File size: 2,120 Bytes
d4a17ce 82d94fe d4a17ce 82d94fe d4a17ce 82d94fe d4a17ce 260f414 d4a17ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
language:
- en
license: mit
tags:
- llava
datasets:
- liuhaotian/LLaVA-Instruct-150K
- liuhaotian/LLaVA-Pretrain
pipeline_tag: image-text-to-text
---
# Model Card for Model ID
This is a multimodal implementation of [Phi2](https://huggingface.co/microsoft/phi-2) model inspired by [LlaVA-Phi](https://github.com/zhuyiche/llava-phi).
## Model Details
1. LLM Backbone: [Phi2](https://huggingface.co/microsoft/phi-2)
2. Vision Tower: [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336)
4. Pretraining Dataset: [LAION-CC-SBU dataset with BLIP captions(200k samples)](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
5. Finetuning Dataset: [Instruct 150k dataset based on COCO](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K)
6. Finetuned Model: [RaviNaik/Llava-Phi2](https://huggingface.co/RaviNaik/Llava-Phi2)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Original Repository:** [Llava-Phi](https://github.com/zhuyiche/llava-phi)
- **Paper [optional]:** [LLaVA-Phi: Efficient Multi-Modal Assistant with Small Language Model](https://arxiv.org/pdf/2401.02330)
- **Demo [optional]:** [Demo Link](https://huggingface.co/spaces/RaviNaik/MultiModal-Phi2)
## How to Get Started with the Model
Use the code below to get started with the model.
1. Clone this repository and navigate to llava-phi folder
```bash
git clone https://github.com/zhuyiche/llava-phi.git
cd llava-phi
```
2. Install Package
```bash
conda create -n llava_phi python=3.10 -y
conda activate llava_phi
pip install --upgrade pip # enable PEP 660 support
pip install -e .
```
3. Run the Model
```bash
python llava_phi/eval/run_llava_phi.py --model-path="RaviNaik/Llava-Phi2" \
--image-file="https://huggingface.co/RaviNaik/Llava-Phi2/resolve/main/people.jpg?download=true" \
--query="How many people are there in the image?"
```
### Acknowledgement
This implementation is based on wonderful work done by: \
[LlaVA-Phi](https://github.com/zhuyiche/llava-phi) \
[Llava](https://github.com/haotian-liu/LLaVA) \
[Phi2](https://huggingface.co/microsoft/phi-2) |