aashish1904 commited on
Commit
ffe1e4a
1 Parent(s): de89e8b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +209 -0
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: llama3
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - nvidia
10
+ - chatqa-1.5
11
+ - chatqa
12
+ - llama-3
13
+ - pytorch
14
+
15
+ ---
16
+
17
+ ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
18
+
19
+ # QuantFactory/Llama3-ChatQA-1.5-8B-GGUF
20
+ This is quantized version of [nvidia/Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B) created using llama.cpp
21
+
22
+ # Original Model Card
23
+
24
+
25
+
26
+ ## Model Details
27
+ We introduce Llama3-ChatQA-1.5, which excels at conversational question answering (QA) and retrieval-augmented generation (RAG). Llama3-ChatQA-1.5 is developed using an improved training recipe from [ChatQA paper](https://arxiv.org/pdf/2401.10225), and it is built on top of [Llama-3 base model](https://huggingface.co/meta-llama/Meta-Llama-3-8B). Specifically, we incorporate more conversational QA data to enhance its tabular and arithmetic calculation capability. Llama3-ChatQA-1.5 has two variants: Llama3-ChatQA-1.5-8B and Llama3-ChatQA-1.5-70B. Both models were originally trained using [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), we converted the checkpoints to Hugging Face format. **For more information about ChatQA, check the [website](https://chatqa-project.github.io/)!**
28
+
29
+ ## Other Resources
30
+ [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B)   [Evaluation Data](https://huggingface.co/datasets/nvidia/ChatRAG-Bench)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder)   [Website](https://chatqa-project.github.io/)   [Paper](https://arxiv.org/pdf/2401.10225)
31
+
32
+ ## Benchmark Results
33
+ Results in [ChatRAG Bench](https://huggingface.co/datasets/nvidia/ChatRAG-Bench) are as follows:
34
+
35
+ | | ChatQA-1.0-7B | Command-R-Plus | Llama3-instruct-70b | GPT-4-0613 | GPT-4-Turbo | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
36
+ | -- |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
37
+ | Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 35.35 | 38.90 | 39.33 | 41.26 |
38
+ | QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 40.10 | 41.82 | 39.73 | 38.82 |
39
+ | QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 51.46 | 48.05 | 49.03 | 51.40 |
40
+ | CoQA | 76.61 | 69.71 | 76.98 | 77.42 | 77.73 | 78.57 | 76.46 | 78.44 |
41
+ | DoQA | 41.57 | 40.67 | 41.24 | 43.39 | 41.60 | 51.94 | 49.60 | 50.67 |
42
+ | ConvFinQA | 51.61 | 71.21 | 76.6 | 81.28 | 84.16 | 73.69 | 78.46 | 81.88 |
43
+ | SQA | 61.87 | 74.07 | 69.61 | 79.21 | 79.98 | 69.14 | 73.28 | 83.82 |
44
+ | TopioCQA | 45.45 | 53.77 | 49.72 | 45.09 | 48.32 | 50.98 | 49.96 | 55.63 |
45
+ | HybriDial* | 54.51 | 46.7 | 48.59 | 49.81 | 47.86 | 56.44 | 65.76 | 68.27 |
46
+ | INSCIT | 30.96 | 35.76 | 36.23 | 36.34 | 33.75 | 31.90 | 30.10 | 32.31 |
47
+ | Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.03 | 54.14 | 55.17 | 58.25 |
48
+ | Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 54.72 | 53.89 | 53.99 | 57.14 |
49
+
50
+ Note that ChatQA-1.5 is built based on Llama-3 base model, and ChatQA-1.0 is built based on Llama-2 base model. ChatQA-1.5 models use HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial. The data and evaluation scripts for ChatRAG Bench can be found [here](https://huggingface.co/datasets/nvidia/ChatRAG-Bench).
51
+
52
+
53
+ ## Prompt Format
54
+ **We highly recommend that you use the prompt format we provide, as follows:**
55
+ ### when context is available
56
+ <pre>
57
+ System: {System}
58
+
59
+ {Context}
60
+
61
+ User: {Question}
62
+
63
+ Assistant: {Response}
64
+
65
+ User: {Question}
66
+
67
+ Assistant:
68
+ </pre>
69
+
70
+ ### when context is not available
71
+ <pre>
72
+ System: {System}
73
+
74
+ User: {Question}
75
+
76
+ Assistant: {Response}
77
+
78
+ User: {Question}
79
+
80
+ Assistant:
81
+ </pre>
82
+ **The content of the system's turn (i.e., {System}) for both scenarios is as follows:**
83
+ <pre>
84
+ This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context.
85
+ </pre>
86
+ **Note that our ChatQA-1.5 models are optimized for the capability with context, e.g., over documents or retrieved context.**
87
+
88
+ ## How to use
89
+
90
+ ### take the whole document as context
91
+ This can be applied to the scenario where the whole document can be fitted into the model, so that there is no need to run retrieval over the document.
92
+ ```python
93
+ from transformers import AutoTokenizer, AutoModelForCausalLM
94
+ import torch
95
+
96
+ model_id = "nvidia/Llama3-ChatQA-1.5-8B"
97
+
98
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
99
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
100
+
101
+ messages = [
102
+ {"role": "user", "content": "what is the percentage change of the net income from Q4 FY23 to Q4 FY24?"}
103
+ ]
104
+
105
+ document = """NVIDIA (NASDAQ: NVDA) today reported revenue for the fourth quarter ended January 28, 2024, of $22.1 billion, up 22% from the previous quarter and up 265% from a year ago.\nFor the quarter, GAAP earnings per diluted share was $4.93, up 33% from the previous quarter and up 765% from a year ago. Non-GAAP earnings per diluted share was $5.16, up 28% from the previous quarter and up 486% from a year ago.\nQ4 Fiscal 2024 Summary\nGAAP\n| $ in millions, except earnings per share | Q4 FY24 | Q3 FY24 | Q4 FY23 | Q/Q | Y/Y |\n| Revenue | $22,103 | $18,120 | $6,051 | Up 22% | Up 265% |\n| Gross margin | 76.0% | 74.0% | 63.3% | Up 2.0 pts | Up 12.7 pts |\n| Operating expenses | $3,176 | $2,983 | $2,576 | Up 6% | Up 23% |\n| Operating income | $13,615 | $10,417 | $1,257 | Up 31% | Up 983% |\n| Net income | $12,285 | $9,243 | $1,414 | Up 33% | Up 769% |\n| Diluted earnings per share | $4.93 | $3.71 | $0.57 | Up 33% | Up 765% |"""
106
+
107
+ def get_formatted_input(messages, context):
108
+ system = "System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context."
109
+ instruction = "Please give a full and complete answer for the question."
110
+
111
+ for item in messages:
112
+ if item['role'] == "user":
113
+ ## only apply this instruction for the first user turn
114
+ item['content'] = instruction + " " + item['content']
115
+ break
116
+
117
+ conversation = '\n\n'.join(["User: " + item["content"] if item["role"] == "user" else "Assistant: " + item["content"] for item in messages]) + "\n\nAssistant:"
118
+ formatted_input = system + "\n\n" + context + "\n\n" + conversation
119
+
120
+ return formatted_input
121
+
122
+ formatted_input = get_formatted_input(messages, document)
123
+ tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
124
+
125
+ terminators = [
126
+ tokenizer.eos_token_id,
127
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
128
+ ]
129
+
130
+ outputs = model.generate(input_ids=tokenized_prompt.input_ids, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=128, eos_token_id=terminators)
131
+
132
+ response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
133
+ print(tokenizer.decode(response, skip_special_tokens=True))
134
+ ```
135
+
136
+ ### run retrieval to get top-n chunks as context
137
+ This can be applied to the scenario when the document is very long, so that it is necessary to run retrieval. Here, we use our [Dragon-multiturn](https://huggingface.co/nvidia/dragon-multiturn-query-encoder) retriever which can handle conversatinoal query. In addition, we provide a few [documents](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B/tree/main/docs) for users to play with.
138
+
139
+ ```python
140
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
141
+ import torch
142
+ import json
143
+
144
+ ## load ChatQA-1.5 tokenizer and model
145
+ model_id = "nvidia/Llama3-ChatQA-1.5-8B"
146
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
147
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
148
+
149
+ ## load retriever tokenizer and model
150
+ retriever_tokenizer = AutoTokenizer.from_pretrained('nvidia/dragon-multiturn-query-encoder')
151
+ query_encoder = AutoModel.from_pretrained('nvidia/dragon-multiturn-query-encoder')
152
+ context_encoder = AutoModel.from_pretrained('nvidia/dragon-multiturn-context-encoder')
153
+
154
+ ## prepare documents, we take landrover car manual document that we provide as an example
155
+ chunk_list = json.load(open("docs.json"))['landrover']
156
+
157
+ messages = [
158
+ {"role": "user", "content": "how to connect the bluetooth in the car?"}
159
+ ]
160
+
161
+ ### running retrieval
162
+ ## convert query into a format as follows:
163
+ ## user: {user}\nagent: {agent}\nuser: {user}
164
+ formatted_query_for_retriever = '\n'.join([turn['role'] + ": " + turn['content'] for turn in messages]).strip()
165
+
166
+ query_input = retriever_tokenizer(formatted_query_for_retriever, return_tensors='pt')
167
+ ctx_input = retriever_tokenizer(chunk_list, padding=True, truncation=True, max_length=512, return_tensors='pt')
168
+ query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :]
169
+ ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :]
170
+
171
+ ## Compute similarity scores using dot product and rank the similarity
172
+ similarities = query_emb.matmul(ctx_emb.transpose(0, 1)) # (1, num_ctx)
173
+ ranked_results = torch.argsort(similarities, dim=-1, descending=True) # (1, num_ctx)
174
+
175
+ ## get top-n chunks (n=5)
176
+ retrieved_chunks = [chunk_list[idx] for idx in ranked_results.tolist()[0][:5]]
177
+ context = "\n\n".join(retrieved_chunks)
178
+
179
+ ### running text generation
180
+ formatted_input = get_formatted_input(messages, context)
181
+ tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
182
+
183
+ terminators = [
184
+ tokenizer.eos_token_id,
185
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
186
+ ]
187
+ outputs = model.generate(input_ids=tokenized_prompt.input_ids, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=128, eos_token_id=terminators)
188
+
189
+ response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
190
+ print(tokenizer.decode(response, skip_special_tokens=True))
191
+ ```
192
+
193
+ ## Correspondence to
194
+ Zihan Liu ([email protected]), Wei Ping ([email protected])
195
+
196
+ ## Citation
197
+ <pre>
198
+ @article{liu2024chatqa,
199
+ title={ChatQA: Surpassing GPT-4 on Conversational QA and RAG},
200
+ author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
201
+ journal={arXiv preprint arXiv:2401.10225},
202
+ year={2024}}
203
+ </pre>
204
+
205
+
206
+ ## License
207
+ The use of this model is governed by the [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://llama.meta.com/llama3/license/)
208
+
209
+