GGUF
alignment-handbook
Generated from Trainer
Inference Endpoints
conversational
munish0838 commited on
Commit
870f80c
1 Parent(s): c9d4d00

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ base_model: google/gemma-2-9b-it
5
+ tags:
6
+ - alignment-handbook
7
+ - generated_from_trainer
8
+ datasets:
9
+ - princeton-nlp/gemma2-ultrafeedback-armorm
10
+ model-index:
11
+ - name: princeton-nlp/gemma-2-9b-it-SimPO
12
+ results: []
13
+ license: mit
14
+
15
+ ---
16
+
17
+ ![](https://cdn.discordapp.com/attachments/791342238541152306/1264099835221381251/image.png?ex=669ca436&is=669b52b6&hm=129f56187c31e1ed22cbd1bcdbc677a2baeea5090761d2f1a458c8b1ec7cca4b&)
18
+
19
+ # QuantFactory/gemma-2-9b-it-SimPO-GGUF
20
+ This is quantized version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) created using llama.cpp
21
+
22
+ # Original Model Card
23
+
24
+
25
+ # gemma-2-9b-it-SimPO Model Card
26
+
27
+ SimPO (Simple Preference Optimization) is an offline preference optimization algorithm designed to enhance the training of large language models (LLMs) with preference optimization datasets. SimPO aligns the reward function with the generation likelihood, eliminating the need for a reference model and incorporating a target reward margin to boost performance. Please refer to our [preprint](https://arxiv.org/pdf/2405.14734) and [github repo](https://github.com/princeton-nlp/SimPO) for more details.
28
+
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+
34
+ We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) with the SimPO objective.
35
+
36
+ - **Developed by:** Yu Meng, Mengzhou Xia, Danqi Chen
37
+ - **Model type:** Causal Language Model
38
+ - **License:** gemma
39
+ - **Finetuned from model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
40
+
41
+ ### Model Sources
42
+
43
+ <!-- Provide the basic links for the model. -->
44
+
45
+ - **Repository:** https://github.com/princeton-nlp/SimPO
46
+ - **Paper:** https://arxiv.org/pdf/2405.14734
47
+
48
+
49
+ ## How to Get Started with the Model
50
+ ```
51
+ import torch
52
+ from transformers import pipeline
53
+
54
+ model_id = "princeton-nlp/gemma-2-9b-it-SimPO"
55
+
56
+ generator = pipeline(
57
+ "text-generation",
58
+ model=model_id,
59
+ model_kwargs={"torch_dtype": torch.bfloat16},
60
+ device="cuda",
61
+ )
62
+ outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}], do_sample=False, max_new_tokens=200)
63
+ print(outputs[0]['generated_text'])
64
+ ```
65
+
66
+ ## Training Details
67
+
68
+ ### Training Data
69
+
70
+ We use [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) as the preference optimization dataset.
71
+
72
+ #### Training Hyperparameters
73
+
74
+ The hyperparameters used can be found in the [training script](https://github.com/princeton-nlp/SimPO/blob/main/training_configs/gemma-2-9b-it-simpo.yaml).
75
+
76
+ #### Speeds, Sizes, Times
77
+
78
+ Fine-tuning the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) takes around 100 mins to finish on 8xH100 GPUs.
79
+
80
+ ## Evaluation Results
81
+
82
+
83
+ | models | AE2 LC | AE2 WR | AE2 Length | AH | AH Length | GSM | GSM Length | MMLU | MMLU Length |
84
+ |-----------------------------------|:------:|:------:|:----------:|:----:|:---------:|:----:|:----------:|:----:|:-----------:|
85
+ | [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) | 51.1 | 38.1 | 1571 | 40.8 | 545 | 87.4 | 395 | 72.7 | 515 |
86
+ | [princeton-nlp/gemma-2-9b-it-DPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-DPO) | 67.8 | 65.4 | 2016 | 58.9 | 717 | 88.5 | 392 | 72.2 | 624 |
87
+ | [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) | 72.4 | 65.9 | 1833 | 59.1 | 693 | 88.0 | 341 | 72.2 | 441 |
88
+
89
+
90
+ ## Technical Specifications
91
+
92
+ ### Model Architecture and Objective
93
+
94
+ The model architecture is based on [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). We use the SimPO training objective proposed in our [preprint](https://arxiv.org/pdf/2405.14734).
95
+
96
+ #### Hardware
97
+
98
+ We used 8xH100 GPUs for model training.
99
+
100
+ #### Software
101
+
102
+ Training was done using the [alignment-handbook](https://github.com/huggingface/alignment-handbook) library.
103
+
104
+ ## Citation
105
+
106
+ gemma model:
107
+ ```
108
+ @article{gemma_2024,
109
+ title={Gemma},
110
+ url={https://www.kaggle.com/m/3301},
111
+ DOI={10.34740/KAGGLE/M/3301},
112
+ publisher={Kaggle},
113
+ author={Gemma Team},
114
+ year={2024}
115
+ }
116
+ ```
117
+
118
+ SimPO paper:
119
+ ```
120
+ @article{meng2024simpo,
121
+ title={{SimPO}: Simple preference optimization with a reference-free reward},
122
+ author={Meng, Yu and Xia, Mengzhou and Chen, Danqi},
123
+ journal={arXiv preprint arXiv:2405.14734},
124
+ year={2024}
125
+ }
126
+ ```
127
+
128
+ UltraFeedback paper:
129
+ ```
130
+ @article{cui2023ultrafeedback,
131
+ title={{UltraFeedback}: Boosting language models with high-quality feedback},
132
+ author={Cui, Ganqu and Yuan, Lifan and Ding, Ning and Yao, Guanming and Zhu, Wei and Ni, Yuan and Xie, Guotong and Liu, Zhiyuan and Sun, Maosong},
133
+ journal={arXiv preprint arXiv:2310.01377},
134
+ year={2023}
135
+ }
136
+ ```
137
+
138
+ ArmoRM paper:
139
+ ```
140
+ @article{wang2024interpretable,
141
+ title={Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts},
142
+ author={Wang, Haoxiang and Xiong, Wei and Xie, Tengyang and Zhao, Han and Zhang, Tong},
143
+ journal={arXiv preprint arXiv:2406.12845},
144
+ year={2024}
145
+ }
146
+ ```