--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-Nemo-Instruct-2407 datasets: - Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset - Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset - Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled - Saxo/ko-news-corpus-1 - Saxo/ko-news-corpus-2 - Saxo/ko-news-corpus-3 - Saxo/ko-news-corpus-4 - Saxo/ko-news-corpus-5 - Saxo/ko-news-corpus-6 - Saxo/ko-news-corpus-7 - Saxo/ko-news-corpus-8 - Saxo/ko-news-corpus-9 - maywell/ko_Ultrafeedback_binarized - youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo - lilacai/glaive-function-calling-v2-sharegpt - kuotient/gsm8k-ko language: - ko - en - jp - cn pipeline_tag: text-generation --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/Linkbricks-Horizon-AI-Korean-Advanced-12B-GGUF This is quantized version of [Saxo/Linkbricks-Horizon-AI-Korean-Advanced-12B](https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Advanced-12B) created using llama.cpp # Original Model Card # Model Card for Model ID
AI 와 빅데이터 분석 전문 기업인 Linkbricks의 데이터사이언티스트인 지윤성(Saxo) 이사가
Mistral-Nemo-Instruct-2407 베이스모델을 사용해서 H100-80G 8개를 통해 CPT(Continue-Pretraining)->SFP->DPO 한 한글 언어 모델
천만건의 한글 뉴스 코퍼스를 기준으로 다양한 테스크별 한국어-중국어-영어-일본어 교차 학습 데이터와 수학 및 논리판단 데이터를 통하여 한중일영 언어 교차 증강 처리와 복잡한 논리 문제 역시 대응 가능하도록 훈련한 모델이다.
-토크나이저는 단어 확장 없이 베이스 모델 그대로 사용
-고객 리뷰나 소셜 포스팅 고차원 분석 및 코딩과 작문, 수학, 논리판단 등이 강화된 모델
-128k-Context Window
-한글 Function Call 및 Tool Calling 지원
-Deepspeed Stage=3, rslora 및 BAdam Layer Mode 사용


Finetuned by Mr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics
CPT(Continue-Pretraining)->SFP->DPO training model based on Mistral-Nemo-Instruct-2407 through 8 H100-80Gs as a Korean language model
It is a model that has been trained to handle Korean-Chinese-English-Japanese cross-training data and 10M korean news corpus and logic judgment data for various tasks to enable cross-fertilization processing and complex Korean logic & math problems.
-Tokenizer uses the base model without word expansion
-Models enhanced with high-dimensional analysis of customer reviews and social posts, as well as coding, writing, amth and decision making
-128k-Context Window
-Support for Korean Functioncall and Tool Calling
-Deepspeed Stage=3, use rslora and BAdam Layer Mode


www.linkbricks.com, www.linkbricks.vc