RicardoLee
commited on
Commit
•
c10861e
1
Parent(s):
3c0ddff
Llama2-base 7B Chinese chat ver 0.01
Browse files- README.md +70 -0
- all_results.json +14 -0
- config.json +26 -0
- eval_results.json +9 -0
- generation_config.json +7 -0
- latest +1 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +330 -0
- special_tokens_map.json +6 -0
- tokenizer.model +3 -0
- tokenizer_config.json +35 -0
- train_results.json +8 -0
- trainer_state.json +2395 -0
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- llama2
|
7 |
+
- llama2-base
|
8 |
+
- llama2-base-7B
|
9 |
+
---
|
10 |
+
# 7B Chinese Chatbot trained based on LLama2-base 7B
|
11 |
+
|
12 |
+
## Introduction
|
13 |
+
|
14 |
+
在完成了[Llama2-chat 7B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-Chinese-50W) 和 [Llama2-chat 13B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-13B-Chinese-50W) 的训练后,我非常好奇能否直接基于Llama2-base 系列直接进行SFT训练。这也是本模型仓库的初衷。
|
15 |
+
|
16 |
+
但是在实际操作中,在用了原先chat模型的LoRA训练框架后,我发现基于Llama2 base的 LoRA 训练非常难以收敛,随时处于梯度爆炸的边缘。DeepSpeed 会频繁触发reduce scale 操作,最终scale太小越界导致训练崩溃。我遍历了LR 1e-5 - 2e-4,LoRA rank \[4, 8, 64\],LoRA Alpha \[1,4,8,16,32\],LoRA Dropout \[0.05, 0.1\] ,Warmup Ratio \[0.01, 0.03, 0.05\]等超参数,均无法稳定训练。因此,本模型重新回归了全参数SFT训练。其难以进行LoRA训练的原因还待分析。
|
17 |
+
|
18 |
+
由于网上存在使用LoRA 在英文SFT数据集上基于Llama2-base 进行SFT训练成功的样例,因此我怀疑难以训练的原因可能是扩中文词表embedding导致训练难度大幅度提升。
|
19 |
+
|
20 |
+
为了方便后来人一起分析,本模型仓库特地将训练的全部loss/LR信息附在[Material](trainer_state.json)中。
|
21 |
+
|
22 |
+
训练数据使用[BELLE](https://huggingface.co/BelleGroup)项目中采样的50万SFT数据进行SFT训练。
|
23 |
+
|
24 |
+
After finishing the training of [Llama2-chat 7B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-Chinese-50W) and [Llama2-chat 13B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-13B-Chinese-50W), I am deeply intrigued by the possibility of conducting SFT (Style-Fine-Tuning) training directly based on the Llama2-base series. This is the fundamental purpose of this model repository.
|
25 |
+
|
26 |
+
**However**, in real practice, I have observed that conducting LoRA training based on the Llama2 base model, within the framework of the previous Llama2-chat SFT project, presents significant challenges in achieving convergence. The gradient explosion happens in every training step and casue reducing scale operation in Deepspeed. In the end, the scale is too small and out of bounds, causing the training to crash. I have traversed LR 1e-5 - 2e-4,LoRA rank \[4, 8, 64\],LoRA Alpha \[1,4,8,16,32\],LoRA Dropout \[0.05, 0.1\] ,Warmup Ratio \[0.01, 0.03, 0.05\] and other hyperparameters, all of which cannot be trained stably. Therefore, this model has reverted to full-parameter SFT training. The reasons behind the difficulties encountered during LoRA training require further analysis.
|
27 |
+
|
28 |
+
As there are instances online where successful LoRA training on English SFT datasets using Llama2-base has been demonstrated, I suspect that the challenge in training might be attributed to the expansion of the Chinese word embedding, resulting in a substantial increase in training difficulty.
|
29 |
+
|
30 |
+
In order to facilitate collaborative analysis for future researchers, this model repository has thoughtfully appended all training-related loss/LR information in [Material](trainer_state.json).
|
31 |
+
|
32 |
+
The training data is sampled from [BELLE](https://huggingface.co/BelleGroup) project, which consists of 500,000 SFT samples.
|
33 |
+
|
34 |
+
## Train Detail
|
35 |
+
|
36 |
+
一些训练上的细节:
|
37 |
+
|
38 |
+
1. 训练框架:该模型采用全参数SFT训练,而非LoRA
|
39 |
+
2. Tokenizer:该模型使用了Chinese-Alpaca-Plus模型的tokenizer.model。这是因为LLama2本身的tokenizer.model同LLama1是一摸一样的。因此理论上可以完全复用Chinese-LLaMa项目的tokenizer而不会产生如何错位问题。
|
40 |
+
3. 训练参数:受限于资源,本模型只训练了1 epoch。其LR 为2e-4。Warmup ratio 为0.01。可以看到这是一个非常激进的训练,因此本模型仓库被命名为了预发布版本。未来会接着放出3 epoch版本。
|
41 |
+
4. 训练资源:8卡V100。21个小时
|
42 |
+
5. 训练起始的loss:参见[Material](trainer_state.json)
|
43 |
+
6. 训练终止的loss:参见[Material](trainer_state.json)
|
44 |
+
|
45 |
+
Some details in training:
|
46 |
+
|
47 |
+
1. Trianing Framework: This model adopts full-parameter SFT training instead of LoRA.
|
48 |
+
2. Tokenizer: This model utilizes the tokenizer.model from the Chinese-Alpaca-Plus model. The reason for this choice is that the tokenizer.model in LLama2 is identical to the one used in LLama1. As a result, it is theoretically feasible to entirely reuse the tokenizer from the Chinese-LLaMa project without encountering any issues related to token misalignment.
|
49 |
+
3. Training Parameters: Constrained by limited resources, this model was trained for only 1 epoch, with a learning rate of 2e-4 and a warmup ratio of 0.01. Obviously, this is an exceedingly aggressive training schema, hence this model repository has been labeled as the 'pre-release' version. In the future, a 3-epoch version will be released subsequently for the comparison of previous Llama2-chat Chinese models.
|
50 |
+
4. Training Resource: 8\*V100, 21 hours.
|
51 |
+
5. Initial Loss: Please refer to [Material](trainer_state.json)
|
52 |
+
6. Train Loss: Please refer to [Material](trainer_state.json)
|
53 |
+
|
54 |
+
## Licence
|
55 |
+
|
56 |
+
本仓库的模型依照 Apache-2.0 协议开源,模型的权重的使用则需要遵循LLama2[MODEL LICENCE](LICENSE)。
|
57 |
+
|
58 |
+
This repository's models are open-sourced under the Apache-2.0 license, and their weight usage must adhere to LLama2 [MODEL LICENCE](LICENSE) license.
|
59 |
+
|
60 |
+
## Future Work
|
61 |
+
|
62 |
+
将会在近期逐步放出
|
63 |
+
|
64 |
+
1. 更大SFT数据规模训练下的模型。
|
65 |
+
2. 13B及以下的LLama2 同LLama2-chat的模型,以供大家对比。
|
66 |
+
|
67 |
+
I will release the following models:
|
68 |
+
|
69 |
+
1. Models trained on larger data scale.
|
70 |
+
2. Models trained on LLama2 and LLama2-chat (under the 13B, since I only have V100), for comparison.
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_loss": 1.3428778648376465,
|
4 |
+
"eval_runtime": 2.0111,
|
5 |
+
"eval_samples": 100,
|
6 |
+
"eval_samples_per_second": 49.725,
|
7 |
+
"eval_steps_per_second": 1.989,
|
8 |
+
"perplexity": 3.830050026427415,
|
9 |
+
"train_loss": 1.9416432221974707,
|
10 |
+
"train_runtime": 74872.2082,
|
11 |
+
"train_samples": 500000,
|
12 |
+
"train_samples_per_second": 6.678,
|
13 |
+
"train_steps_per_second": 0.052
|
14 |
+
}
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "RicardoLee/Llama2-base-7B-Chinese-50W-pre_release",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 2048,
|
13 |
+
"model_type": "llama",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 32,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.31.0",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 49954
|
26 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_loss": 1.3428778648376465,
|
4 |
+
"eval_runtime": 2.0111,
|
5 |
+
"eval_samples": 100,
|
6 |
+
"eval_samples_per_second": 49.725,
|
7 |
+
"eval_steps_per_second": 1.989,
|
8 |
+
"perplexity": 3.830050026427415
|
9 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.31.0"
|
7 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step3906
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3fb0d89aa054853f5572d10c0297a29ea5a4289232837a8efaf11b1836d3126
|
3 |
+
size 9991794123
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:495cc56568d3147a85eb2aba08f80b832da26ee21ca6171608830e350706d115
|
3 |
+
size 9894802738
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2620260c3425b384632c4fe17c2e1bfae8e509320fd188c37a0804fdee2e8dc6
|
3 |
+
size 7655505659
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 27541987328
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
328 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
329 |
+
}
|
330 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d967e855b1213a439df6c8ce2791f869c84b4f3b6cfacf22b86440b8192a2f8
|
3 |
+
size 757972
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": true,
|
22 |
+
"model_max_length": 1000000000000000019884624838656,
|
23 |
+
"pad_token": null,
|
24 |
+
"sp_model_kwargs": {},
|
25 |
+
"tokenizer_class": "LlamaTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
},
|
34 |
+
"use_fast": true
|
35 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"train_loss": 1.9416432221974707,
|
4 |
+
"train_runtime": 74872.2082,
|
5 |
+
"train_samples": 500000,
|
6 |
+
"train_samples_per_second": 6.678,
|
7 |
+
"train_steps_per_second": 0.052
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9998720081914757,
|
5 |
+
"global_step": 3906,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 0.0,
|
13 |
+
"loss": 9.2076,
|
14 |
+
"step": 1
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 2e-05,
|
19 |
+
"loss": 9.3403,
|
20 |
+
"step": 10
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 4.5e-05,
|
25 |
+
"loss": 7.9144,
|
26 |
+
"step": 20
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.01,
|
30 |
+
"learning_rate": 7.500000000000001e-05,
|
31 |
+
"loss": 6.7554,
|
32 |
+
"step": 30
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.01,
|
36 |
+
"learning_rate": 0.00012,
|
37 |
+
"loss": 5.7716,
|
38 |
+
"step": 40
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01,
|
42 |
+
"learning_rate": 0.00017,
|
43 |
+
"loss": 5.0089,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.02,
|
48 |
+
"learning_rate": 0.00019999947171819797,
|
49 |
+
"loss": 4.383,
|
50 |
+
"step": 60
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.02,
|
54 |
+
"learning_rate": 0.00019999352861202634,
|
55 |
+
"loss": 4.1286,
|
56 |
+
"step": 70
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.02,
|
60 |
+
"learning_rate": 0.0001999809824411913,
|
61 |
+
"loss": 3.7428,
|
62 |
+
"step": 80
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.02,
|
66 |
+
"learning_rate": 0.0001999618340341782,
|
67 |
+
"loss": 3.4558,
|
68 |
+
"step": 90
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.03,
|
72 |
+
"learning_rate": 0.00019993608465545054,
|
73 |
+
"loss": 3.3284,
|
74 |
+
"step": 100
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.03,
|
78 |
+
"learning_rate": 0.00019990373600536657,
|
79 |
+
"loss": 3.202,
|
80 |
+
"step": 110
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.03,
|
84 |
+
"learning_rate": 0.00019986479022006677,
|
85 |
+
"loss": 3.1471,
|
86 |
+
"step": 120
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.03,
|
90 |
+
"learning_rate": 0.00019981924987133289,
|
91 |
+
"loss": 3.0477,
|
92 |
+
"step": 130
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.04,
|
96 |
+
"learning_rate": 0.00019976711796641832,
|
97 |
+
"loss": 2.9572,
|
98 |
+
"step": 140
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.04,
|
102 |
+
"learning_rate": 0.00019970839794784917,
|
103 |
+
"loss": 2.9283,
|
104 |
+
"step": 150
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.04,
|
108 |
+
"learning_rate": 0.00019964309369319722,
|
109 |
+
"loss": 2.882,
|
110 |
+
"step": 160
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.04,
|
114 |
+
"learning_rate": 0.00019957120951482363,
|
115 |
+
"loss": 2.799,
|
116 |
+
"step": 170
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.05,
|
120 |
+
"learning_rate": 0.00019949275015959442,
|
121 |
+
"loss": 2.7808,
|
122 |
+
"step": 180
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.05,
|
126 |
+
"learning_rate": 0.0001994077208085668,
|
127 |
+
"loss": 2.7251,
|
128 |
+
"step": 190
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.05,
|
132 |
+
"learning_rate": 0.0001993161270766472,
|
133 |
+
"loss": 2.6977,
|
134 |
+
"step": 200
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.05,
|
138 |
+
"learning_rate": 0.00019921797501222036,
|
139 |
+
"loss": 2.7366,
|
140 |
+
"step": 210
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.06,
|
144 |
+
"learning_rate": 0.00019911327109675003,
|
145 |
+
"loss": 2.7007,
|
146 |
+
"step": 220
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.06,
|
150 |
+
"learning_rate": 0.00019900202224435086,
|
151 |
+
"loss": 2.6237,
|
152 |
+
"step": 230
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.06,
|
156 |
+
"learning_rate": 0.00019888423580133194,
|
157 |
+
"loss": 2.4928,
|
158 |
+
"step": 240
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.06,
|
162 |
+
"learning_rate": 0.0001987599195457116,
|
163 |
+
"loss": 2.6081,
|
164 |
+
"step": 250
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.07,
|
168 |
+
"learning_rate": 0.00019862908168670384,
|
169 |
+
"loss": 2.59,
|
170 |
+
"step": 260
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.07,
|
174 |
+
"learning_rate": 0.00019849173086417622,
|
175 |
+
"loss": 2.5477,
|
176 |
+
"step": 270
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.07,
|
180 |
+
"learning_rate": 0.0001983478761480793,
|
181 |
+
"loss": 2.5678,
|
182 |
+
"step": 280
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.07,
|
186 |
+
"learning_rate": 0.00019819752703784777,
|
187 |
+
"loss": 2.4678,
|
188 |
+
"step": 290
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.08,
|
192 |
+
"learning_rate": 0.0001980406934617731,
|
193 |
+
"loss": 2.4486,
|
194 |
+
"step": 300
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.08,
|
198 |
+
"learning_rate": 0.00019787738577634794,
|
199 |
+
"loss": 2.5024,
|
200 |
+
"step": 310
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.08,
|
204 |
+
"learning_rate": 0.00019770761476558223,
|
205 |
+
"loss": 2.5042,
|
206 |
+
"step": 320
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.08,
|
210 |
+
"learning_rate": 0.00019753139164029108,
|
211 |
+
"loss": 2.4463,
|
212 |
+
"step": 330
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.09,
|
216 |
+
"learning_rate": 0.00019734872803735444,
|
217 |
+
"loss": 2.4035,
|
218 |
+
"step": 340
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.09,
|
222 |
+
"learning_rate": 0.0001971596360189488,
|
223 |
+
"loss": 2.4444,
|
224 |
+
"step": 350
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.09,
|
228 |
+
"learning_rate": 0.0001969641280717504,
|
229 |
+
"loss": 2.4404,
|
230 |
+
"step": 360
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.09,
|
234 |
+
"learning_rate": 0.00019676221710611093,
|
235 |
+
"loss": 2.4378,
|
236 |
+
"step": 370
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.1,
|
240 |
+
"learning_rate": 0.00019655391645520486,
|
241 |
+
"loss": 2.3842,
|
242 |
+
"step": 380
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.1,
|
246 |
+
"learning_rate": 0.000196339239874149,
|
247 |
+
"loss": 2.3743,
|
248 |
+
"step": 390
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.1,
|
252 |
+
"learning_rate": 0.00019611820153909418,
|
253 |
+
"loss": 2.3983,
|
254 |
+
"step": 400
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.1,
|
258 |
+
"learning_rate": 0.0001958908160462892,
|
259 |
+
"loss": 2.3224,
|
260 |
+
"step": 410
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.11,
|
264 |
+
"learning_rate": 0.0001956570984111169,
|
265 |
+
"loss": 2.3779,
|
266 |
+
"step": 420
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.11,
|
270 |
+
"learning_rate": 0.00019541706406710256,
|
271 |
+
"loss": 2.3706,
|
272 |
+
"step": 430
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.11,
|
276 |
+
"learning_rate": 0.000195170728864895,
|
277 |
+
"loss": 2.3213,
|
278 |
+
"step": 440
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.12,
|
282 |
+
"learning_rate": 0.0001949181090712195,
|
283 |
+
"loss": 2.3222,
|
284 |
+
"step": 450
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.12,
|
288 |
+
"learning_rate": 0.00019465922136780396,
|
289 |
+
"loss": 2.3018,
|
290 |
+
"step": 460
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.12,
|
294 |
+
"learning_rate": 0.00019439408285027717,
|
295 |
+
"loss": 2.3268,
|
296 |
+
"step": 470
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.12,
|
300 |
+
"learning_rate": 0.00019412271102703992,
|
301 |
+
"loss": 2.2956,
|
302 |
+
"step": 480
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.13,
|
306 |
+
"learning_rate": 0.00019384512381810887,
|
307 |
+
"loss": 2.2676,
|
308 |
+
"step": 490
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.13,
|
312 |
+
"learning_rate": 0.00019356133955393312,
|
313 |
+
"loss": 2.2877,
|
314 |
+
"step": 500
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.13,
|
318 |
+
"learning_rate": 0.0001932713769741839,
|
319 |
+
"loss": 2.3348,
|
320 |
+
"step": 510
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.13,
|
324 |
+
"learning_rate": 0.0001929752552265169,
|
325 |
+
"loss": 2.3026,
|
326 |
+
"step": 520
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.14,
|
330 |
+
"learning_rate": 0.00019267299386530813,
|
331 |
+
"loss": 2.3344,
|
332 |
+
"step": 530
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.14,
|
336 |
+
"learning_rate": 0.00019236461285036233,
|
337 |
+
"loss": 2.258,
|
338 |
+
"step": 540
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.14,
|
342 |
+
"learning_rate": 0.0001920501325455952,
|
343 |
+
"loss": 2.2424,
|
344 |
+
"step": 550
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.14,
|
348 |
+
"learning_rate": 0.00019172957371768848,
|
349 |
+
"loss": 2.2824,
|
350 |
+
"step": 560
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.15,
|
354 |
+
"learning_rate": 0.00019140295753471872,
|
355 |
+
"loss": 2.2618,
|
356 |
+
"step": 570
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.15,
|
360 |
+
"learning_rate": 0.0001910703055647595,
|
361 |
+
"loss": 2.243,
|
362 |
+
"step": 580
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.15,
|
366 |
+
"learning_rate": 0.00019073163977445696,
|
367 |
+
"loss": 2.2295,
|
368 |
+
"step": 590
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.15,
|
372 |
+
"learning_rate": 0.00019038698252757952,
|
373 |
+
"loss": 2.2533,
|
374 |
+
"step": 600
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.16,
|
378 |
+
"learning_rate": 0.00019003635658354094,
|
379 |
+
"loss": 2.2098,
|
380 |
+
"step": 610
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.16,
|
384 |
+
"learning_rate": 0.0001896797850958973,
|
385 |
+
"loss": 2.3026,
|
386 |
+
"step": 620
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.16,
|
390 |
+
"learning_rate": 0.00018931729161081835,
|
391 |
+
"loss": 2.19,
|
392 |
+
"step": 630
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.16,
|
396 |
+
"learning_rate": 0.00018894890006553237,
|
397 |
+
"loss": 2.1298,
|
398 |
+
"step": 640
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.17,
|
402 |
+
"learning_rate": 0.00018857463478674552,
|
403 |
+
"loss": 2.1882,
|
404 |
+
"step": 650
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.17,
|
408 |
+
"learning_rate": 0.00018819452048903561,
|
409 |
+
"loss": 2.1378,
|
410 |
+
"step": 660
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.17,
|
414 |
+
"learning_rate": 0.00018780858227321988,
|
415 |
+
"loss": 2.1886,
|
416 |
+
"step": 670
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.17,
|
420 |
+
"learning_rate": 0.0001874168456246975,
|
421 |
+
"loss": 2.1542,
|
422 |
+
"step": 680
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.18,
|
426 |
+
"learning_rate": 0.00018701933641176676,
|
427 |
+
"loss": 2.1299,
|
428 |
+
"step": 690
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.18,
|
432 |
+
"learning_rate": 0.00018661608088391671,
|
433 |
+
"loss": 2.164,
|
434 |
+
"step": 700
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.18,
|
438 |
+
"learning_rate": 0.0001862071056700939,
|
439 |
+
"loss": 2.1497,
|
440 |
+
"step": 710
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.18,
|
444 |
+
"learning_rate": 0.00018579243777694387,
|
445 |
+
"loss": 2.1869,
|
446 |
+
"step": 720
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.19,
|
450 |
+
"learning_rate": 0.00018537210458702773,
|
451 |
+
"loss": 2.1317,
|
452 |
+
"step": 730
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.19,
|
456 |
+
"learning_rate": 0.00018494613385701408,
|
457 |
+
"loss": 2.138,
|
458 |
+
"step": 740
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.19,
|
462 |
+
"learning_rate": 0.00018451455371584603,
|
463 |
+
"loss": 2.1337,
|
464 |
+
"step": 750
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.19,
|
468 |
+
"learning_rate": 0.00018407739266288365,
|
469 |
+
"loss": 2.1062,
|
470 |
+
"step": 760
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.2,
|
474 |
+
"learning_rate": 0.00018363467956602206,
|
475 |
+
"loss": 2.0968,
|
476 |
+
"step": 770
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.2,
|
480 |
+
"learning_rate": 0.0001831864436597853,
|
481 |
+
"loss": 2.095,
|
482 |
+
"step": 780
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.2,
|
486 |
+
"learning_rate": 0.00018273271454339552,
|
487 |
+
"loss": 2.1348,
|
488 |
+
"step": 790
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.2,
|
492 |
+
"learning_rate": 0.0001822735221788186,
|
493 |
+
"loss": 2.0977,
|
494 |
+
"step": 800
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.21,
|
498 |
+
"learning_rate": 0.0001818088968887857,
|
499 |
+
"loss": 2.1029,
|
500 |
+
"step": 810
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.21,
|
504 |
+
"learning_rate": 0.00018133886935479057,
|
505 |
+
"loss": 2.1493,
|
506 |
+
"step": 820
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.21,
|
510 |
+
"learning_rate": 0.0001808634706150639,
|
511 |
+
"loss": 2.088,
|
512 |
+
"step": 830
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.22,
|
516 |
+
"learning_rate": 0.0001803827320625234,
|
517 |
+
"loss": 2.1212,
|
518 |
+
"step": 840
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.22,
|
522 |
+
"learning_rate": 0.00017989668544270097,
|
523 |
+
"loss": 2.0288,
|
524 |
+
"step": 850
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.22,
|
528 |
+
"learning_rate": 0.0001794053628516462,
|
529 |
+
"loss": 2.0432,
|
530 |
+
"step": 860
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.22,
|
534 |
+
"learning_rate": 0.00017890879673380719,
|
535 |
+
"loss": 2.0355,
|
536 |
+
"step": 870
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.23,
|
540 |
+
"learning_rate": 0.00017840701987988772,
|
541 |
+
"loss": 2.0755,
|
542 |
+
"step": 880
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.23,
|
546 |
+
"learning_rate": 0.0001779000654246823,
|
547 |
+
"loss": 2.0453,
|
548 |
+
"step": 890
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.23,
|
552 |
+
"learning_rate": 0.00017738796684488772,
|
553 |
+
"loss": 2.0582,
|
554 |
+
"step": 900
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.23,
|
558 |
+
"learning_rate": 0.00017687075795689278,
|
559 |
+
"loss": 2.0768,
|
560 |
+
"step": 910
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.24,
|
564 |
+
"learning_rate": 0.00017634847291454503,
|
565 |
+
"loss": 2.091,
|
566 |
+
"step": 920
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.24,
|
570 |
+
"learning_rate": 0.0001758211462068955,
|
571 |
+
"loss": 2.0577,
|
572 |
+
"step": 930
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.24,
|
576 |
+
"learning_rate": 0.00017528881265592108,
|
577 |
+
"loss": 2.0704,
|
578 |
+
"step": 940
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.24,
|
582 |
+
"learning_rate": 0.00017475150741422528,
|
583 |
+
"loss": 2.0305,
|
584 |
+
"step": 950
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.25,
|
588 |
+
"learning_rate": 0.0001742092659627167,
|
589 |
+
"loss": 2.0256,
|
590 |
+
"step": 960
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.25,
|
594 |
+
"learning_rate": 0.0001736621241082663,
|
595 |
+
"loss": 2.0357,
|
596 |
+
"step": 970
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.25,
|
600 |
+
"learning_rate": 0.00017311011798134263,
|
601 |
+
"loss": 1.9873,
|
602 |
+
"step": 980
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.25,
|
606 |
+
"learning_rate": 0.00017255328403362606,
|
607 |
+
"loss": 2.0248,
|
608 |
+
"step": 990
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.26,
|
612 |
+
"learning_rate": 0.00017199165903560192,
|
613 |
+
"loss": 1.9927,
|
614 |
+
"step": 1000
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.26,
|
618 |
+
"eval_loss": 1.7968560457229614,
|
619 |
+
"eval_runtime": 2.032,
|
620 |
+
"eval_samples_per_second": 49.213,
|
621 |
+
"eval_steps_per_second": 1.969,
|
622 |
+
"step": 1000
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 0.26,
|
626 |
+
"learning_rate": 0.00017142528007413192,
|
627 |
+
"loss": 1.9916,
|
628 |
+
"step": 1010
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 0.26,
|
632 |
+
"learning_rate": 0.00017085418455000553,
|
633 |
+
"loss": 2.0123,
|
634 |
+
"step": 1020
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.26,
|
638 |
+
"learning_rate": 0.00017027841017546998,
|
639 |
+
"loss": 2.0141,
|
640 |
+
"step": 1030
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.27,
|
644 |
+
"learning_rate": 0.00016969799497174005,
|
645 |
+
"loss": 1.976,
|
646 |
+
"step": 1040
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.27,
|
650 |
+
"learning_rate": 0.0001691129772664873,
|
651 |
+
"loss": 1.9943,
|
652 |
+
"step": 1050
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"epoch": 0.27,
|
656 |
+
"learning_rate": 0.00016852339569130905,
|
657 |
+
"loss": 1.9607,
|
658 |
+
"step": 1060
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"epoch": 0.27,
|
662 |
+
"learning_rate": 0.00016792928917917755,
|
663 |
+
"loss": 1.9793,
|
664 |
+
"step": 1070
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 0.28,
|
668 |
+
"learning_rate": 0.00016733069696186868,
|
669 |
+
"loss": 1.988,
|
670 |
+
"step": 1080
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 0.28,
|
674 |
+
"learning_rate": 0.00016672765856737178,
|
675 |
+
"loss": 1.9143,
|
676 |
+
"step": 1090
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.28,
|
680 |
+
"learning_rate": 0.00016612021381727887,
|
681 |
+
"loss": 1.9971,
|
682 |
+
"step": 1100
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.28,
|
686 |
+
"learning_rate": 0.0001655084028241555,
|
687 |
+
"loss": 1.9675,
|
688 |
+
"step": 1110
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.29,
|
692 |
+
"learning_rate": 0.0001648922659888916,
|
693 |
+
"loss": 2.0046,
|
694 |
+
"step": 1120
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 0.29,
|
698 |
+
"learning_rate": 0.00016427184399803383,
|
699 |
+
"loss": 2.018,
|
700 |
+
"step": 1130
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 0.29,
|
704 |
+
"learning_rate": 0.0001636471778210988,
|
705 |
+
"loss": 1.999,
|
706 |
+
"step": 1140
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.29,
|
710 |
+
"learning_rate": 0.00016301830870786742,
|
711 |
+
"loss": 1.9143,
|
712 |
+
"step": 1150
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.3,
|
716 |
+
"learning_rate": 0.00016238527818566138,
|
717 |
+
"loss": 1.9324,
|
718 |
+
"step": 1160
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.3,
|
722 |
+
"learning_rate": 0.0001617481280566005,
|
723 |
+
"loss": 1.9493,
|
724 |
+
"step": 1170
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.3,
|
728 |
+
"learning_rate": 0.00016110690039484267,
|
729 |
+
"loss": 1.9507,
|
730 |
+
"step": 1180
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.3,
|
734 |
+
"learning_rate": 0.00016046163754380514,
|
735 |
+
"loss": 1.9408,
|
736 |
+
"step": 1190
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 0.31,
|
740 |
+
"learning_rate": 0.00015981238211336873,
|
741 |
+
"loss": 2.0009,
|
742 |
+
"step": 1200
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 0.31,
|
746 |
+
"learning_rate": 0.00015915917697706386,
|
747 |
+
"loss": 1.9684,
|
748 |
+
"step": 1210
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 0.31,
|
752 |
+
"learning_rate": 0.0001585020652692394,
|
753 |
+
"loss": 1.9373,
|
754 |
+
"step": 1220
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.31,
|
758 |
+
"learning_rate": 0.0001578410903822145,
|
759 |
+
"loss": 1.9038,
|
760 |
+
"step": 1230
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.32,
|
764 |
+
"learning_rate": 0.00015717629596341288,
|
765 |
+
"loss": 1.9065,
|
766 |
+
"step": 1240
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.32,
|
770 |
+
"learning_rate": 0.00015650772591248085,
|
771 |
+
"loss": 1.9327,
|
772 |
+
"step": 1250
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.32,
|
776 |
+
"learning_rate": 0.0001558354243783882,
|
777 |
+
"loss": 1.935,
|
778 |
+
"step": 1260
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 0.33,
|
782 |
+
"learning_rate": 0.000155159435756513,
|
783 |
+
"loss": 1.9339,
|
784 |
+
"step": 1270
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 0.33,
|
788 |
+
"learning_rate": 0.00015447980468570979,
|
789 |
+
"loss": 1.929,
|
790 |
+
"step": 1280
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 0.33,
|
794 |
+
"learning_rate": 0.00015379657604536203,
|
795 |
+
"loss": 1.9184,
|
796 |
+
"step": 1290
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.33,
|
800 |
+
"learning_rate": 0.00015310979495241825,
|
801 |
+
"loss": 1.9242,
|
802 |
+
"step": 1300
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.34,
|
806 |
+
"learning_rate": 0.00015241950675841306,
|
807 |
+
"loss": 1.9133,
|
808 |
+
"step": 1310
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.34,
|
812 |
+
"learning_rate": 0.0001517257570464721,
|
813 |
+
"loss": 1.9014,
|
814 |
+
"step": 1320
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.34,
|
818 |
+
"learning_rate": 0.00015102859162830209,
|
819 |
+
"loss": 1.9283,
|
820 |
+
"step": 1330
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 0.34,
|
824 |
+
"learning_rate": 0.00015032805654116566,
|
825 |
+
"loss": 1.8821,
|
826 |
+
"step": 1340
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 0.35,
|
830 |
+
"learning_rate": 0.00014962419804484127,
|
831 |
+
"loss": 1.8956,
|
832 |
+
"step": 1350
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 0.35,
|
836 |
+
"learning_rate": 0.00014891706261856844,
|
837 |
+
"loss": 1.9166,
|
838 |
+
"step": 1360
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 0.35,
|
842 |
+
"learning_rate": 0.00014820669695797843,
|
843 |
+
"loss": 1.9385,
|
844 |
+
"step": 1370
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.35,
|
848 |
+
"learning_rate": 0.00014749314797201084,
|
849 |
+
"loss": 1.9325,
|
850 |
+
"step": 1380
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.36,
|
854 |
+
"learning_rate": 0.00014677646277981593,
|
855 |
+
"loss": 1.8642,
|
856 |
+
"step": 1390
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.36,
|
860 |
+
"learning_rate": 0.00014605668870764293,
|
861 |
+
"loss": 1.8964,
|
862 |
+
"step": 1400
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"epoch": 0.36,
|
866 |
+
"learning_rate": 0.0001453338732857152,
|
867 |
+
"loss": 1.8727,
|
868 |
+
"step": 1410
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 0.36,
|
872 |
+
"learning_rate": 0.00014460806424509132,
|
873 |
+
"loss": 1.8644,
|
874 |
+
"step": 1420
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 0.37,
|
878 |
+
"learning_rate": 0.0001438793095145132,
|
879 |
+
"loss": 1.8591,
|
880 |
+
"step": 1430
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 0.37,
|
884 |
+
"learning_rate": 0.00014314765721724118,
|
885 |
+
"loss": 1.8931,
|
886 |
+
"step": 1440
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.37,
|
890 |
+
"learning_rate": 0.00014241315566787617,
|
891 |
+
"loss": 1.8953,
|
892 |
+
"step": 1450
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.37,
|
896 |
+
"learning_rate": 0.00014167585336916926,
|
897 |
+
"loss": 1.8672,
|
898 |
+
"step": 1460
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.38,
|
902 |
+
"learning_rate": 0.0001409357990088188,
|
903 |
+
"loss": 1.8414,
|
904 |
+
"step": 1470
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 0.38,
|
908 |
+
"learning_rate": 0.00014019304145625517,
|
909 |
+
"loss": 1.8838,
|
910 |
+
"step": 1480
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 0.38,
|
914 |
+
"learning_rate": 0.00013944762975941403,
|
915 |
+
"loss": 1.856,
|
916 |
+
"step": 1490
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 0.38,
|
920 |
+
"learning_rate": 0.00013877453061830693,
|
921 |
+
"loss": 1.8715,
|
922 |
+
"step": 1500
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 0.39,
|
926 |
+
"learning_rate": 0.00013802421179949775,
|
927 |
+
"loss": 1.8323,
|
928 |
+
"step": 1510
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.39,
|
932 |
+
"learning_rate": 0.00013727138205490392,
|
933 |
+
"loss": 1.898,
|
934 |
+
"step": 1520
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.39,
|
938 |
+
"learning_rate": 0.00013651609109757744,
|
939 |
+
"loss": 1.8455,
|
940 |
+
"step": 1530
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.39,
|
944 |
+
"learning_rate": 0.00013575838880309623,
|
945 |
+
"loss": 1.8788,
|
946 |
+
"step": 1540
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 0.4,
|
950 |
+
"learning_rate": 0.00013499832520627076,
|
951 |
+
"loss": 1.8881,
|
952 |
+
"step": 1550
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 0.4,
|
956 |
+
"learning_rate": 0.00013423595049783974,
|
957 |
+
"loss": 1.8326,
|
958 |
+
"step": 1560
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"epoch": 0.4,
|
962 |
+
"learning_rate": 0.00013347131502115616,
|
963 |
+
"loss": 1.845,
|
964 |
+
"step": 1570
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.4,
|
968 |
+
"learning_rate": 0.00013270446926886252,
|
969 |
+
"loss": 1.8768,
|
970 |
+
"step": 1580
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.41,
|
974 |
+
"learning_rate": 0.00013193546387955672,
|
975 |
+
"loss": 1.8571,
|
976 |
+
"step": 1590
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.41,
|
980 |
+
"learning_rate": 0.00013116434963444815,
|
981 |
+
"loss": 1.8596,
|
982 |
+
"step": 1600
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.41,
|
986 |
+
"learning_rate": 0.00013039117745400426,
|
987 |
+
"loss": 1.8515,
|
988 |
+
"step": 1610
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"epoch": 0.41,
|
992 |
+
"learning_rate": 0.00012961599839458825,
|
993 |
+
"loss": 1.8281,
|
994 |
+
"step": 1620
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.42,
|
998 |
+
"learning_rate": 0.00012883886364508718,
|
999 |
+
"loss": 1.7872,
|
1000 |
+
"step": 1630
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 0.42,
|
1004 |
+
"learning_rate": 0.00012805982452353213,
|
1005 |
+
"loss": 1.8333,
|
1006 |
+
"step": 1640
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 0.42,
|
1010 |
+
"learning_rate": 0.00012727893247370918,
|
1011 |
+
"loss": 1.7989,
|
1012 |
+
"step": 1650
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.42,
|
1016 |
+
"learning_rate": 0.00012657458799214414,
|
1017 |
+
"loss": 1.8662,
|
1018 |
+
"step": 1660
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.43,
|
1022 |
+
"learning_rate": 0.00012579031754172398,
|
1023 |
+
"loss": 1.8667,
|
1024 |
+
"step": 1670
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.43,
|
1028 |
+
"learning_rate": 0.0001250043440297479,
|
1029 |
+
"loss": 1.821,
|
1030 |
+
"step": 1680
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"epoch": 0.43,
|
1034 |
+
"learning_rate": 0.0001242167193579139,
|
1035 |
+
"loss": 1.8333,
|
1036 |
+
"step": 1690
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 0.44,
|
1040 |
+
"learning_rate": 0.00012342749553695423,
|
1041 |
+
"loss": 1.8554,
|
1042 |
+
"step": 1700
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 0.44,
|
1046 |
+
"learning_rate": 0.0001226367246832007,
|
1047 |
+
"loss": 1.8308,
|
1048 |
+
"step": 1710
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 0.44,
|
1052 |
+
"learning_rate": 0.00012184445901514343,
|
1053 |
+
"loss": 1.8215,
|
1054 |
+
"step": 1720
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.44,
|
1058 |
+
"learning_rate": 0.00012105075084998242,
|
1059 |
+
"loss": 1.8347,
|
1060 |
+
"step": 1730
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.45,
|
1064 |
+
"learning_rate": 0.00012025565260017291,
|
1065 |
+
"loss": 1.7671,
|
1066 |
+
"step": 1740
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.45,
|
1070 |
+
"learning_rate": 0.00011945921676996417,
|
1071 |
+
"loss": 1.8035,
|
1072 |
+
"step": 1750
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 0.45,
|
1076 |
+
"learning_rate": 0.00011866149595193254,
|
1077 |
+
"loss": 1.8008,
|
1078 |
+
"step": 1760
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 0.45,
|
1082 |
+
"learning_rate": 0.0001178625428235085,
|
1083 |
+
"loss": 1.8057,
|
1084 |
+
"step": 1770
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"epoch": 0.46,
|
1088 |
+
"learning_rate": 0.00011706241014349788,
|
1089 |
+
"loss": 1.8286,
|
1090 |
+
"step": 1780
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.46,
|
1094 |
+
"learning_rate": 0.00011626115074859829,
|
1095 |
+
"loss": 1.7838,
|
1096 |
+
"step": 1790
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.46,
|
1100 |
+
"learning_rate": 0.00011545881754990972,
|
1101 |
+
"loss": 1.7678,
|
1102 |
+
"step": 1800
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.46,
|
1106 |
+
"learning_rate": 0.00011465546352944083,
|
1107 |
+
"loss": 1.8015,
|
1108 |
+
"step": 1810
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.47,
|
1112 |
+
"learning_rate": 0.00011385114173661003,
|
1113 |
+
"loss": 1.773,
|
1114 |
+
"step": 1820
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.47,
|
1118 |
+
"learning_rate": 0.00011304590528474257,
|
1119 |
+
"loss": 1.7528,
|
1120 |
+
"step": 1830
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"epoch": 0.47,
|
1124 |
+
"learning_rate": 0.00011223980734756319,
|
1125 |
+
"loss": 1.7651,
|
1126 |
+
"step": 1840
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 0.47,
|
1130 |
+
"learning_rate": 0.00011143290115568473,
|
1131 |
+
"loss": 1.7817,
|
1132 |
+
"step": 1850
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 0.48,
|
1136 |
+
"learning_rate": 0.00011062523999309291,
|
1137 |
+
"loss": 1.7699,
|
1138 |
+
"step": 1860
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.48,
|
1142 |
+
"learning_rate": 0.00010981687719362807,
|
1143 |
+
"loss": 1.7672,
|
1144 |
+
"step": 1870
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.48,
|
1148 |
+
"learning_rate": 0.00010900786613746299,
|
1149 |
+
"loss": 1.789,
|
1150 |
+
"step": 1880
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.48,
|
1154 |
+
"learning_rate": 0.00010819826024757807,
|
1155 |
+
"loss": 1.7622,
|
1156 |
+
"step": 1890
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 0.49,
|
1160 |
+
"learning_rate": 0.00010738811298623348,
|
1161 |
+
"loss": 1.7543,
|
1162 |
+
"step": 1900
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"epoch": 0.49,
|
1166 |
+
"learning_rate": 0.00010657747785143882,
|
1167 |
+
"loss": 1.7432,
|
1168 |
+
"step": 1910
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 0.49,
|
1172 |
+
"learning_rate": 0.00010576640837342036,
|
1173 |
+
"loss": 1.7765,
|
1174 |
+
"step": 1920
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 0.49,
|
1178 |
+
"learning_rate": 0.00010495495811108622,
|
1179 |
+
"loss": 1.768,
|
1180 |
+
"step": 1930
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 0.5,
|
1184 |
+
"learning_rate": 0.00010414318064848956,
|
1185 |
+
"loss": 1.7852,
|
1186 |
+
"step": 1940
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.5,
|
1190 |
+
"learning_rate": 0.0001033311295912902,
|
1191 |
+
"loss": 1.7551,
|
1192 |
+
"step": 1950
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.5,
|
1196 |
+
"learning_rate": 0.0001025188585632147,
|
1197 |
+
"loss": 1.7474,
|
1198 |
+
"step": 1960
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 0.5,
|
1202 |
+
"learning_rate": 0.00010186891940623151,
|
1203 |
+
"loss": 1.7737,
|
1204 |
+
"step": 1970
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"epoch": 0.51,
|
1208 |
+
"learning_rate": 0.00010105638760647513,
|
1209 |
+
"loss": 1.7802,
|
1210 |
+
"step": 1980
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 0.51,
|
1214 |
+
"learning_rate": 0.00010024378604824765,
|
1215 |
+
"loss": 1.7723,
|
1216 |
+
"step": 1990
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.51,
|
1220 |
+
"learning_rate": 9.943116839162797e-05,
|
1221 |
+
"loss": 1.7412,
|
1222 |
+
"step": 2000
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 0.51,
|
1226 |
+
"eval_loss": 1.5315768718719482,
|
1227 |
+
"eval_runtime": 2.0299,
|
1228 |
+
"eval_samples_per_second": 49.264,
|
1229 |
+
"eval_steps_per_second": 1.971,
|
1230 |
+
"step": 2000
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.51,
|
1234 |
+
"learning_rate": 9.869984308751394e-05,
|
1235 |
+
"loss": 1.7468,
|
1236 |
+
"step": 2010
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"epoch": 0.52,
|
1240 |
+
"learning_rate": 9.788734267841828e-05,
|
1241 |
+
"loss": 1.7681,
|
1242 |
+
"step": 2020
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.52,
|
1246 |
+
"learning_rate": 9.707498177847988e-05,
|
1247 |
+
"loss": 1.8109,
|
1248 |
+
"step": 2030
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.52,
|
1252 |
+
"learning_rate": 9.626281403188578e-05,
|
1253 |
+
"loss": 1.72,
|
1254 |
+
"step": 2040
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 0.52,
|
1258 |
+
"learning_rate": 9.545089307006811e-05,
|
1259 |
+
"loss": 1.703,
|
1260 |
+
"step": 2050
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 0.53,
|
1264 |
+
"learning_rate": 9.463927250816272e-05,
|
1265 |
+
"loss": 1.7624,
|
1266 |
+
"step": 2060
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 0.53,
|
1270 |
+
"learning_rate": 9.382800594146841e-05,
|
1271 |
+
"loss": 1.7587,
|
1272 |
+
"step": 2070
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.53,
|
1276 |
+
"learning_rate": 9.301714694190808e-05,
|
1277 |
+
"loss": 1.7375,
|
1278 |
+
"step": 2080
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"epoch": 0.54,
|
1282 |
+
"learning_rate": 9.220674905449091e-05,
|
1283 |
+
"loss": 1.7579,
|
1284 |
+
"step": 2090
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.54,
|
1288 |
+
"learning_rate": 9.139686579377649e-05,
|
1289 |
+
"loss": 1.7396,
|
1290 |
+
"step": 2100
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.54,
|
1294 |
+
"learning_rate": 9.058755064034127e-05,
|
1295 |
+
"loss": 1.6666,
|
1296 |
+
"step": 2110
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"epoch": 0.54,
|
1300 |
+
"learning_rate": 8.977885703724658e-05,
|
1301 |
+
"loss": 1.7319,
|
1302 |
+
"step": 2120
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"epoch": 0.55,
|
1306 |
+
"learning_rate": 8.897083838650984e-05,
|
1307 |
+
"loss": 1.7387,
|
1308 |
+
"step": 2130
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"epoch": 0.55,
|
1312 |
+
"learning_rate": 8.816354804557807e-05,
|
1313 |
+
"loss": 1.7204,
|
1314 |
+
"step": 2140
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.55,
|
1318 |
+
"learning_rate": 8.743765350485347e-05,
|
1319 |
+
"loss": 1.7183,
|
1320 |
+
"step": 2150
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"epoch": 0.55,
|
1324 |
+
"learning_rate": 8.671243090320367e-05,
|
1325 |
+
"loss": 1.7173,
|
1326 |
+
"step": 2160
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.56,
|
1330 |
+
"learning_rate": 8.590746326848647e-05,
|
1331 |
+
"loss": 1.7185,
|
1332 |
+
"step": 2170
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.56,
|
1336 |
+
"learning_rate": 8.510342623330503e-05,
|
1337 |
+
"loss": 1.7228,
|
1338 |
+
"step": 2180
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"epoch": 0.56,
|
1342 |
+
"learning_rate": 8.430037289218072e-05,
|
1343 |
+
"loss": 1.7542,
|
1344 |
+
"step": 2190
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 0.56,
|
1348 |
+
"learning_rate": 8.349835627467664e-05,
|
1349 |
+
"loss": 1.7005,
|
1350 |
+
"step": 2200
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 0.57,
|
1354 |
+
"learning_rate": 8.269742934189604e-05,
|
1355 |
+
"loss": 1.7211,
|
1356 |
+
"step": 2210
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.57,
|
1360 |
+
"learning_rate": 8.189764498298483e-05,
|
1361 |
+
"loss": 1.7455,
|
1362 |
+
"step": 2220
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 0.57,
|
1366 |
+
"learning_rate": 8.109905601163912e-05,
|
1367 |
+
"loss": 1.6729,
|
1368 |
+
"step": 2230
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.57,
|
1372 |
+
"learning_rate": 8.030171516261782e-05,
|
1373 |
+
"loss": 1.7341,
|
1374 |
+
"step": 2240
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.58,
|
1378 |
+
"learning_rate": 7.950567508826012e-05,
|
1379 |
+
"loss": 1.7286,
|
1380 |
+
"step": 2250
|
1381 |
+
},
|
1382 |
+
{
|
1383 |
+
"epoch": 0.58,
|
1384 |
+
"learning_rate": 7.871098835500859e-05,
|
1385 |
+
"loss": 1.7079,
|
1386 |
+
"step": 2260
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 0.58,
|
1390 |
+
"learning_rate": 7.791770743993817e-05,
|
1391 |
+
"loss": 1.7001,
|
1392 |
+
"step": 2270
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 0.58,
|
1396 |
+
"learning_rate": 7.712588472729058e-05,
|
1397 |
+
"loss": 1.7239,
|
1398 |
+
"step": 2280
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 0.59,
|
1402 |
+
"learning_rate": 7.633557250501531e-05,
|
1403 |
+
"loss": 1.7032,
|
1404 |
+
"step": 2290
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 0.59,
|
1408 |
+
"learning_rate": 7.55468229613168e-05,
|
1409 |
+
"loss": 1.6624,
|
1410 |
+
"step": 2300
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.59,
|
1414 |
+
"learning_rate": 7.475968818120798e-05,
|
1415 |
+
"loss": 1.7258,
|
1416 |
+
"step": 2310
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.59,
|
1420 |
+
"learning_rate": 7.405269046437083e-05,
|
1421 |
+
"loss": 1.6995,
|
1422 |
+
"step": 2320
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"epoch": 0.6,
|
1426 |
+
"learning_rate": 7.342541200785587e-05,
|
1427 |
+
"loss": 1.6715,
|
1428 |
+
"step": 2330
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 0.6,
|
1432 |
+
"learning_rate": 7.26428964082281e-05,
|
1433 |
+
"loss": 1.7005,
|
1434 |
+
"step": 2340
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 0.6,
|
1438 |
+
"learning_rate": 7.186218733274769e-05,
|
1439 |
+
"loss": 1.6575,
|
1440 |
+
"step": 2350
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 0.6,
|
1444 |
+
"learning_rate": 7.1083336335476e-05,
|
1445 |
+
"loss": 1.7001,
|
1446 |
+
"step": 2360
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"epoch": 0.61,
|
1450 |
+
"learning_rate": 7.030639484777641e-05,
|
1451 |
+
"loss": 1.6679,
|
1452 |
+
"step": 2370
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 0.61,
|
1456 |
+
"learning_rate": 6.953141417491781e-05,
|
1457 |
+
"loss": 1.7034,
|
1458 |
+
"step": 2380
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.61,
|
1462 |
+
"learning_rate": 6.875844549268706e-05,
|
1463 |
+
"loss": 1.6804,
|
1464 |
+
"step": 2390
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 0.61,
|
1468 |
+
"learning_rate": 6.798753984400916e-05,
|
1469 |
+
"loss": 1.6844,
|
1470 |
+
"step": 2400
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 0.62,
|
1474 |
+
"learning_rate": 6.721874813557699e-05,
|
1475 |
+
"loss": 1.7038,
|
1476 |
+
"step": 2410
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 0.62,
|
1480 |
+
"learning_rate": 6.645212113448953e-05,
|
1481 |
+
"loss": 1.6728,
|
1482 |
+
"step": 2420
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 0.62,
|
1486 |
+
"learning_rate": 6.568770946489948e-05,
|
1487 |
+
"loss": 1.682,
|
1488 |
+
"step": 2430
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 0.62,
|
1492 |
+
"learning_rate": 6.492556360467025e-05,
|
1493 |
+
"loss": 1.6799,
|
1494 |
+
"step": 2440
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 0.63,
|
1498 |
+
"learning_rate": 6.416573388204282e-05,
|
1499 |
+
"loss": 1.66,
|
1500 |
+
"step": 2450
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.63,
|
1504 |
+
"learning_rate": 6.340827047231211e-05,
|
1505 |
+
"loss": 1.6806,
|
1506 |
+
"step": 2460
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 0.63,
|
1510 |
+
"learning_rate": 6.265322339451376e-05,
|
1511 |
+
"loss": 1.6661,
|
1512 |
+
"step": 2470
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 0.63,
|
1516 |
+
"learning_rate": 6.190064250812124e-05,
|
1517 |
+
"loss": 1.6696,
|
1518 |
+
"step": 2480
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 0.64,
|
1522 |
+
"learning_rate": 6.115057750975312e-05,
|
1523 |
+
"loss": 1.6153,
|
1524 |
+
"step": 2490
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 0.64,
|
1528 |
+
"learning_rate": 6.040307792989157e-05,
|
1529 |
+
"loss": 1.6824,
|
1530 |
+
"step": 2500
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 0.64,
|
1534 |
+
"learning_rate": 5.9658193129611604e-05,
|
1535 |
+
"loss": 1.6886,
|
1536 |
+
"step": 2510
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 0.65,
|
1540 |
+
"learning_rate": 5.891597229732135e-05,
|
1541 |
+
"loss": 1.6358,
|
1542 |
+
"step": 2520
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.65,
|
1546 |
+
"learning_rate": 5.8176464445514166e-05,
|
1547 |
+
"loss": 1.6462,
|
1548 |
+
"step": 2530
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 0.65,
|
1552 |
+
"learning_rate": 5.7439718407531906e-05,
|
1553 |
+
"loss": 1.6434,
|
1554 |
+
"step": 2540
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 0.65,
|
1558 |
+
"learning_rate": 5.670578283434016e-05,
|
1559 |
+
"loss": 1.6459,
|
1560 |
+
"step": 2550
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 0.66,
|
1564 |
+
"learning_rate": 5.5974706191315884e-05,
|
1565 |
+
"loss": 1.6705,
|
1566 |
+
"step": 2560
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 0.66,
|
1570 |
+
"learning_rate": 5.5246536755046706e-05,
|
1571 |
+
"loss": 1.6638,
|
1572 |
+
"step": 2570
|
1573 |
+
},
|
1574 |
+
{
|
1575 |
+
"epoch": 0.66,
|
1576 |
+
"learning_rate": 5.452132261014304e-05,
|
1577 |
+
"loss": 1.6656,
|
1578 |
+
"step": 2580
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.66,
|
1582 |
+
"learning_rate": 5.379911164606304e-05,
|
1583 |
+
"loss": 1.6572,
|
1584 |
+
"step": 2590
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.67,
|
1588 |
+
"learning_rate": 5.315172891887351e-05,
|
1589 |
+
"loss": 1.643,
|
1590 |
+
"step": 2600
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 0.67,
|
1594 |
+
"learning_rate": 5.2435355221012797e-05,
|
1595 |
+
"loss": 1.6544,
|
1596 |
+
"step": 2610
|
1597 |
+
},
|
1598 |
+
{
|
1599 |
+
"epoch": 0.67,
|
1600 |
+
"learning_rate": 5.172212245066537e-05,
|
1601 |
+
"loss": 1.628,
|
1602 |
+
"step": 2620
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 0.67,
|
1606 |
+
"learning_rate": 5.1012077706100125e-05,
|
1607 |
+
"loss": 1.6378,
|
1608 |
+
"step": 2630
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 0.68,
|
1612 |
+
"learning_rate": 5.0305267875065087e-05,
|
1613 |
+
"loss": 1.6475,
|
1614 |
+
"step": 2640
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 0.68,
|
1618 |
+
"learning_rate": 4.9601739631690836e-05,
|
1619 |
+
"loss": 1.5959,
|
1620 |
+
"step": 2650
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.68,
|
1624 |
+
"learning_rate": 4.897140837169796e-05,
|
1625 |
+
"loss": 1.657,
|
1626 |
+
"step": 2660
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.68,
|
1630 |
+
"learning_rate": 4.827424295352793e-05,
|
1631 |
+
"loss": 1.6716,
|
1632 |
+
"step": 2670
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 0.69,
|
1636 |
+
"learning_rate": 4.758049324158693e-05,
|
1637 |
+
"loss": 1.59,
|
1638 |
+
"step": 2680
|
1639 |
+
},
|
1640 |
+
{
|
1641 |
+
"epoch": 0.69,
|
1642 |
+
"learning_rate": 4.6890205047581745e-05,
|
1643 |
+
"loss": 1.6442,
|
1644 |
+
"step": 2690
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 0.69,
|
1648 |
+
"learning_rate": 4.6203423954637995e-05,
|
1649 |
+
"loss": 1.6152,
|
1650 |
+
"step": 2700
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 0.69,
|
1654 |
+
"learning_rate": 4.552019531429019e-05,
|
1655 |
+
"loss": 1.6446,
|
1656 |
+
"step": 2710
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 0.7,
|
1660 |
+
"learning_rate": 4.484056424348703e-05,
|
1661 |
+
"loss": 1.6216,
|
1662 |
+
"step": 2720
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.7,
|
1666 |
+
"learning_rate": 4.416457562161184e-05,
|
1667 |
+
"loss": 1.6534,
|
1668 |
+
"step": 2730
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.7,
|
1672 |
+
"learning_rate": 4.349227408751919e-05,
|
1673 |
+
"loss": 1.6474,
|
1674 |
+
"step": 2740
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 0.7,
|
1678 |
+
"learning_rate": 4.282370403658717e-05,
|
1679 |
+
"loss": 1.6338,
|
1680 |
+
"step": 2750
|
1681 |
+
},
|
1682 |
+
{
|
1683 |
+
"epoch": 0.71,
|
1684 |
+
"learning_rate": 4.2158909617785525e-05,
|
1685 |
+
"loss": 1.6473,
|
1686 |
+
"step": 2760
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"epoch": 0.71,
|
1690 |
+
"learning_rate": 4.149793473076058e-05,
|
1691 |
+
"loss": 1.6315,
|
1692 |
+
"step": 2770
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 0.71,
|
1696 |
+
"learning_rate": 4.084082302293617e-05,
|
1697 |
+
"loss": 1.6516,
|
1698 |
+
"step": 2780
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"epoch": 0.71,
|
1702 |
+
"learning_rate": 4.018761788663127e-05,
|
1703 |
+
"loss": 1.6112,
|
1704 |
+
"step": 2790
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.72,
|
1708 |
+
"learning_rate": 3.953836245619488e-05,
|
1709 |
+
"loss": 1.6077,
|
1710 |
+
"step": 2800
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.72,
|
1714 |
+
"learning_rate": 3.889309960515738e-05,
|
1715 |
+
"loss": 1.6182,
|
1716 |
+
"step": 2810
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"epoch": 0.72,
|
1720 |
+
"learning_rate": 3.82518719433995e-05,
|
1721 |
+
"loss": 1.6072,
|
1722 |
+
"step": 2820
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 0.72,
|
1726 |
+
"learning_rate": 3.761472181433865e-05,
|
1727 |
+
"loss": 1.6062,
|
1728 |
+
"step": 2830
|
1729 |
+
},
|
1730 |
+
{
|
1731 |
+
"epoch": 0.73,
|
1732 |
+
"learning_rate": 3.6981691292132604e-05,
|
1733 |
+
"loss": 1.6332,
|
1734 |
+
"step": 2840
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 0.73,
|
1738 |
+
"learning_rate": 3.6352822178901235e-05,
|
1739 |
+
"loss": 1.6393,
|
1740 |
+
"step": 2850
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 0.73,
|
1744 |
+
"learning_rate": 3.5728156001966154e-05,
|
1745 |
+
"loss": 1.6401,
|
1746 |
+
"step": 2860
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 0.73,
|
1750 |
+
"learning_rate": 3.5169584051980575e-05,
|
1751 |
+
"loss": 1.6234,
|
1752 |
+
"step": 2870
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.74,
|
1756 |
+
"learning_rate": 3.461447977339909e-05,
|
1757 |
+
"loss": 1.5814,
|
1758 |
+
"step": 2880
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 0.74,
|
1762 |
+
"learning_rate": 3.4001800370596834e-05,
|
1763 |
+
"loss": 1.6018,
|
1764 |
+
"step": 2890
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 0.74,
|
1768 |
+
"learning_rate": 3.339347915362796e-05,
|
1769 |
+
"loss": 1.6172,
|
1770 |
+
"step": 2900
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 0.74,
|
1774 |
+
"learning_rate": 3.278955629293534e-05,
|
1775 |
+
"loss": 1.6042,
|
1776 |
+
"step": 2910
|
1777 |
+
},
|
1778 |
+
{
|
1779 |
+
"epoch": 0.75,
|
1780 |
+
"learning_rate": 3.219007166851673e-05,
|
1781 |
+
"loss": 1.6119,
|
1782 |
+
"step": 2920
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 0.75,
|
1786 |
+
"learning_rate": 3.1595064867291394e-05,
|
1787 |
+
"loss": 1.621,
|
1788 |
+
"step": 2930
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 0.75,
|
1792 |
+
"learning_rate": 3.1004575180485885e-05,
|
1793 |
+
"loss": 1.6046,
|
1794 |
+
"step": 2940
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.76,
|
1798 |
+
"learning_rate": 3.0418641601039366e-05,
|
1799 |
+
"loss": 1.5811,
|
1800 |
+
"step": 2950
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"epoch": 0.76,
|
1804 |
+
"learning_rate": 2.9837302821028956e-05,
|
1805 |
+
"loss": 1.5635,
|
1806 |
+
"step": 2960
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 0.76,
|
1810 |
+
"learning_rate": 2.926059722911447e-05,
|
1811 |
+
"loss": 1.6193,
|
1812 |
+
"step": 2970
|
1813 |
+
},
|
1814 |
+
{
|
1815 |
+
"epoch": 0.76,
|
1816 |
+
"learning_rate": 2.86885629080035e-05,
|
1817 |
+
"loss": 1.6067,
|
1818 |
+
"step": 2980
|
1819 |
+
},
|
1820 |
+
{
|
1821 |
+
"epoch": 0.77,
|
1822 |
+
"learning_rate": 2.823432416081132e-05,
|
1823 |
+
"loss": 1.5795,
|
1824 |
+
"step": 2990
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 0.77,
|
1828 |
+
"learning_rate": 2.7670793109350358e-05,
|
1829 |
+
"loss": 1.5891,
|
1830 |
+
"step": 3000
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 0.77,
|
1834 |
+
"eval_loss": 1.3908636569976807,
|
1835 |
+
"eval_runtime": 2.0291,
|
1836 |
+
"eval_samples_per_second": 49.282,
|
1837 |
+
"eval_steps_per_second": 1.971,
|
1838 |
+
"step": 3000
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 0.77,
|
1842 |
+
"learning_rate": 2.7112038311280828e-05,
|
1843 |
+
"loss": 1.599,
|
1844 |
+
"step": 3010
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.77,
|
1848 |
+
"learning_rate": 2.655809666393112e-05,
|
1849 |
+
"loss": 1.5877,
|
1850 |
+
"step": 3020
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.78,
|
1854 |
+
"learning_rate": 2.600900474679364e-05,
|
1855 |
+
"loss": 1.6096,
|
1856 |
+
"step": 3030
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 0.78,
|
1860 |
+
"learning_rate": 2.546479881910918e-05,
|
1861 |
+
"loss": 1.6317,
|
1862 |
+
"step": 3040
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.78,
|
1866 |
+
"learning_rate": 2.4925514817472618e-05,
|
1867 |
+
"loss": 1.5218,
|
1868 |
+
"step": 3050
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 0.78,
|
1872 |
+
"learning_rate": 2.4391188353459925e-05,
|
1873 |
+
"loss": 1.5526,
|
1874 |
+
"step": 3060
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 0.79,
|
1878 |
+
"learning_rate": 2.3861854711276378e-05,
|
1879 |
+
"loss": 1.5753,
|
1880 |
+
"step": 3070
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 0.79,
|
1884 |
+
"learning_rate": 2.333754884542667e-05,
|
1885 |
+
"loss": 1.6214,
|
1886 |
+
"step": 3080
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.79,
|
1890 |
+
"learning_rate": 2.281830537840678e-05,
|
1891 |
+
"loss": 1.591,
|
1892 |
+
"step": 3090
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.79,
|
1896 |
+
"learning_rate": 2.2355342955230186e-05,
|
1897 |
+
"loss": 1.5578,
|
1898 |
+
"step": 3100
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 0.8,
|
1902 |
+
"learning_rate": 2.189653361595686e-05,
|
1903 |
+
"loss": 1.5684,
|
1904 |
+
"step": 3110
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.8,
|
1908 |
+
"learning_rate": 2.1391646203159456e-05,
|
1909 |
+
"loss": 1.5654,
|
1910 |
+
"step": 3120
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 0.8,
|
1914 |
+
"learning_rate": 2.089194968671713e-05,
|
1915 |
+
"loss": 1.5803,
|
1916 |
+
"step": 3130
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 0.8,
|
1920 |
+
"learning_rate": 2.039747706404943e-05,
|
1921 |
+
"loss": 1.5737,
|
1922 |
+
"step": 3140
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.81,
|
1926 |
+
"learning_rate": 1.99082609876164e-05,
|
1927 |
+
"loss": 1.5444,
|
1928 |
+
"step": 3150
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.81,
|
1932 |
+
"learning_rate": 1.9472487573431274e-05,
|
1933 |
+
"loss": 1.5995,
|
1934 |
+
"step": 3160
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.81,
|
1938 |
+
"learning_rate": 1.8993347647457706e-05,
|
1939 |
+
"loss": 1.5803,
|
1940 |
+
"step": 3170
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 0.81,
|
1944 |
+
"learning_rate": 1.8519556989292508e-05,
|
1945 |
+
"loss": 1.5892,
|
1946 |
+
"step": 3180
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.82,
|
1950 |
+
"learning_rate": 1.8051146885663938e-05,
|
1951 |
+
"loss": 1.6006,
|
1952 |
+
"step": 3190
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 0.82,
|
1956 |
+
"learning_rate": 1.7588148267995695e-05,
|
1957 |
+
"loss": 1.567,
|
1958 |
+
"step": 3200
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 0.82,
|
1962 |
+
"learning_rate": 1.7130591710364486e-05,
|
1963 |
+
"loss": 1.5557,
|
1964 |
+
"step": 3210
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 0.82,
|
1968 |
+
"learning_rate": 1.6678507427480983e-05,
|
1969 |
+
"loss": 1.5794,
|
1970 |
+
"step": 3220
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.83,
|
1974 |
+
"learning_rate": 1.6231925272694615e-05,
|
1975 |
+
"loss": 1.5858,
|
1976 |
+
"step": 3230
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.83,
|
1980 |
+
"learning_rate": 1.5790874736022287e-05,
|
1981 |
+
"loss": 1.5791,
|
1982 |
+
"step": 3240
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 0.83,
|
1986 |
+
"learning_rate": 1.535538494220089e-05,
|
1987 |
+
"loss": 1.5721,
|
1988 |
+
"step": 3250
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.83,
|
1992 |
+
"learning_rate": 1.4925484648764131e-05,
|
1993 |
+
"loss": 1.5537,
|
1994 |
+
"step": 3260
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 0.84,
|
1998 |
+
"learning_rate": 1.450120224414352e-05,
|
1999 |
+
"loss": 1.5698,
|
2000 |
+
"step": 3270
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 0.84,
|
2004 |
+
"learning_rate": 1.4082565745793686e-05,
|
2005 |
+
"loss": 1.5529,
|
2006 |
+
"step": 3280
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 0.84,
|
2010 |
+
"learning_rate": 1.3669602798342296e-05,
|
2011 |
+
"loss": 1.5702,
|
2012 |
+
"step": 3290
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.84,
|
2016 |
+
"learning_rate": 1.3262340671764584e-05,
|
2017 |
+
"loss": 1.5273,
|
2018 |
+
"step": 3300
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.85,
|
2022 |
+
"learning_rate": 1.2860806259582492e-05,
|
2023 |
+
"loss": 1.5401,
|
2024 |
+
"step": 3310
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 0.85,
|
2028 |
+
"learning_rate": 1.2504344407159785e-05,
|
2029 |
+
"loss": 1.5753,
|
2030 |
+
"step": 3320
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.85,
|
2034 |
+
"learning_rate": 1.2113765387943211e-05,
|
2035 |
+
"loss": 1.5564,
|
2036 |
+
"step": 3330
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 0.85,
|
2040 |
+
"learning_rate": 1.172898992919923e-05,
|
2041 |
+
"loss": 1.5189,
|
2042 |
+
"step": 3340
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 0.86,
|
2046 |
+
"learning_rate": 1.1350043439544521e-05,
|
2047 |
+
"loss": 1.5607,
|
2048 |
+
"step": 3350
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 0.86,
|
2052 |
+
"learning_rate": 1.0976950942680197e-05,
|
2053 |
+
"loss": 1.539,
|
2054 |
+
"step": 3360
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.86,
|
2058 |
+
"learning_rate": 1.0609737075739412e-05,
|
2059 |
+
"loss": 1.5593,
|
2060 |
+
"step": 3370
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.87,
|
2064 |
+
"learning_rate": 1.0248426087660557e-05,
|
2065 |
+
"loss": 1.5345,
|
2066 |
+
"step": 3380
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 0.87,
|
2070 |
+
"learning_rate": 9.89304183758577e-06,
|
2071 |
+
"loss": 1.5988,
|
2072 |
+
"step": 3390
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.87,
|
2076 |
+
"learning_rate": 9.543607793285626e-06,
|
2077 |
+
"loss": 1.5306,
|
2078 |
+
"step": 3400
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 0.87,
|
2082 |
+
"learning_rate": 9.200147029609264e-06,
|
2083 |
+
"loss": 1.5702,
|
2084 |
+
"step": 3410
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 0.88,
|
2088 |
+
"learning_rate": 8.896158250762244e-06,
|
2089 |
+
"loss": 1.5378,
|
2090 |
+
"step": 3420
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 0.88,
|
2094 |
+
"learning_rate": 8.59704246528129e-06,
|
2095 |
+
"loss": 1.5693,
|
2096 |
+
"step": 3430
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.88,
|
2100 |
+
"learning_rate": 8.270426282311539e-06,
|
2101 |
+
"loss": 1.5517,
|
2102 |
+
"step": 3440
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.88,
|
2106 |
+
"learning_rate": 7.949867454404824e-06,
|
2107 |
+
"loss": 1.5576,
|
2108 |
+
"step": 3450
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 0.89,
|
2112 |
+
"learning_rate": 7.635387149637685e-06,
|
2113 |
+
"loss": 1.5763,
|
2114 |
+
"step": 3460
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.89,
|
2118 |
+
"learning_rate": 7.327006134691883e-06,
|
2119 |
+
"loss": 1.5768,
|
2120 |
+
"step": 3470
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 0.89,
|
2124 |
+
"learning_rate": 7.024744773483105e-06,
|
2125 |
+
"loss": 1.5393,
|
2126 |
+
"step": 3480
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 0.89,
|
2130 |
+
"learning_rate": 6.7286230258161385e-06,
|
2131 |
+
"loss": 1.5617,
|
2132 |
+
"step": 3490
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 0.9,
|
2136 |
+
"learning_rate": 6.438660446066891e-06,
|
2137 |
+
"loss": 1.5404,
|
2138 |
+
"step": 3500
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.9,
|
2142 |
+
"learning_rate": 6.154876181891145e-06,
|
2143 |
+
"loss": 1.5765,
|
2144 |
+
"step": 3510
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.9,
|
2148 |
+
"learning_rate": 5.877288972960071e-06,
|
2149 |
+
"loss": 1.5942,
|
2150 |
+
"step": 3520
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 0.9,
|
2154 |
+
"learning_rate": 5.632774125747675e-06,
|
2155 |
+
"loss": 1.5557,
|
2156 |
+
"step": 3530
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 0.91,
|
2160 |
+
"learning_rate": 5.367011482971008e-06,
|
2161 |
+
"loss": 1.5438,
|
2162 |
+
"step": 3540
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 0.91,
|
2166 |
+
"learning_rate": 5.107497922021364e-06,
|
2167 |
+
"loss": 1.5351,
|
2168 |
+
"step": 3550
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 0.91,
|
2172 |
+
"learning_rate": 4.854250579856034e-06,
|
2173 |
+
"loss": 1.5304,
|
2174 |
+
"step": 3560
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 0.91,
|
2178 |
+
"learning_rate": 4.6072861796429665e-06,
|
2179 |
+
"loss": 1.554,
|
2180 |
+
"step": 3570
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.92,
|
2184 |
+
"learning_rate": 4.366621029656582e-06,
|
2185 |
+
"loss": 1.5185,
|
2186 |
+
"step": 3580
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.92,
|
2190 |
+
"learning_rate": 4.1322710222008065e-06,
|
2191 |
+
"loss": 1.5746,
|
2192 |
+
"step": 3590
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 0.92,
|
2196 |
+
"learning_rate": 3.904251632559652e-06,
|
2197 |
+
"loss": 1.5413,
|
2198 |
+
"step": 3600
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 0.92,
|
2202 |
+
"learning_rate": 3.6825779179752716e-06,
|
2203 |
+
"loss": 1.5533,
|
2204 |
+
"step": 3610
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 0.93,
|
2208 |
+
"learning_rate": 3.467264516653668e-06,
|
2209 |
+
"loss": 1.5432,
|
2210 |
+
"step": 3620
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 0.93,
|
2214 |
+
"learning_rate": 3.2583256467980773e-06,
|
2215 |
+
"loss": 1.5869,
|
2216 |
+
"step": 3630
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 0.93,
|
2220 |
+
"learning_rate": 3.055775105670056e-06,
|
2221 |
+
"loss": 1.5374,
|
2222 |
+
"step": 3640
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.93,
|
2226 |
+
"learning_rate": 2.8596262686783837e-06,
|
2227 |
+
"loss": 1.5425,
|
2228 |
+
"step": 3650
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.94,
|
2232 |
+
"learning_rate": 2.6698920884958177e-06,
|
2233 |
+
"loss": 1.5906,
|
2234 |
+
"step": 3660
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 0.94,
|
2238 |
+
"learning_rate": 2.486585094203786e-06,
|
2239 |
+
"loss": 1.5787,
|
2240 |
+
"step": 3670
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 0.94,
|
2244 |
+
"learning_rate": 2.309717390464983e-06,
|
2245 |
+
"loss": 1.5579,
|
2246 |
+
"step": 3680
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 0.94,
|
2250 |
+
"learning_rate": 2.1393006567240635e-06,
|
2251 |
+
"loss": 1.5391,
|
2252 |
+
"step": 3690
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 0.95,
|
2256 |
+
"learning_rate": 1.9753461464364408e-06,
|
2257 |
+
"loss": 1.5478,
|
2258 |
+
"step": 3700
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 0.95,
|
2262 |
+
"learning_rate": 1.8178646863250548e-06,
|
2263 |
+
"loss": 1.5777,
|
2264 |
+
"step": 3710
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.95,
|
2268 |
+
"learning_rate": 1.6668666756655572e-06,
|
2269 |
+
"loss": 1.5239,
|
2270 |
+
"step": 3720
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.95,
|
2274 |
+
"learning_rate": 1.5365200653588708e-06,
|
2275 |
+
"loss": 1.4992,
|
2276 |
+
"step": 3730
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 0.96,
|
2280 |
+
"learning_rate": 1.397867724769042e-06,
|
2281 |
+
"loss": 1.5272,
|
2282 |
+
"step": 3740
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 0.96,
|
2286 |
+
"learning_rate": 1.2657265680968589e-06,
|
2287 |
+
"loss": 1.541,
|
2288 |
+
"step": 3750
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 0.96,
|
2292 |
+
"learning_rate": 1.1523738102167225e-06,
|
2293 |
+
"loss": 1.5219,
|
2294 |
+
"step": 3760
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 0.97,
|
2298 |
+
"learning_rate": 1.044308247886483e-06,
|
2299 |
+
"loss": 1.5524,
|
2300 |
+
"step": 3770
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 0.97,
|
2304 |
+
"learning_rate": 9.30443453495422e-07,
|
2305 |
+
"loss": 1.5508,
|
2306 |
+
"step": 3780
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.97,
|
2310 |
+
"learning_rate": 8.231207093463699e-07,
|
2311 |
+
"loss": 1.5758,
|
2312 |
+
"step": 3790
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.97,
|
2316 |
+
"learning_rate": 7.223471024881412e-07,
|
2317 |
+
"loss": 1.5658,
|
2318 |
+
"step": 3800
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 0.98,
|
2322 |
+
"learning_rate": 6.281292874978029e-07,
|
2323 |
+
"loss": 1.5232,
|
2324 |
+
"step": 3810
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 0.98,
|
2328 |
+
"learning_rate": 5.404734860412375e-07,
|
2329 |
+
"loss": 1.5646,
|
2330 |
+
"step": 3820
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 0.98,
|
2334 |
+
"learning_rate": 4.5938548646227154e-07,
|
2335 |
+
"loss": 1.5771,
|
2336 |
+
"step": 3830
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 0.98,
|
2340 |
+
"learning_rate": 3.8487064340047006e-07,
|
2341 |
+
"loss": 1.5611,
|
2342 |
+
"step": 3840
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 0.99,
|
2346 |
+
"learning_rate": 3.16933877437553e-07,
|
2347 |
+
"loss": 1.6229,
|
2348 |
+
"step": 3850
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.99,
|
2352 |
+
"learning_rate": 2.555796747724104e-07,
|
2353 |
+
"loss": 1.5496,
|
2354 |
+
"step": 3860
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.99,
|
2358 |
+
"learning_rate": 2.0081208692490638e-07,
|
2359 |
+
"loss": 1.5312,
|
2360 |
+
"step": 3870
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 0.99,
|
2364 |
+
"learning_rate": 1.5263473046833732e-07,
|
2365 |
+
"loss": 1.5681,
|
2366 |
+
"step": 3880
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 1.0,
|
2370 |
+
"learning_rate": 1.1105078679056747e-07,
|
2371 |
+
"loss": 1.5128,
|
2372 |
+
"step": 3890
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 1.0,
|
2376 |
+
"learning_rate": 7.606300188400805e-08,
|
2377 |
+
"loss": 1.5764,
|
2378 |
+
"step": 3900
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 1.0,
|
2382 |
+
"step": 3906,
|
2383 |
+
"total_flos": 331952415375360.0,
|
2384 |
+
"train_loss": 1.9416432221974707,
|
2385 |
+
"train_runtime": 74872.2082,
|
2386 |
+
"train_samples_per_second": 6.678,
|
2387 |
+
"train_steps_per_second": 0.052
|
2388 |
+
}
|
2389 |
+
],
|
2390 |
+
"max_steps": 3906,
|
2391 |
+
"num_train_epochs": 1,
|
2392 |
+
"total_flos": 331952415375360.0,
|
2393 |
+
"trial_name": null,
|
2394 |
+
"trial_params": null
|
2395 |
+
}
|