": 0.48,
1154
+ "learning_rate": 0.00010819826024757807,
1155
+ "loss": 1.7622,
1156
+ "step": 1890
1157
+ },
1158
+ {
1159
+ "epoch": 0.49,
1160
+ "learning_rate": 0.00010738811298623348,
1161
+ "loss": 1.7543,
1162
+ "step": 1900
1163
+ },
1164
+ {
1165
+ "epoch": 0.49,
1166
+ "learning_rate": 0.00010657747785143882,
1167
+ "loss": 1.7432,
1168
+ "step": 1910
1169
+ },
1170
+ {
1171
+ "epoch": 0.49,
1172
+ "learning_rate": 0.00010576640837342036,
1173
+ "loss": 1.7765,
1174
+ "step": 1920
1175
+ },
1176
+ {
1177
+ "epoch": 0.49,
1178
+ "learning_rate": 0.00010495495811108622,
1179
+ "loss": 1.768,
1180
+ "step": 1930
1181
+ },
1182
+ {
1183
+ "epoch": 0.5,
1184
+ "learning_rate": 0.00010414318064848956,
1185
+ "loss": 1.7852,
1186
+ "step": 1940
1187
+ },
1188
+ {
1189
+ "epoch": 0.5,
1190
+ "learning_rate": 0.0001033311295912902,
1191
+ "loss": 1.7551,
1192
+ "step": 1950
1193
+ },
1194
+ {
1195
+ "epoch": 0.5,
1196
+ "learning_rate": 0.0001025188585632147,
1197
+ "loss": 1.7474,
1198
+ "step": 1960
1199
+ },
1200
+ {
1201
+ "epoch": 0.5,
1202
+ "learning_rate": 0.00010186891940623151,
1203
+ "loss": 1.7737,
1204
+ "step": 1970
1205
+ },
1206
+ {
1207
+ "epoch": 0.51,
1208
+ "learning_rate": 0.00010105638760647513,
1209
+ "loss": 1.7802,
1210
+ "step": 1980
1211
+ },
1212
+ {
1213
+ "epoch": 0.51,
1214
+ "learning_rate": 0.00010024378604824765,
1215
+ "loss": 1.7723,
1216
+ "step": 1990
1217
+ },
1218
+ {
1219
+ "epoch": 0.51,
1220
+ "learning_rate": 9.943116839162797e-05,
1221
+ "loss": 1.7412,
1222
+ "step": 2000
1223
+ },
1224
+ {
1225
+ "epoch": 0.51,
1226
+ "eval_loss": 1.5315768718719482,
1227
+ "eval_runtime": 2.0299,
1228
+ "eval_samples_per_second": 49.264,
1229
+ "eval_steps_per_second": 1.971,
1230
+ "step": 2000
1231
+ },
1232
+ {
1233
+ "epoch": 0.51,
1234
+ "learning_rate": 9.869984308751394e-05,
1235
+ "loss": 1.7468,
1236
+ "step": 2010
1237
+ },
1238
+ {
1239
+ "epoch": 0.52,
1240
+ "learning_rate": 9.788734267841828e-05,
1241
+ "loss": 1.7681,
1242
+ "step": 2020
1243
+ },
1244
+ {
1245
+ "epoch": 0.52,
1246
+ "learning_rate": 9.707498177847988e-05,
1247
+ "loss": 1.8109,
1248
+ "step": 2030
1249
+ },
1250
+ {
1251
+ "epoch": 0.52,
1252
+ "learning_rate": 9.626281403188578e-05,
1253
+ "loss": 1.72,
1254
+ "step": 2040
1255
+ },
1256
+ {
1257
+ "epoch": 0.52,
1258
+ "learning_rate": 9.545089307006811e-05,
1259
+ "loss": 1.703,
1260
+ "step": 2050
1261
+ },
1262
+ {
1263
+ "epoch": 0.53,
1264
+ "learning_rate": 9.463927250816272e-05,
1265
+ "loss": 1.7624,
1266
+ "step": 2060
1267
+ },
1268
+ {
1269
+ "epoch": 0.53,
1270
+ "learning_rate": 9.382800594146841e-05,
1271
+ "loss": 1.7587,
1272
+ "step": 2070
1273
+ },
1274
+ {
1275
+ "epoch": 0.53,
1276
+ "learning_rate": 9.301714694190808e-05,
1277
+ "loss": 1.7375,
1278
+ "step": 2080
1279
+ },
1280
+ {
1281
+ "epoch": 0.54,
1282
+ "learning_rate": 9.220674905449091e-05,
1283
+ "loss": 1.7579,
1284
+ "step": 2090
1285
+ },
1286
+ {
1287
+ "epoch": 0.54,
1288
+ "learning_rate": 9.139686579377649e-05,
1289
+ "loss": 1.7396,
1290
+ "step": 2100
1291
+ },
1292
+ {
1293
+ "epoch": 0.54,
1294
+ "learning_rate": 9.058755064034127e-05,
1295
+ "loss": 1.6666,
1296
+ "step": 2110
1297
+ },
1298
+ {
1299
+ "epoch": 0.54,
1300
+ "learning_rate": 8.977885703724658e-05,
1301
+ "loss": 1.7319,
1302
+ "step": 2120
1303
+ },
1304
+ {
1305
+ "epoch": 0.55,
1306
+ "learning_rate": 8.897083838650984e-05,
1307
+ "loss": 1.7387,
1308
+ "step": 2130
1309
+ },
1310
+ {
1311
+ "epoch": 0.55,
1312
+ "learning_rate": 8.816354804557807e-05,
1313
+ "loss": 1.7204,
1314
+ "step": 2140
1315
+ },
1316
+ {
1317
+ "epoch": 0.55,
1318
+ "learning_rate": 8.743765350485347e-05,
1319
+ "loss": 1.7183,
1320
+ "step": 2150
1321
+ },
1322
+ {
1323
+ "epoch": 0.55,
1324
+ "learning_rate": 8.671243090320367e-05,
1325
+ "loss": 1.7173,
1326
+ "step": 2160
1327
+ },
1328
+ {
1329
+ "epoch": 0.56,
1330
+ "learning_rate": 8.590746326848647e-05,
1331
+ "loss": 1.7185,
1332
+ "step": 2170
1333
+ },
1334
+ {
1335
+ "epoch": 0.56,
1336
+ "learning_rate": 8.510342623330503e-05,
1337
+ "loss": 1.7228,
1338
+ "step": 2180
1339
+ },
1340
+ {
1341
+ "epoch": 0.56,
1342
+ "learning_rate": 8.430037289218072e-05,
1343
+ "loss": 1.7542,
1344
+ "step": 2190
1345
+ },
1346
+ {
1347
+ "epoch": 0.56,
1348
+ "learning_rate": 8.349835627467664e-05,
1349
+ "loss": 1.7005,
1350
+ "step": 2200
1351
+ },
1352
+ {
1353
+ "epoch": 0.57,
1354
+ "learning_rate": 8.269742934189604e-05,
1355
+ "loss": 1.7211,
1356
+ "step": 2210
1357
+ },
1358
+ {
1359
+ "epoch": 0.57,
1360
+ "learning_rate": 8.189764498298483e-05,
1361
+ "loss": 1.7455,
1362
+ "step": 2220
1363
+ },
1364
+ {
1365
+ "epoch": 0.57,
1366
+ "learning_rate": 8.109905601163912e-05,
1367
+ "loss": 1.6729,
1368
+ "step": 2230
1369
+ },
1370
+ {
1371
+ "epoch": 0.57,
1372
+ "learning_rate": 8.030171516261782e-05,
1373
+ "loss": 1.7341,
1374
+ "step": 2240
1375
+ },
1376
+ {
1377
+ "epoch": 0.58,
1378
+ "learning_rate": 7.950567508826012e-05,
1379
+ "loss": 1.7286,
1380
+ "step": 2250
1381
+ },
1382
+ {
1383
+ "epoch": 0.58,
1384
+ "learning_rate": 7.871098835500859e-05,
1385
+ "loss": 1.7079,
1386
+ "step": 2260
1387
+ },
1388
+ {
1389
+ "epoch": 0.58,
1390
+ "learning_rate": 7.791770743993817e-05,
1391
+ "loss": 1.7001,
1392
+ "step": 2270
1393
+ },
1394
+ {
1395
+ "epoch": 0.58,
1396
+ "learning_rate": 7.712588472729058e-05,
1397
+ "loss": 1.7239,
1398
+ "step": 2280
1399
+ },
1400
+ {
1401
+ "epoch": 0.59,
1402
+ "learning_rate": 7.633557250501531e-05,
1403
+ "loss": 1.7032,
1404
+ "step": 2290
1405
+ },
1406
+ {
1407
+ "epoch": 0.59,
1408
+ "learning_rate": 7.55468229613168e-05,
1409
+ "loss": 1.6624,
1410
+ "step": 2300
1411
+ },
1412
+ {
1413
+ "epoch": 0.59,
1414
+ "learning_rate": 7.475968818120798e-05,
1415
+ "loss": 1.7258,
1416
+ "step": 2310
1417
+ },
1418
+ {
1419
+ "epoch": 0.59,
1420
+ "learning_rate": 7.405269046437083e-05,
1421
+ "loss": 1.6995,
1422
+ "step": 2320
1423
+ },
1424
+ {
1425
+ "epoch": 0.6,
1426
+ "learning_rate": 7.342541200785587e-05,
1427
+ "loss": 1.6715,
1428
+ "step": 2330
1429
+ },
1430
+ {
1431
+ "epoch": 0.6,
1432
+ "learning_rate": 7.26428964082281e-05,
1433
+ "loss": 1.7005,
1434
+ "step": 2340
1435
+ },
1436
+ {
1437
+ "epoch": 0.6,
1438
+ "learning_rate": 7.186218733274769e-05,
1439
+ "loss": 1.6575,
1440
+ "step": 2350
1441
+ },
1442
+ {
1443
+ "epoch": 0.6,
1444
+ "learning_rate": 7.1083336335476e-05,
1445
+ "loss": 1.7001,
1446
+ "step": 2360
1447
+ },
1448
+ {
1449
+ "epoch": 0.61,
1450
+ "learning_rate": 7.030639484777641e-05,
1451
+ "loss": 1.6679,
1452
+ "step": 2370
1453
+ },
1454
+ {
1455
+ "epoch": 0.61,
1456
+ "learning_rate": 6.953141417491781e-05,
1457
+ "loss": 1.7034,
1458
+ "step": 2380
1459
+ },
1460
+ {
1461
+ "epoch": 0.61,
1462
+ "learning_rate": 6.875844549268706e-05,
1463
+ "loss": 1.6804,
1464
+ "step": 2390
1465
+ },
1466
+ {
1467
+ "epoch": 0.61,
1468
+ "learning_rate": 6.798753984400916e-05,
1469
+ "loss": 1.6844,
1470
+ "step": 2400
1471
+ },
1472
+ {
1473
+ "epoch": 0.62,
1474
+ "learning_rate": 6.721874813557699e-05,
1475
+ "loss": 1.7038,
1476
+ "step": 2410
1477
+ },
1478
+ {
1479
+ "epoch": 0.62,
1480
+ "learning_rate": 6.645212113448953e-05,
1481
+ "loss": 1.6728,
1482
+ "step": 2420
1483
+ },
1484
+ {
1485
+ "epoch": 0.62,
1486
+ "learning_rate": 6.568770946489948e-05,
1487
+ "loss": 1.682,
1488
+ "step": 2430
1489
+ },
1490
+ {
1491
+ "epoch": 0.62,
1492
+ "learning_rate": 6.492556360467025e-05,
1493
+ "loss": 1.6799,
1494
+ "step": 2440
1495
+ },
1496
+ {
1497
+ "epoch": 0.63,
1498
+ "learning_rate": 6.416573388204282e-05,
1499
+ "loss": 1.66,
1500
+ "step": 2450
1501
+ },
1502
+ {
1503
+ "epoch": 0.63,
1504
+ "learning_rate": 6.340827047231211e-05,
1505
+ "loss": 1.6806,
1506
+ "step": 2460
1507
+ },
1508
+ {
1509
+ "epoch": 0.63,
1510
+ "learning_rate": 6.265322339451376e-05,
1511
+ "loss": 1.6661,
1512
+ "step": 2470
1513
+ },
1514
+ {
1515
+ "epoch": 0.63,
1516
+ "learning_rate": 6.190064250812124e-05,
1517
+ "loss": 1.6696,
1518
+ "step": 2480
1519
+ },
1520
+ {
1521
+ "epoch": 0.64,
1522
+ "learning_rate": 6.115057750975312e-05,
1523
+ "loss": 1.6153,
1524
+ "step": 2490
1525
+ },
1526
+ {
1527
+ "epoch": 0.64,
1528
+ "learning_rate": 6.040307792989157e-05,
1529
+ "loss": 1.6824,
1530
+ "step": 2500
1531
+ },
1532
+ {
1533
+ "epoch": 0.64,
1534
+ "learning_rate": 5.9658193129611604e-05,
1535
+ "loss": 1.6886,
1536
+ "step": 2510
1537
+ },
1538
+ {
1539
+ "epoch": 0.65,
1540
+ "learning_rate": 5.891597229732135e-05,
1541
+ "loss": 1.6358,
1542
+ "step": 2520
1543
+ },
1544
+ {
1545
+ "epoch": 0.65,
1546
+ "learning_rate": 5.8176464445514166e-05,
1547
+ "loss": 1.6462,
1548
+ "step": 2530
1549
+ },
1550
+ {
1551
+ "epoch": 0.65,
1552
+ "learning_rate": 5.7439718407531906e-05,
1553
+ "loss": 1.6434,
1554
+ "step": 2540
1555
+ },
1556
+ {
1557
+ "epoch": 0.65,
1558
+ "learning_rate": 5.670578283434016e-05,
1559
+ "loss": 1.6459,
1560
+ "step": 2550
1561
+ },
1562
+ {
1563
+ "epoch": 0.66,
1564
+ "learning_rate": 5.5974706191315884e-05,
1565
+ "loss": 1.6705,
1566
+ "step": 2560
1567
+ },
1568
+ {
1569
+ "epoch": 0.66,
1570
+ "learning_rate": 5.5246536755046706e-05,
1571
+ "loss": 1.6638,
1572
+ "step": 2570
1573
+ },
1574
+ {
1575
+ "epoch": 0.66,
1576
+ "learning_rate": 5.452132261014304e-05,
1577
+ "loss": 1.6656,
1578
+ "step": 2580
1579
+ },
1580
+ {
1581
+ "epoch": 0.66,
1582
+ "learning_rate": 5.379911164606304e-05,
1583
+ "loss": 1.6572,
1584
+ "step": 2590
1585
+ },
1586
+ {
1587
+ "epoch": 0.67,
1588
+ "learning_rate": 5.315172891887351e-05,
1589
+ "loss": 1.643,
1590
+ "step": 2600
1591
+ },
1592
+ {
1593
+ "epoch": 0.67,
1594
+ "learning_rate": 5.2435355221012797e-05,
1595
+ "loss": 1.6544,
1596
+ "step": 2610
1597
+ },
1598
+ {
1599
+ "epoch": 0.67,
1600
+ "learning_rate": 5.172212245066537e-05,
1601
+ "loss": 1.628,
1602
+ "step": 2620
1603
+ },
1604
+ {
1605
+ "epoch": 0.67,
1606
+ "learning_rate": 5.1012077706100125e-05,
1607
+ "loss": 1.6378,
1608
+ "step": 2630
1609
+ },
1610
+ {
1611
+ "epoch": 0.68,
1612
+ "learning_rate": 5.0305267875065087e-05,
1613
+ "loss": 1.6475,
1614
+ "step": 2640
1615
+ },
1616
+ {
1617
+ "epoch": 0.68,
1618
+ "learning_rate": 4.9601739631690836e-05,
1619
+ "loss": 1.5959,
1620
+ "step": 2650
1621
+ },
1622
+ {
1623
+ "epoch": 0.68,
1624
+ "learning_rate": 4.897140837169796e-05,
1625
+ "loss": 1.657,
1626
+ "step": 2660
1627
+ },
1628
+ {
1629
+ "epoch": 0.68,
1630
+ "learning_rate": 4.827424295352793e-05,
1631
+ "loss": 1.6716,
1632
+ "step": 2670
1633
+ },
1634
+ {
1635
+ "epoch": 0.69,
1636
+ "learning_rate": 4.758049324158693e-05,
1637
+ "loss": 1.59,
1638
+ "step": 2680
1639
+ },
1640
+ {
1641
+ "epoch": 0.69,
1642
+ "learning_rate": 4.6890205047581745e-05,
1643
+ "loss": 1.6442,
1644
+ "step": 2690
1645
+ },
1646
+ {
1647
+ "epoch": 0.69,
1648
+ "learning_rate": 4.6203423954637995e-05,
1649
+ "loss": 1.6152,
1650
+ "step": 2700
1651
+ },
1652
+ {
1653
+ "epoch": 0.69,
1654
+ "learning_rate": 4.552019531429019e-05,
1655
+ "loss": 1.6446,
1656
+ "step": 2710
1657
+ },
1658
+ {
1659
+ "epoch": 0.7,
1660
+ "learning_rate": 4.484056424348703e-05,
1661
+ "loss": 1.6216,
1662
+ "step": 2720
1663
+ },
1664
+ {
1665
+ "epoch": 0.7,
1666
+ "learning_rate": 4.416457562161184e-05,
1667
+ "loss": 1.6534,
1668
+ "step": 2730
1669
+ },
1670
+ {
1671
+ "epoch": 0.7,
1672
+ "learning_rate": 4.349227408751919e-05,
1673
+ "loss": 1.6474,
1674
+ "step": 2740
1675
+ },
1676
+ {
1677
+ "epoch": 0.7,
1678
+ "learning_rate": 4.282370403658717e-05,
1679
+ "loss": 1.6338,
1680
+ "step": 2750
1681
+ },
1682
+ {
1683
+ "epoch": 0.71,
1684
+ "learning_rate": 4.2158909617785525e-05,
1685
+ "loss": 1.6473,
1686
+ "step": 2760
1687
+ },
1688
+ {
1689
+ "epoch": 0.71,
1690
+ "learning_rate": 4.149793473076058e-05,
1691
+ "loss": 1.6315,
1692
+ "step": 2770
1693
+ },
1694
+ {
1695
+ "epoch": 0.71,
1696
+ "learning_rate": 4.084082302293617e-05,
1697
+ "loss": 1.6516,
1698
+ "step": 2780
1699
+ },
1700
+ {
1701
+ "epoch": 0.71,
1702
+ "learning_rate": 4.018761788663127e-05,
1703
+ "loss": 1.6112,
1704
+ "step": 2790
1705
+ },
1706
+ {
1707
+ "epoch": 0.72,
1708
+ "learning_rate": 3.953836245619488e-05,
1709
+ "loss": 1.6077,
1710
+ "step": 2800
1711
+ },
1712
+ {
1713
+ "epoch": 0.72,
1714
+ "learning_rate": 3.889309960515738e-05,
1715
+ "loss": 1.6182,
1716
+ "step": 2810
1717
+ },
1718
+ {
1719
+ "epoch": 0.72,
1720
+ "learning_rate": 3.82518719433995e-05,
1721
+ "loss": 1.6072,
1722
+ "step": 2820
1723
+ },
1724
+ {
1725
+ "epoch": 0.72,
1726
+ "learning_rate": 3.761472181433865e-05,
1727
+ "loss": 1.6062,
1728
+ "step": 2830
1729
+ },
1730
+ {
1731
+ "epoch": 0.73,
1732
+ "learning_rate": 3.6981691292132604e-05,
1733
+ "loss": 1.6332,
1734
+ "step": 2840
1735
+ },
1736
+ {
1737
+ "epoch": 0.73,
1738
+ "learning_rate": 3.6352822178901235e-05,
1739
+ "loss": 1.6393,
1740
+ "step": 2850
1741
+ },
1742
+ {
1743
+ "epoch": 0.73,
1744
+ "learning_rate": 3.5728156001966154e-05,
1745
+ "loss": 1.6401,
1746
+ "step": 2860
1747
+ },
1748
+ {
1749
+ "epoch": 0.73,
1750
+ "learning_rate": 3.5169584051980575e-05,
1751
+ "loss": 1.6234,
1752
+ "step": 2870
1753
+ },
1754
+ {
1755
+ "epoch": 0.74,
1756
+ "learning_rate": 3.461447977339909e-05,
1757
+ "loss": 1.5814,
1758
+ "step": 2880
1759
+ },
1760
+ {
1761
+ "epoch": 0.74,
1762
+ "learning_rate": 3.4001800370596834e-05,
1763
+ "loss": 1.6018,
1764
+ "step": 2890
1765
+ },
1766
+ {
1767
+ "epoch": 0.74,
1768
+ "learning_rate": 3.339347915362796e-05,
1769
+ "loss": 1.6172,
1770
+ "step": 2900
1771
+ },
1772
+ {
1773
+ "epoch": 0.74,
1774
+ "learning_rate": 3.278955629293534e-05,
1775
+ "loss": 1.6042,
1776
+ "step": 2910
1777
+ },
1778
+ {
1779
+ "epoch": 0.75,
1780
+ "learning_rate": 3.219007166851673e-05,
1781
+ "loss": 1.6119,
1782
+ "step": 2920
1783
+ },
1784
+ {
1785
+ "epoch": 0.75,
1786
+ "learning_rate": 3.1595064867291394e-05,
1787
+ "loss": 1.621,
1788
+ "step": 2930
1789
+ },
1790
+ {
1791
+ "epoch": 0.75,
1792
+ "learning_rate": 3.1004575180485885e-05,
1793
+ "loss": 1.6046,
1794
+ "step": 2940
1795
+ },
1796
+ {
1797
+ "epoch": 0.76,
1798
+ "learning_rate": 3.0418641601039366e-05,
1799
+ "loss": 1.5811,
1800
+ "step": 2950
1801
+ },
1802
+ {
1803
+ "epoch": 0.76,
1804
+ "learning_rate": 2.9837302821028956e-05,
1805
+ "loss": 1.5635,
1806
+ "step": 2960
1807
+ },
1808
+ {
1809
+ "epoch": 0.76,
1810
+ "learning_rate": 2.926059722911447e-05,
1811
+ "loss": 1.6193,
1812
+ "step": 2970
1813
+ },
1814
+ {
1815
+ "epoch": 0.76,
1816
+ "learning_rate": 2.86885629080035e-05,
1817
+ "loss": 1.6067,
1818
+ "step": 2980
1819
+ },
1820
+ {
1821
+ "epoch": 0.77,
1822
+ "learning_rate": 2.823432416081132e-05,
1823
+ "loss": 1.5795,
1824
+ "step": 2990
1825
+ },
1826
+ {
1827
+ "epoch": 0.77,
1828
+ "learning_rate": 2.7670793109350358e-05,
1829
+ "loss": 1.5891,
1830
+ "step": 3000
1831
+ },
1832
+ {
1833
+ "epoch": 0.77,
1834
+ "eval_loss": 1.3908636569976807,
1835
+ "eval_runtime": 2.0291,
1836
+ "eval_samples_per_second": 49.282,
1837
+ "eval_steps_per_second": 1.971,
1838
+ "step": 3000
1839
+ },
1840
+ {
1841
+ "epoch": 0.77,
1842
+ "learning_rate": 2.7112038311280828e-05,
1843
+ "loss": 1.599,
1844
+ "step": 3010
1845
+ },
1846
+ {
1847
+ "epoch": 0.77,
1848
+ "learning_rate": 2.655809666393112e-05,
1849
+ "loss": 1.5877,
1850
+ "step": 3020
1851
+ },
1852
+ {
1853
+ "epoch": 0.78,
1854
+ "learning_rate": 2.600900474679364e-05,
1855
+ "loss": 1.6096,
1856
+ "step": 3030
1857
+ },
1858
+ {
1859
+ "epoch": 0.78,
1860
+ "learning_rate": 2.546479881910918e-05,
1861
+ "loss": 1.6317,
1862
+ "step": 3040
1863
+ },
1864
+ {
1865
+ "epoch": 0.78,
1866
+ "learning_rate": 2.4925514817472618e-05,
1867
+ "loss": 1.5218,
1868
+ "step": 3050
1869
+ },
1870
+ {
1871
+ "epoch": 0.78,
1872
+ "learning_rate": 2.4391188353459925e-05,
1873
+ "loss": 1.5526,
1874
+ "step": 3060
1875
+ },
1876
+ {
1877
+ "epoch": 0.79,
1878
+ "learning_rate": 2.3861854711276378e-05,
1879
+ "loss": 1.5753,
1880
+ "step": 3070
1881
+ },
1882
+ {
1883
+ "epoch": 0.79,
1884
+ "learning_rate": 2.333754884542667e-05,
1885
+ "loss": 1.6214,
1886
+ "step": 3080
1887
+ },
1888
+ {
1889
+ "epoch": 0.79,
1890
+ "learning_rate": 2.281830537840678e-05,
1891
+ "loss": 1.591,
1892
+ "step": 3090
1893
+ },
1894
+ {
1895
+ "epoch": 0.79,
1896
+ "learning_rate": 2.2355342955230186e-05,
1897
+ "loss": 1.5578,
1898
+ "step": 3100
1899
+ },
1900
+ {
1901
+ "epoch": 0.8,
1902
+ "learning_rate": 2.189653361595686e-05,
1903
+ "loss": 1.5684,
1904
+ "step": 3110
1905
+ },
1906
+ {
1907
+ "epoch": 0.8,
1908
+ "learning_rate": 2.1391646203159456e-05,
1909
+ "loss": 1.5654,
1910
+ "step": 3120
1911
+ },
1912
+ {
1913
+ "epoch": 0.8,
1914
+ "learning_rate": 2.089194968671713e-05,
1915
+ "loss": 1.5803,
1916
+ "step": 3130
1917
+ },
1918
+ {
1919
+ "epoch": 0.8,
1920
+ "learning_rate": 2.039747706404943e-05,
1921
+ "loss": 1.5737,
1922
+ "step": 3140
1923
+ },
1924
+ {
1925
+ "epoch": 0.81,
1926
+ "learning_rate": 1.99082609876164e-05,
1927
+ "loss": 1.5444,
1928
+ "step": 3150
1929
+ },
1930
+ {
1931
+ "epoch": 0.81,
1932
+ "learning_rate": 1.9472487573431274e-05,
1933
+ "loss": 1.5995,
1934
+ "step": 3160
1935
+ },
1936
+ {
1937
+ "epoch": 0.81,
1938
+ "learning_rate": 1.8993347647457706e-05,
1939
+ "loss": 1.5803,
1940
+ "step": 3170
1941
+ },
1942
+ {
1943
+ "epoch": 0.81,
1944
+ "learning_rate": 1.8519556989292508e-05,
1945
+ "loss": 1.5892,
1946
+ "step": 3180
1947
+ },
1948
+ {
1949
+ "epoch": 0.82,
1950
+ "learning_rate": 1.8051146885663938e-05,
1951
+ "loss": 1.6006,
1952
+ "step": 3190
1953
+ },
1954
+ {
1955
+ "epoch": 0.82,
1956
+ "learning_rate": 1.7588148267995695e-05,
1957
+ "loss": 1.567,
1958
+ "step": 3200
1959
+ },
1960
+ {
1961
+ "epoch": 0.82,
1962
+ "learning_rate": 1.7130591710364486e-05,
1963
+ "loss": 1.5557,
1964
+ "step": 3210
1965
+ },
1966
+ {
1967
+ "epoch": 0.82,
1968
+ "learning_rate": 1.6678507427480983e-05,
1969
+ "loss": 1.5794,
1970
+ "step": 3220
1971
+ },
1972
+ {
1973
+ "epoch": 0.83,
1974
+ "learning_rate": 1.6231925272694615e-05,
1975
+ "loss": 1.5858,
1976
+ "step": 3230
1977
+ },
1978
+ {
1979
+ "epoch": 0.83,
1980
+ "learning_rate": 1.5790874736022287e-05,
1981
+ "loss": 1.5791,
1982
+ "step": 3240
1983
+ },
1984
+ {
1985
+ "epoch": 0.83,
1986
+ "learning_rate": 1.535538494220089e-05,
1987
+ "loss": 1.5721,
1988
+ "step": 3250
1989
+ },
1990
+ {
1991
+ "epoch": 0.83,
1992
+ "learning_rate": 1.4925484648764131e-05,
1993
+ "loss": 1.5537,
1994
+ "step": 3260
1995
+ },
1996
+ {
1997
+ "epoch": 0.84,
1998
+ "learning_rate": 1.450120224414352e-05,
1999
+ "loss": 1.5698,
2000
+ "step": 3270
2001
+ },
2002
+ {
2003
+ "epoch": 0.84,
2004
+ "learning_rate": 1.4082565745793686e-05,
2005
+ "loss": 1.5529,
2006
+ "step": 3280
2007
+ },
2008
+ {
2009
+ "epoch": 0.84,
2010
+ "learning_rate": 1.3669602798342296e-05,
2011
+ "loss": 1.5702,
2012
+ "step": 3290
2013
+ },
2014
+ {
2015
+ "epoch": 0.84,
2016
+ "learning_rate": 1.3262340671764584e-05,
2017
+ "loss": 1.5273,
2018
+ "step": 3300
2019
+ },
2020
+ {
2021
+ "epoch": 0.85,
2022
+ "learning_rate": 1.2860806259582492e-05,
2023
+ "loss": 1.5401,
2024
+ "step": 3310
2025
+ },
2026
+ {
2027
+ "epoch": 0.85,
2028
+ "learning_rate": 1.2504344407159785e-05,
2029
+ "loss": 1.5753,
2030
+ "step": 3320
2031
+ },
2032
+ {
2033
+ "epoch": 0.85,
2034
+ "learning_rate": 1.2113765387943211e-05,
2035
+ "loss": 1.5564,
2036
+ "step": 3330
2037
+ },
2038
+ {
2039
+ "epoch": 0.85,
2040
+ "learning_rate": 1.172898992919923e-05,
2041
+ "loss": 1.5189,
2042
+ "step": 3340
2043
+ },
2044
+ {
2045
+ "epoch": 0.86,
2046
+ "learning_rate": 1.1350043439544521e-05,
2047
+ "loss": 1.5607,
2048
+ "step": 3350
2049
+ },
2050
+ {
2051
+ "epoch": 0.86,
2052
+ "learning_rate": 1.0976950942680197e-05,
2053
+ "loss": 1.539,
2054
+ "step": 3360
2055
+ },
2056
+ {
2057
+ "epoch": 0.86,
2058
+ "learning_rate": 1.0609737075739412e-05,
2059
+ "loss": 1.5593,
2060
+ "step": 3370
2061
+ },
2062
+ {
2063
+ "epoch": 0.87,
2064
+ "learning_rate": 1.0248426087660557e-05,
2065
+ "loss": 1.5345,
2066
+ "step": 3380
2067
+ },
2068
+ {
2069
+ "epoch": 0.87,
2070
+ "learning_rate": 9.89304183758577e-06,
2071
+ "loss": 1.5988,
2072
+ "step": 3390
2073
+ },
2074
+ {
2075
+ "epoch": 0.87,
2076
+ "learning_rate": 9.543607793285626e-06,
2077
+ "loss": 1.5306,
2078
+ "step": 3400
2079
+ },
2080
+ {
2081
+ "epoch": 0.87,
2082
+ "learning_rate": 9.200147029609264e-06,
2083
+ "loss": 1.5702,
2084
+ "step": 3410
2085
+ },
2086
+ {
2087
+ "epoch": 0.88,
2088
+ "learning_rate": 8.896158250762244e-06,
2089
+ "loss": 1.5378,
2090
+ "step": 3420
2091
+ },
2092
+ {
2093
+ "epoch": 0.88,
2094
+ "learning_rate": 8.59704246528129e-06,
2095
+ "loss": 1.5693,
2096
+ "step": 3430
2097
+ },
2098
+ {
2099
+ "epoch": 0.88,
2100
+ "learning_rate": 8.270426282311539e-06,
2101
+ "loss": 1.5517,
2102
+ "step": 3440
2103
+ },
2104
+ {
2105
+ "epoch": 0.88,
2106
+ "learning_rate": 7.949867454404824e-06,
2107
+ "loss": 1.5576,
2108
+ "step": 3450
2109
+ },
2110
+ {
2111
+ "epoch": 0.89,
2112
+ "learning_rate": 7.635387149637685e-06,
2113
+ "loss": 1.5763,
2114
+ "step": 3460
2115
+ },
2116
+ {
2117
+ "epoch": 0.89,
2118
+ "learning_rate": 7.327006134691883e-06,
2119
+ "loss": 1.5768,
2120
+ "step": 3470
2121
+ },
2122
+ {
2123
+ "epoch": 0.89,
2124
+ "learning_rate": 7.024744773483105e-06,
2125
+ "loss": 1.5393,
2126
+ "step": 3480
2127
+ },
2128
+ {
2129
+ "epoch": 0.89,
2130
+ "learning_rate": 6.7286230258161385e-06,
2131
+ "loss": 1.5617,
2132
+ "step": 3490
2133
+ },
2134
+ {
2135
+ "epoch": 0.9,
2136
+ "learning_rate": 6.438660446066891e-06,
2137
+ "loss": 1.5404,
2138
+ "step": 3500
2139
+ },
2140
+ {
2141
+ "epoch": 0.9,
2142
+ "learning_rate": 6.154876181891145e-06,
2143
+ "loss": 1.5765,
2144
+ "step": 3510
2145
+ },
2146
+ {
2147
+ "epoch": 0.9,
2148
+ "learning_rate": 5.877288972960071e-06,
2149
+ "loss": 1.5942,
2150
+ "step": 3520
2151
+ },
2152
+ {
2153
+ "epoch": 0.9,
2154
+ "learning_rate": 5.632774125747675e-06,
2155
+ "loss": 1.5557,
2156
+ "step": 3530
2157
+ },
2158
+ {
2159
+ "epoch": 0.91,
2160
+ "learning_rate": 5.367011482971008e-06,
2161
+ "loss": 1.5438,
2162
+ "step": 3540
2163
+ },
2164
+ {
2165
+ "epoch": 0.91,
2166
+ "learning_rate": 5.107497922021364e-06,
2167
+ "loss": 1.5351,
2168
+ "step": 3550
2169
+ },
2170
+ {
2171
+ "epoch": 0.91,
2172
+ "learning_rate": 4.854250579856034e-06,
2173
+ "loss": 1.5304,
2174
+ "step": 3560
2175
+ },
2176
+ {
2177
+ "epoch": 0.91,
2178
+ "learning_rate": 4.6072861796429665e-06,
2179
+ "loss": 1.554,
2180
+ "step": 3570
2181
+ },
2182
+ {
2183
+ "epoch": 0.92,
2184
+ "learning_rate": 4.366621029656582e-06,
2185
+ "loss": 1.5185,
2186
+ "step": 3580
2187
+ },
2188
+ {
2189
+ "epoch": 0.92,
2190
+ "learning_rate": 4.1322710222008065e-06,
2191
+ "loss": 1.5746,
2192
+ "step": 3590
2193
+ },
2194
+ {
2195
+ "epoch": 0.92,
2196
+ "learning_rate": 3.904251632559652e-06,
2197
+ "loss": 1.5413,
2198
+ "step": 3600
2199
+ },
2200
+ {
2201
+ "epoch": 0.92,
2202
+ "learning_rate": 3.6825779179752716e-06,
2203
+ "loss": 1.5533,
2204
+ "step": 3610
2205
+ },
2206
+ {
2207
+ "epoch": 0.93,
2208
+ "learning_rate": 3.467264516653668e-06,
2209
+ "loss": 1.5432,
2210
+ "step": 3620
2211
+ },
2212
+ {
2213
+ "epoch": 0.93,
2214
+ "learning_rate": 3.2583256467980773e-06,
2215
+ "loss": 1.5869,
2216
+ "step": 3630
2217
+ },
2218
+ {
2219
+ "epoch": 0.93,
2220
+ "learning_rate": 3.055775105670056e-06,
2221
+ "loss": 1.5374,
2222
+ "step": 3640
2223
+ },
2224
+ {
2225
+ "epoch": 0.93,
2226
+ "learning_rate": 2.8596262686783837e-06,
2227
+ "loss": 1.5425,
2228
+ "step": 3650
2229
+ },
2230
+ {
2231
+ "epoch": 0.94,
2232
+ "learning_rate": 2.6698920884958177e-06,
2233
+ "loss": 1.5906,
2234
+ "step": 3660
2235
+ },
2236
+ {
2237
+ "epoch": 0.94,
2238
+ "learning_rate": 2.486585094203786e-06,
2239
+ "loss": 1.5787,
2240
+ "step": 3670
2241
+ },
2242
+ {
2243
+ "epoch": 0.94,
2244
+ "learning_rate": 2.309717390464983e-06,
2245
+ "loss": 1.5579,
2246
+ "step": 3680
2247
+ },
2248
+ {
2249
+ "epoch": 0.94,
2250
+ "learning_rate": 2.1393006567240635e-06,
2251
+ "loss": 1.5391,
2252
+ "step": 3690
2253
+ },
2254
+ {
2255
+ "epoch": 0.95,
2256
+ "learning_rate": 1.9753461464364408e-06,
2257
+ "loss": 1.5478,
2258
+ "step": 3700
2259
+ },
2260
+ {
2261
+ "epoch": 0.95,
2262
+ "learning_rate": 1.8178646863250548e-06,
2263
+ "loss": 1.5777,
2264
+ "step": 3710
2265
+ },
2266
+ {
2267
+ "epoch": 0.95,
2268
+ "learning_rate": 1.6668666756655572e-06,
2269
+ "loss": 1.5239,
2270
+ "step": 3720
2271
+ },
2272
+ {
2273
+ "epoch": 0.95,
2274
+ "learning_rate": 1.5365200653588708e-06,
2275
+ "loss": 1.4992,
2276
+ "step": 3730
2277
+ },
2278
+ {
2279
+ "epoch": 0.96,
2280
+ "learning_rate": 1.397867724769042e-06,
2281
+ "loss": 1.5272,
2282
+ "step": 3740
2283
+ },
2284
+ {
2285
+ "epoch": 0.96,
2286
+ "learning_rate": 1.2657265680968589e-06,
2287
+ "loss": 1.541,
2288
+ "step": 3750
2289
+ },
2290
+ {
2291
+ "epoch": 0.96,
2292
+ "learning_rate": 1.1523738102167225e-06,
2293
+ "loss": 1.5219,
2294
+ "step": 3760
2295
+ },
2296
+ {
2297
+ "epoch": 0.97,
2298
+ "learning_rate": 1.044308247886483e-06,
2299
+ "loss": 1.5524,
2300
+ "step": 3770
2301
+ },
2302
+ {
2303
+ "epoch": 0.97,
2304
+ "learning_rate": 9.30443453495422e-07,
2305
+ "loss": 1.5508,
2306
+ "step": 3780
2307
+ },
2308
+ {
2309
+ "epoch": 0.97,
2310
+ "learning_rate": 8.231207093463699e-07,
2311
+ "loss": 1.5758,
2312
+ "step": 3790
2313
+ },
2314
+ {
2315
+ "epoch": 0.97,
2316
+ "learning_rate": 7.223471024881412e-07,
2317
+ "loss": 1.5658,
2318
+ "step": 3800
2319
+ },
2320
+ {
2321
+ "epoch": 0.98,
2322
+ "learning_rate": 6.281292874978029e-07,
2323
+ "loss": 1.5232,
2324
+ "step": 3810
2325
+ },
2326
+ {
2327
+ "epoch": 0.98,
2328
+ "learning_rate": 5.404734860412375e-07,
2329
+ "loss": 1.5646,
2330
+ "step": 3820
2331
+ },
2332
+ {
2333
+ "epoch": 0.98,
2334
+ "learning_rate": 4.5938548646227154e-07,
2335
+ "loss": 1.5771,
2336
+ "step": 3830
2337
+ },
2338
+ {
2339
+ "epoch": 0.98,
2340
+ "learning_rate": 3.8487064340047006e-07,
2341
+ "loss": 1.5611,
2342
+ "step": 3840
2343
+ },
2344
+ {
2345
+ "epoch": 0.99,
2346
+ "learning_rate": 3.16933877437553e-07,
2347
+ "loss": 1.6229,
2348
+ "step": 3850
2349
+ },
2350
+ {
2351
+ "epoch": 0.99,
2352
+ "learning_rate": 2.555796747724104e-07,
2353
+ "loss": 1.5496,
2354
+ "step": 3860
2355
+ },
2356
+ {
2357
+ "epoch": 0.99,
2358
+ "learning_rate": 2.0081208692490638e-07,
2359
+ "loss": 1.5312,
2360
+ "step": 3870
2361
+ },
2362
+ {
2363
+ "epoch": 0.99,
2364
+ "learning_rate": 1.5263473046833732e-07,
2365
+ "loss": 1.5681,
2366
+ "step": 3880
2367
+ },
2368
+ {
2369
+ "epoch": 1.0,
2370
+ "learning_rate": 1.1105078679056747e-07,
2371
+ "loss": 1.5128,
2372
+ "step": 3890
2373
+ },
2374
+ {
2375
+ "epoch": 1.0,
2376
+ "learning_rate": 7.606300188400805e-08,
2377
+ "loss": 1.5764,
2378
+ "step": 3900
2379
+ },
2380
+ {
2381
+ "epoch": 1.0,
2382
+ "step": 3906,
2383
+ "total_flos": 331952415375360.0,
2384
+ "train_loss": 1.9416432221974707,
2385
+ "train_runtime": 74872.2082,
2386
+ "train_samples_per_second": 6.678,
2387
+ "train_steps_per_second": 0.052
2388
+ }
2389
+ ],
2390
+ "max_steps": 3906,
2391
+ "num_train_epochs": 1,
2392
+ "total_flos": 331952415375360.0,
2393
+ "trial_name": null,
2394
+ "trial_params": null
2395
+ }