bokesyo commited on
Commit
aed8933
β€’
1 Parent(s): 4ed21ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -12
README.md CHANGED
@@ -19,19 +19,19 @@ The model only takes images as document-side inputs and produce vectors represen
19
 
20
  # News
21
 
22
- - 2024-07-14: We released **huggingface demo**! Try our [online demo](https://huggingface.co/spaces/bokesyo/minicpm-visual-embeeding-v0-demo)!
23
 
24
- - 2024-07-14: We released a **Gradio demo** of `miniCPM-visual-embedding-v0`, take a look at [pipeline_gradio.py](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0/blob/main/pipeline_gradio.py). You can run `pipeline_gradio.py` to build a demo on your PC.
25
 
26
- - 2024-07-13: We released a **command-line based demo** of `miniCPM-visual-embedding-v0` for users to retireve most relavant pages from a given PDF file (could be very long), take a look at [pipeline.py](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0/blob/main/pipeline.py).
27
 
28
  - 2024-06-27: πŸš€ We released our first visual embedding model checkpoint minicpm-visual-embedding-v0 on [huggingface](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0).
29
 
30
  - 2024-05-08: 🌍 We [open-sourced](https://github.com/RhapsodyAILab/minicpm-visual-embedding-v0) our training code (full-parameter tuning with GradCache and DeepSpeed, supports large batch size across multiple GPUs with zero-stage1) and eval code.
31
 
32
- # Get started
33
 
34
- Pip install all dependencies:
35
 
36
  ```
37
  Pillow==10.1.0
@@ -43,27 +43,32 @@ sentencepiece==0.1.99
43
  numpy==1.26.0
44
  ```
45
 
46
- First you are suggested to git clone this huggingface repo or download repo with `huggingface_cli`.
 
 
47
 
48
  ```bash
49
  git lfs install
50
  git clone https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0
51
  ```
52
 
53
- or
54
 
55
  ```bash
 
56
  huggingface-cli download --resume-download RhapsodyAI/minicpm-visual-embedding-v0 --local-dir minicpm-visual-embedding-v0 --local-dir-use-symlinks False
57
  ```
58
 
59
- - To deploy a local demo, first check `pipeline_gradio.py`, change `model path` to your local path and change `device` to your device (for users with Nvidia card, use `cuda`, for users with apple silicon, use `mps`). then launch the demo:
60
 
61
  ```bash
62
  pip install gradio
63
  python pipeline_gradio.py
64
  ```
65
 
66
- - To run the model for research purpose, please refer the following code:
 
 
67
 
68
  ```python
69
  from transformers import AutoModel
@@ -105,11 +110,11 @@ print(scores)
105
 
106
  # Todos
107
 
108
- - [x] Release huggingface space demo.
109
 
110
- - Release the evaluation results.
111
 
112
- - Release technical report.
113
 
114
  # Limitations
115
 
 
19
 
20
  # News
21
 
22
+ - 2024-07-14: We released **online huggingface demo**! Try our [online demo](https://huggingface.co/spaces/bokesyo/minicpm-visual-embeeding-v0-demo)!
23
 
24
+ - 2024-07-14: We released a **locally deployable Gradio demo** of `miniCPM-visual-embedding-v0`, take a look at [pipeline_gradio.py](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0/blob/main/pipeline_gradio.py). You can run `pipeline_gradio.py` to build a demo on your PC.
25
 
26
+ - 2024-07-13: We released a **locally deployable command-line based demo** of `miniCPM-visual-embedding-v0` for users to retireve most relavant pages from a given PDF file (could be very long), take a look at [pipeline.py](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0/blob/main/pipeline.py).
27
 
28
  - 2024-06-27: πŸš€ We released our first visual embedding model checkpoint minicpm-visual-embedding-v0 on [huggingface](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0).
29
 
30
  - 2024-05-08: 🌍 We [open-sourced](https://github.com/RhapsodyAILab/minicpm-visual-embedding-v0) our training code (full-parameter tuning with GradCache and DeepSpeed, supports large batch size across multiple GPUs with zero-stage1) and eval code.
31
 
32
+ # Deploy on your PC
33
 
34
+ 1. Pip install all dependencies:
35
 
36
  ```
37
  Pillow==10.1.0
 
43
  numpy==1.26.0
44
  ```
45
 
46
+ 2. Download the model weights and modeling file, choose one of the following:
47
+
48
+ - Download with git clone.
49
 
50
  ```bash
51
  git lfs install
52
  git clone https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0
53
  ```
54
 
55
+ - Download with huggingface-hub.
56
 
57
  ```bash
58
+ pip install huggingface-hub
59
  huggingface-cli download --resume-download RhapsodyAI/minicpm-visual-embedding-v0 --local-dir minicpm-visual-embedding-v0 --local-dir-use-symlinks False
60
  ```
61
 
62
+ 3. To deploy a local demo, first check `pipeline_gradio.py`, change `model_path` to your local path and change `device` to your device (for users with Nvidia card, use `cuda`, for users with apple silicon, use `mps`, for users with only x86 cpu, please use `cpu`). then launch the demo:
63
 
64
  ```bash
65
  pip install gradio
66
  python pipeline_gradio.py
67
  ```
68
 
69
+ # For research purpose
70
+
71
+ To run the model for research purpose, please refer the following code:
72
 
73
  ```python
74
  from transformers import AutoModel
 
110
 
111
  # Todos
112
 
113
+ [x] Release huggingface space demo.
114
 
115
+ [] Release the evaluation results.
116
 
117
+ [] Release technical report.
118
 
119
  # Limitations
120