Text Generation
GGUF
Eval Results
Inference Endpoints
aashish1904 commited on
Commit
9a1e8bc
1 Parent(s): 80cf455

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +892 -0
README.md ADDED
@@ -0,0 +1,892 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ datasets:
5
+ - bigscience/xP3
6
+ license: bigscience-bloom-rail-1.0
7
+ language:
8
+ - ak
9
+ - ar
10
+ - as
11
+ - bm
12
+ - bn
13
+ - ca
14
+ - code
15
+ - en
16
+ - es
17
+ - eu
18
+ - fon
19
+ - fr
20
+ - gu
21
+ - hi
22
+ - id
23
+ - ig
24
+ - ki
25
+ - kn
26
+ - lg
27
+ - ln
28
+ - ml
29
+ - mr
30
+ - ne
31
+ - nso
32
+ - ny
33
+ - or
34
+ - pa
35
+ - pt
36
+ - rn
37
+ - rw
38
+ - sn
39
+ - st
40
+ - sw
41
+ - ta
42
+ - te
43
+ - tn
44
+ - ts
45
+ - tum
46
+ - tw
47
+ - ur
48
+ - vi
49
+ - wo
50
+ - xh
51
+ - yo
52
+ - zh
53
+ - zu
54
+ programming_language:
55
+ - C
56
+ - C++
57
+ - C#
58
+ - Go
59
+ - Java
60
+ - JavaScript
61
+ - Lua
62
+ - PHP
63
+ - Python
64
+ - Ruby
65
+ - Rust
66
+ - Scala
67
+ - TypeScript
68
+ pipeline_tag: text-generation
69
+ widget:
70
+ - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
71
+ example_title: "zh-en sentiment"
72
+ - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
73
+ example_title: "zh-zh sentiment"
74
+ - text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
75
+ example_title: "vi-en query"
76
+ - text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
77
+ example_title: "fr-fr query"
78
+ - text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
79
+ example_title: "te-en qa"
80
+ - text: "Why is the sky blue?"
81
+ example_title: "en-en qa"
82
+ - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
83
+ example_title: "es-en fable"
84
+ - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
85
+ example_title: "hi-en fable"
86
+ model-index:
87
+ - name: bloomz-7b1
88
+ results:
89
+ - task:
90
+ type: Coreference resolution
91
+ dataset:
92
+ type: winogrande
93
+ name: Winogrande XL (xl)
94
+ config: xl
95
+ split: validation
96
+ revision: a80f460359d1e9a67c006011c94de42a8759430c
97
+ metrics:
98
+ - type: Accuracy
99
+ value: 55.8
100
+ - task:
101
+ type: Coreference resolution
102
+ dataset:
103
+ type: Muennighoff/xwinograd
104
+ name: XWinograd (en)
105
+ config: en
106
+ split: test
107
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
108
+ metrics:
109
+ - type: Accuracy
110
+ value: 66.02
111
+ - task:
112
+ type: Coreference resolution
113
+ dataset:
114
+ type: Muennighoff/xwinograd
115
+ name: XWinograd (fr)
116
+ config: fr
117
+ split: test
118
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
119
+ metrics:
120
+ - type: Accuracy
121
+ value: 57.83
122
+ - task:
123
+ type: Coreference resolution
124
+ dataset:
125
+ type: Muennighoff/xwinograd
126
+ name: XWinograd (jp)
127
+ config: jp
128
+ split: test
129
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
130
+ metrics:
131
+ - type: Accuracy
132
+ value: 52.87
133
+ - task:
134
+ type: Coreference resolution
135
+ dataset:
136
+ type: Muennighoff/xwinograd
137
+ name: XWinograd (pt)
138
+ config: pt
139
+ split: test
140
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
141
+ metrics:
142
+ - type: Accuracy
143
+ value: 57.79
144
+ - task:
145
+ type: Coreference resolution
146
+ dataset:
147
+ type: Muennighoff/xwinograd
148
+ name: XWinograd (ru)
149
+ config: ru
150
+ split: test
151
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
152
+ metrics:
153
+ - type: Accuracy
154
+ value: 54.92
155
+ - task:
156
+ type: Coreference resolution
157
+ dataset:
158
+ type: Muennighoff/xwinograd
159
+ name: XWinograd (zh)
160
+ config: zh
161
+ split: test
162
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
163
+ metrics:
164
+ - type: Accuracy
165
+ value: 63.69
166
+ - task:
167
+ type: Natural language inference
168
+ dataset:
169
+ type: anli
170
+ name: ANLI (r1)
171
+ config: r1
172
+ split: validation
173
+ revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
174
+ metrics:
175
+ - type: Accuracy
176
+ value: 42.1
177
+ - task:
178
+ type: Natural language inference
179
+ dataset:
180
+ type: anli
181
+ name: ANLI (r2)
182
+ config: r2
183
+ split: validation
184
+ revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
185
+ metrics:
186
+ - type: Accuracy
187
+ value: 39.5
188
+ - task:
189
+ type: Natural language inference
190
+ dataset:
191
+ type: anli
192
+ name: ANLI (r3)
193
+ config: r3
194
+ split: validation
195
+ revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
196
+ metrics:
197
+ - type: Accuracy
198
+ value: 41.0
199
+ - task:
200
+ type: Natural language inference
201
+ dataset:
202
+ type: super_glue
203
+ name: SuperGLUE (cb)
204
+ config: cb
205
+ split: validation
206
+ revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
207
+ metrics:
208
+ - type: Accuracy
209
+ value: 80.36
210
+ - task:
211
+ type: Natural language inference
212
+ dataset:
213
+ type: super_glue
214
+ name: SuperGLUE (rte)
215
+ config: rte
216
+ split: validation
217
+ revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
218
+ metrics:
219
+ - type: Accuracy
220
+ value: 84.12
221
+ - task:
222
+ type: Natural language inference
223
+ dataset:
224
+ type: xnli
225
+ name: XNLI (ar)
226
+ config: ar
227
+ split: validation
228
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
229
+ metrics:
230
+ - type: Accuracy
231
+ value: 53.25
232
+ - task:
233
+ type: Natural language inference
234
+ dataset:
235
+ type: xnli
236
+ name: XNLI (bg)
237
+ config: bg
238
+ split: validation
239
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
240
+ metrics:
241
+ - type: Accuracy
242
+ value: 43.61
243
+ - task:
244
+ type: Natural language inference
245
+ dataset:
246
+ type: xnli
247
+ name: XNLI (de)
248
+ config: de
249
+ split: validation
250
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
251
+ metrics:
252
+ - type: Accuracy
253
+ value: 46.83
254
+ - task:
255
+ type: Natural language inference
256
+ dataset:
257
+ type: xnli
258
+ name: XNLI (el)
259
+ config: el
260
+ split: validation
261
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
262
+ metrics:
263
+ - type: Accuracy
264
+ value: 41.53
265
+ - task:
266
+ type: Natural language inference
267
+ dataset:
268
+ type: xnli
269
+ name: XNLI (en)
270
+ config: en
271
+ split: validation
272
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
273
+ metrics:
274
+ - type: Accuracy
275
+ value: 59.68
276
+ - task:
277
+ type: Natural language inference
278
+ dataset:
279
+ type: xnli
280
+ name: XNLI (es)
281
+ config: es
282
+ split: validation
283
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
284
+ metrics:
285
+ - type: Accuracy
286
+ value: 55.1
287
+ - task:
288
+ type: Natural language inference
289
+ dataset:
290
+ type: xnli
291
+ name: XNLI (fr)
292
+ config: fr
293
+ split: validation
294
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
295
+ metrics:
296
+ - type: Accuracy
297
+ value: 55.26
298
+ - task:
299
+ type: Natural language inference
300
+ dataset:
301
+ type: xnli
302
+ name: XNLI (hi)
303
+ config: hi
304
+ split: validation
305
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
306
+ metrics:
307
+ - type: Accuracy
308
+ value: 50.88
309
+ - task:
310
+ type: Natural language inference
311
+ dataset:
312
+ type: xnli
313
+ name: XNLI (ru)
314
+ config: ru
315
+ split: validation
316
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
317
+ metrics:
318
+ - type: Accuracy
319
+ value: 47.75
320
+ - task:
321
+ type: Natural language inference
322
+ dataset:
323
+ type: xnli
324
+ name: XNLI (sw)
325
+ config: sw
326
+ split: validation
327
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
328
+ metrics:
329
+ - type: Accuracy
330
+ value: 46.63
331
+ - task:
332
+ type: Natural language inference
333
+ dataset:
334
+ type: xnli
335
+ name: XNLI (th)
336
+ config: th
337
+ split: validation
338
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
339
+ metrics:
340
+ - type: Accuracy
341
+ value: 40.12
342
+ - task:
343
+ type: Natural language inference
344
+ dataset:
345
+ type: xnli
346
+ name: XNLI (tr)
347
+ config: tr
348
+ split: validation
349
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
350
+ metrics:
351
+ - type: Accuracy
352
+ value: 37.55
353
+ - task:
354
+ type: Natural language inference
355
+ dataset:
356
+ type: xnli
357
+ name: XNLI (ur)
358
+ config: ur
359
+ split: validation
360
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
361
+ metrics:
362
+ - type: Accuracy
363
+ value: 46.51
364
+ - task:
365
+ type: Natural language inference
366
+ dataset:
367
+ type: xnli
368
+ name: XNLI (vi)
369
+ config: vi
370
+ split: validation
371
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
372
+ metrics:
373
+ - type: Accuracy
374
+ value: 52.93
375
+ - task:
376
+ type: Natural language inference
377
+ dataset:
378
+ type: xnli
379
+ name: XNLI (zh)
380
+ config: zh
381
+ split: validation
382
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
383
+ metrics:
384
+ - type: Accuracy
385
+ value: 53.61
386
+ - task:
387
+ type: Program synthesis
388
+ dataset:
389
+ type: openai_humaneval
390
+ name: HumanEval
391
+ config: None
392
+ split: test
393
+ revision: e8dc562f5de170c54b5481011dd9f4fa04845771
394
+ metrics:
395
+ - type: Pass@1
396
+ value: 8.06
397
+ - type: Pass@10
398
+ value: 15.03
399
+ - type: Pass@100
400
+ value: 27.49
401
+ - task:
402
+ type: Sentence completion
403
+ dataset:
404
+ type: story_cloze
405
+ name: StoryCloze (2016)
406
+ config: "2016"
407
+ split: validation
408
+ revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
409
+ metrics:
410
+ - type: Accuracy
411
+ value: 90.43
412
+ - task:
413
+ type: Sentence completion
414
+ dataset:
415
+ type: super_glue
416
+ name: SuperGLUE (copa)
417
+ config: copa
418
+ split: validation
419
+ revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
420
+ metrics:
421
+ - type: Accuracy
422
+ value: 86.0
423
+ - task:
424
+ type: Sentence completion
425
+ dataset:
426
+ type: xcopa
427
+ name: XCOPA (et)
428
+ config: et
429
+ split: validation
430
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
431
+ metrics:
432
+ - type: Accuracy
433
+ value: 50.0
434
+ - task:
435
+ type: Sentence completion
436
+ dataset:
437
+ type: xcopa
438
+ name: XCOPA (ht)
439
+ config: ht
440
+ split: validation
441
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
442
+ metrics:
443
+ - type: Accuracy
444
+ value: 54.0
445
+ - task:
446
+ type: Sentence completion
447
+ dataset:
448
+ type: xcopa
449
+ name: XCOPA (id)
450
+ config: id
451
+ split: validation
452
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
453
+ metrics:
454
+ - type: Accuracy
455
+ value: 76.0
456
+ - task:
457
+ type: Sentence completion
458
+ dataset:
459
+ type: xcopa
460
+ name: XCOPA (it)
461
+ config: it
462
+ split: validation
463
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
464
+ metrics:
465
+ - type: Accuracy
466
+ value: 61.0
467
+ - task:
468
+ type: Sentence completion
469
+ dataset:
470
+ type: xcopa
471
+ name: XCOPA (qu)
472
+ config: qu
473
+ split: validation
474
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
475
+ metrics:
476
+ - type: Accuracy
477
+ value: 60.0
478
+ - task:
479
+ type: Sentence completion
480
+ dataset:
481
+ type: xcopa
482
+ name: XCOPA (sw)
483
+ config: sw
484
+ split: validation
485
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
486
+ metrics:
487
+ - type: Accuracy
488
+ value: 63.0
489
+ - task:
490
+ type: Sentence completion
491
+ dataset:
492
+ type: xcopa
493
+ name: XCOPA (ta)
494
+ config: ta
495
+ split: validation
496
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
497
+ metrics:
498
+ - type: Accuracy
499
+ value: 64.0
500
+ - task:
501
+ type: Sentence completion
502
+ dataset:
503
+ type: xcopa
504
+ name: XCOPA (th)
505
+ config: th
506
+ split: validation
507
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
508
+ metrics:
509
+ - type: Accuracy
510
+ value: 57.0
511
+ - task:
512
+ type: Sentence completion
513
+ dataset:
514
+ type: xcopa
515
+ name: XCOPA (tr)
516
+ config: tr
517
+ split: validation
518
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
519
+ metrics:
520
+ - type: Accuracy
521
+ value: 53.0
522
+ - task:
523
+ type: Sentence completion
524
+ dataset:
525
+ type: xcopa
526
+ name: XCOPA (vi)
527
+ config: vi
528
+ split: validation
529
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
530
+ metrics:
531
+ - type: Accuracy
532
+ value: 79.0
533
+ - task:
534
+ type: Sentence completion
535
+ dataset:
536
+ type: xcopa
537
+ name: XCOPA (zh)
538
+ config: zh
539
+ split: validation
540
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
541
+ metrics:
542
+ - type: Accuracy
543
+ value: 81.0
544
+ - task:
545
+ type: Sentence completion
546
+ dataset:
547
+ type: Muennighoff/xstory_cloze
548
+ name: XStoryCloze (ar)
549
+ config: ar
550
+ split: validation
551
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
552
+ metrics:
553
+ - type: Accuracy
554
+ value: 83.26
555
+ - task:
556
+ type: Sentence completion
557
+ dataset:
558
+ type: Muennighoff/xstory_cloze
559
+ name: XStoryCloze (es)
560
+ config: es
561
+ split: validation
562
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
563
+ metrics:
564
+ - type: Accuracy
565
+ value: 88.95
566
+ - task:
567
+ type: Sentence completion
568
+ dataset:
569
+ type: Muennighoff/xstory_cloze
570
+ name: XStoryCloze (eu)
571
+ config: eu
572
+ split: validation
573
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
574
+ metrics:
575
+ - type: Accuracy
576
+ value: 73.33
577
+ - task:
578
+ type: Sentence completion
579
+ dataset:
580
+ type: Muennighoff/xstory_cloze
581
+ name: XStoryCloze (hi)
582
+ config: hi
583
+ split: validation
584
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
585
+ metrics:
586
+ - type: Accuracy
587
+ value: 80.61
588
+ - task:
589
+ type: Sentence completion
590
+ dataset:
591
+ type: Muennighoff/xstory_cloze
592
+ name: XStoryCloze (id)
593
+ config: id
594
+ split: validation
595
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
596
+ metrics:
597
+ - type: Accuracy
598
+ value: 84.25
599
+ - task:
600
+ type: Sentence completion
601
+ dataset:
602
+ type: Muennighoff/xstory_cloze
603
+ name: XStoryCloze (my)
604
+ config: my
605
+ split: validation
606
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
607
+ metrics:
608
+ - type: Accuracy
609
+ value: 52.55
610
+ - task:
611
+ type: Sentence completion
612
+ dataset:
613
+ type: Muennighoff/xstory_cloze
614
+ name: XStoryCloze (ru)
615
+ config: ru
616
+ split: validation
617
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
618
+ metrics:
619
+ - type: Accuracy
620
+ value: 65.32
621
+ - task:
622
+ type: Sentence completion
623
+ dataset:
624
+ type: Muennighoff/xstory_cloze
625
+ name: XStoryCloze (sw)
626
+ config: sw
627
+ split: validation
628
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
629
+ metrics:
630
+ - type: Accuracy
631
+ value: 71.67
632
+ - task:
633
+ type: Sentence completion
634
+ dataset:
635
+ type: Muennighoff/xstory_cloze
636
+ name: XStoryCloze (te)
637
+ config: te
638
+ split: validation
639
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
640
+ metrics:
641
+ - type: Accuracy
642
+ value: 74.72
643
+ - task:
644
+ type: Sentence completion
645
+ dataset:
646
+ type: Muennighoff/xstory_cloze
647
+ name: XStoryCloze (zh)
648
+ config: zh
649
+ split: validation
650
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
651
+ metrics:
652
+ - type: Accuracy
653
+ value: 85.37
654
+
655
+ ---
656
+
657
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
658
+
659
+
660
+ # QuantFactory/bloomz-7b1-GGUF
661
+ This is quantized version of [bigscience/bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1) created using llama.cpp
662
+
663
+ # Original Model Card
664
+
665
+
666
+ ![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
667
+
668
+ # Table of Contents
669
+
670
+ 1. [Model Summary](#model-summary)
671
+ 2. [Use](#use)
672
+ 3. [Limitations](#limitations)
673
+ 4. [Training](#training)
674
+ 5. [Evaluation](#evaluation)
675
+ 7. [Citation](#citation)
676
+
677
+ # Model Summary
678
+
679
+ > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.
680
+
681
+ - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
682
+ - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786)
683
+ - **Point of Contact:** [Niklas Muennighoff](mailto:[email protected])
684
+ - **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages.
685
+ - **BLOOMZ & mT0 Model Family:**
686
+
687
+ <div class="max-w-full overflow-auto">
688
+ <table>
689
+ <tr>
690
+ <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English.
691
+ </tr>
692
+ <tr>
693
+ <td>Parameters</td>
694
+ <td>300M</td>
695
+ <td>580M</td>
696
+ <td>1.2B</td>
697
+ <td>3.7B</td>
698
+ <td>13B</td>
699
+ <td>560M</td>
700
+ <td>1.1B</td>
701
+ <td>1.7B</td>
702
+ <td>3B</td>
703
+ <td>7.1B</td>
704
+ <td>176B</td>
705
+ </tr>
706
+ <tr>
707
+ <td>Finetuned Model</td>
708
+ <td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td>
709
+ <td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td>
710
+ <td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td>
711
+ <td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td>
712
+ <td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td>
713
+ <td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td>
714
+ <td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td>
715
+ <td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td>
716
+ <td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td>
717
+ <td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td>
718
+ <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td>
719
+ </tr>
720
+ </tr>
721
+ <tr>
722
+ <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th>
723
+ </tr>
724
+ <tr>
725
+ <td>Finetuned Model</td>
726
+ <td></td>
727
+ <td></td>
728
+ <td></td>
729
+ <td></td>
730
+ <td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td>
731
+ <td></td>
732
+ <td></td>
733
+ <td></td>
734
+ <td></td>
735
+ <td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td>
736
+ <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td>
737
+ </tr>
738
+ <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th>
739
+ </tr>
740
+ <tr>
741
+ <td>Finetuned Model</td>
742
+ <td></td>
743
+ <td></td>
744
+ <td></td>
745
+ <td></td>
746
+ <td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td>
747
+ <td></td>
748
+ <td></td>
749
+ <td></td>
750
+ <td></td>
751
+ <td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td>
752
+ <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td>
753
+ </tr>
754
+ <th colspan="12">Original pretrained checkpoints. Not recommended.</th>
755
+ <tr>
756
+ <td>Pretrained Model</td>
757
+ <td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td>
758
+ <td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td>
759
+ <td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td>
760
+ <td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td>
761
+ <td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td>
762
+ <td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td>
763
+ <td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td>
764
+ <td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td>
765
+ <td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td>
766
+ <td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td>
767
+ <td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td>
768
+ </tr>
769
+ </table>
770
+ </div>
771
+
772
+
773
+ # Use
774
+
775
+ ## Intended use
776
+
777
+ We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper:
778
+ - 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
779
+ - Suggest at least five related search terms to "Mạng neural nhân tạo".
780
+ - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
781
+ - Explain in a sentence in Telugu what is backpropagation in neural networks.
782
+
783
+ **Feel free to share your generations in the Community tab!**
784
+
785
+ ## How to use
786
+
787
+ ### CPU
788
+
789
+ <details>
790
+ <summary> Click to expand </summary>
791
+
792
+ ```python
793
+ # pip install -q transformers
794
+ from transformers import AutoModelForCausalLM, AutoTokenizer
795
+
796
+ checkpoint = "bigscience/bloomz-7b1"
797
+
798
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
799
+ model = AutoModelForCausalLM.from_pretrained(checkpoint)
800
+
801
+ inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt")
802
+ outputs = model.generate(inputs)
803
+ print(tokenizer.decode(outputs[0]))
804
+ ```
805
+
806
+ </details>
807
+
808
+ ### GPU
809
+
810
+ <details>
811
+ <summary> Click to expand </summary>
812
+
813
+ ```python
814
+ # pip install -q transformers accelerate
815
+ from transformers import AutoModelForCausalLM, AutoTokenizer
816
+
817
+ checkpoint = "bigscience/bloomz-7b1"
818
+
819
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
820
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
821
+
822
+ inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
823
+ outputs = model.generate(inputs)
824
+ print(tokenizer.decode(outputs[0]))
825
+ ```
826
+
827
+ </details>
828
+
829
+ ### GPU in 8bit
830
+
831
+ <details>
832
+ <summary> Click to expand </summary>
833
+
834
+ ```python
835
+ # pip install -q transformers accelerate bitsandbytes
836
+ from transformers import AutoModelForCausalLM, AutoTokenizer
837
+
838
+ checkpoint = "bigscience/bloomz-7b1"
839
+
840
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
841
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True)
842
+
843
+ inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
844
+ outputs = model.generate(inputs)
845
+ print(tokenizer.decode(outputs[0]))
846
+ ```
847
+
848
+ </details>
849
+
850
+ <!-- Necessary for whitespace -->
851
+ ###
852
+
853
+ # Limitations
854
+
855
+ **Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*".
856
+
857
+ # Training
858
+
859
+ ## Model
860
+
861
+ - **Architecture:** Same as [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1), also refer to the `config.json` file
862
+ - **Finetuning steps:** 1000
863
+ - **Finetuning tokens:** 4.19 billion
864
+ - **Finetuning layout:** 1x pipeline parallel, 1x tensor parallel, 64x data parallel
865
+ - **Precision:** float16
866
+
867
+ ## Hardware
868
+
869
+ - **CPUs:** AMD CPUs with 512GB memory per node
870
+ - **GPUs:** 64 A100 80GB GPUs with 8 GPUs per node (8 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links
871
+ - **Communication:** NCCL-communications network with a fully dedicated subnet
872
+
873
+ ## Software
874
+
875
+ - **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed)
876
+ - **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed)
877
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5)
878
+ - **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
879
+
880
+ # Evaluation
881
+
882
+ We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config.
883
+
884
+ # Citation
885
+ ```bibtex
886
+ @article{muennighoff2022crosslingual,
887
+ title={Crosslingual generalization through multitask finetuning},
888
+ author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others},
889
+ journal={arXiv preprint arXiv:2211.01786},
890
+ year={2022}
891
+ }
892
+ ```