aashish1904 commited on
Commit
43ab529
1 Parent(s): 9f486c5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +180 -0
README.md ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: apache-2.0
5
+ language:
6
+ - en
7
+ - de
8
+ - es
9
+ - fr
10
+ - it
11
+ - pt
12
+ - pl
13
+ - nl
14
+ - tr
15
+ - sv
16
+ - cs
17
+ - el
18
+ - hu
19
+ - ro
20
+ - fi
21
+ - uk
22
+ - sl
23
+ - sk
24
+ - da
25
+ - lt
26
+ - lv
27
+ - et
28
+ - bg
29
+ - 'no'
30
+ - ca
31
+ - hr
32
+ - ga
33
+ - mt
34
+ - gl
35
+ - zh
36
+ - ru
37
+ - ko
38
+ - ja
39
+ - ar
40
+ - hi
41
+ base_model:
42
+ - utter-project/EuroLLM-1.7B
43
+
44
+ ---
45
+
46
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
47
+
48
+
49
+ # QuantFactory/EuroLLM-1.7B-Instruct-GGUF
50
+ This is quantized version of [utter-project/EuroLLM-1.7B-Instruct](https://huggingface.co/utter-project/EuroLLM-1.7B-Instruct) created using llama.cpp
51
+
52
+ # Original Model Card
53
+
54
+
55
+ ## *Model updated on September 24*
56
+
57
+
58
+
59
+
60
+
61
+ # Model Card for EuroLLM-1.7B-Instruct
62
+
63
+
64
+
65
+ This is the model card for the first instruction tuned model of the EuroLLM series: EuroLLM-1.7B-Instruct. You can also check the pre-trained version: [EuroLLM-1.7B](https://huggingface.co/utter-project/EuroLLM-1.7B).
66
+
67
+ - **Developed by:** Unbabel, Instituto Superior Técnico, University of Edinburgh, Aveni, University of Paris-Saclay, University of Amsterdam, Naver Labs, Sorbonne Université.
68
+ - **Funded by:** European Union.
69
+ - **Model type:** A 1.7B parameter instruction tuned multilingual transfomer LLM.
70
+ - **Language(s) (NLP):** Bulgarian, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish, Arabic, Catalan, Chinese, Galician, Hindi, Japanese, Korean, Norwegian, Russian, Turkish, and Ukrainian.
71
+ - **License:** Apache License 2.0.
72
+
73
+ ## Model Details
74
+
75
+ The EuroLLM project has the goal of creating a suite of LLMs capable of understanding and generating text in all European Union languages as well as some additional relevant languages.
76
+ EuroLLM-1.7B is a 1.7B parameter model trained on 4 trillion tokens divided across the considered languages and several data sources: Web data, parallel data (en-xx and xx-en), and high-quality datasets.
77
+ EuroLLM-1.7B-Instruct was further instruction tuned on EuroBlocks, an instruction tuning dataset with focus on general instruction-following and machine translation.
78
+
79
+
80
+
81
+ ### Model Description
82
+
83
+ EuroLLM uses a standard, dense Transformer architecture:
84
+ - We use grouped query attention (GQA) with 8 key-value heads, since it has been shown to increase speed at inference time while maintaining downstream performance.
85
+ - We perform pre-layer normalization, since it improves the training stability, and use the RMSNorm, which is faster.
86
+ - We use the SwiGLU activation function, since it has been shown to lead to good results on downstream tasks.
87
+ - We use rotary positional embeddings (RoPE) in every layer, since these have been shown to lead to good performances while allowing the extension of the context length.
88
+
89
+ For pre-training, we use 256 Nvidia H100 GPUs of the Marenostrum 5 supercomputer, training the model with a constant batch size of 3,072 sequences, which corresponds to approximately 12 million tokens, using the Adam optimizer, and BF16 precision.
90
+ Here is a summary of the model hyper-parameters:
91
+ | | |
92
+ |--------------------------------------|----------------------|
93
+ | Sequence Length | 4,096 |
94
+ | Number of Layers | 24 |
95
+ | Embedding Size | 2,048 |
96
+ | FFN Hidden Size | 5,632 |
97
+ | Number of Heads | 16 |
98
+ | Number of KV Heads (GQA) | 8 |
99
+ | Activation Function | SwiGLU |
100
+ | Position Encodings | RoPE (\Theta=10,000) |
101
+ | Layer Norm | RMSNorm |
102
+ | Tied Embeddings | No |
103
+ | Embedding Parameters | 0.262B |
104
+ | LM Head Parameters | 0.262B |
105
+ | Non-embedding Parameters | 1.133B |
106
+ | Total Parameters | 1.657B |
107
+
108
+ ## Run the model
109
+
110
+ from transformers import AutoModelForCausalLM, AutoTokenizer
111
+
112
+ model_id = "utter-project/EuroLLM-1.7B-Instruct"
113
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
114
+ model = AutoModelForCausalLM.from_pretrained(model_id)
115
+
116
+ text = '<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following English source text to Portuguese:\nEnglish: I am a language model for european languages. \nPortuguese: <|im_end|>\n<|im_start|>assistant\n'
117
+
118
+ inputs = tokenizer(text, return_tensors="pt")
119
+ outputs = model.generate(**inputs, max_new_tokens=20)
120
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
121
+
122
+
123
+
124
+ ## Results
125
+
126
+ ### Machine Translation
127
+
128
+ We evaluate EuroLLM-1.7B-Instruct on several machine translation benchmarks: FLORES-200, WMT-23, and WMT-24 comparing it with [Gemma-2B](https://huggingface.co/google/gemma-2b) and [Gemma-7B](https://huggingface.co/google/gemma-7b) (also instruction tuned on EuroBlocks).
129
+ The results show that EuroLLM-1.7B is substantially better than Gemma-2B in Machine Translation and competitive with Gemma-7B.
130
+
131
+
132
+ #### Flores-200
133
+ | Model | AVG | AVG en-xx | AVG xx-en | en-ar | en-bg | en-ca | en-cs | en-da | en-de | en-el | en-es-latam | en-et | en-fi | en-fr | en-ga | en-gl | en-hi | en-hr | en-hu | en-it | en-ja | en-ko | en-lt | en-lv | en-mt | en-nl | en-no | en-pl | en-pt-br | en-ro | en-ru | en-sk | en-sl | en-sv | en-tr | en-uk | en-zh-cn | ar-en | bg-en | ca-en | cs-en | da-en | de-en | el-en | es-latam-en | et-en | fi-en | fr-en | ga-en | gl-en | hi-en | hr-en | hu-en | it-en | ja-en | ko-en | lt-en | lv-en | mt-en | nl-en | no-en | pl-en | pt-br-en | ro-en | ru-en | sk-en | sl-en | sv-en | tr-en | uk-en | zh-cn-en |
134
+ |--------------------------------|------|-----------|-----------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|----------|
135
+ | EuroLLM-1.7B-Instruct |86.89 | 86.53 | 87.25 | 85.17 | 89.42 | 84.72 | 89.13 | 89.47 | 86.90 | 87.60 | 86.29 | 88.95 | 89.40 | 87.69 | 74.89 | 86.41 | 76.92 | 84.79 | 86.78 | 88.17 | 89.76 | 87.70 | 87.27 | 87.62 | 67.84 | 87.10 | 90.00 | 88.18 | 89.29 | 89.49 | 88.32 | 88.18 | 86.85 | 90.00 | 87.31 | 87.89 | 86.60 | 86.34 | 87.45 | 87.57 | 87.95 | 89.72 | 88.80 | 87.00 | 86.77 | 88.34 | 89.09 | 88.95 | 82.69 | 87.80 | 88.37 | 86.71 | 87.20 | 87.81 | 86.79 | 86.79 | 85.62 | 86.48 | 81.10 | 86.97 | 90.25 | 85.75 | 89.20 | 88.88 | 86.00 | 87.38 | 86.76 | 89.61 | 87.94 |
136
+ | Gemma-2B-EuroBlocks | 81.59 | 78.97 | 84.21 | 76.68 | 82.73 | 83.14 | 81.63 | 84.63 | 83.15 | 79.42 | 84.05 | 72.58 | 79.73 | 84.97 | 40.50 | 82.13 | 67.79 | 80.53 | 78.36 | 84.90 | 87.43 | 82.98 | 72.29 | 68.68 | 58.55 | 83.13 | 86.15 | 82.78 | 86.79 | 83.14 | 84.61 | 78.18 | 75.37 | 80.89 | 78.38 | 84.38 | 84.35 | 83.88 | 85.77 | 86.85 | 86.31 | 88.24 | 88.12 | 84.79 | 84.90 | 82.51 | 86.32 | 88.29 | 54.78 | 86.53 | 85.83 | 85.41 | 85.18 | 86.77 | 85.78 | 84.99 | 81.65 | 81.78 | 67.27 | 85.92 | 89.07 | 84.14 | 88.07 | 87.17 | 85.23 | 85.09 | 83.95 | 87.57 | 84.77 |
137
+ | Gemma-7B-EuroBlocks |85.27 | 83.90 | 86.64 | 86.38 | 87.87 | 85.74 | 84.25 | 85.69 | 81.49 | 85.52 | 86.93 | 62.83 | 84.96 | 75.34 | 84.93 | 83.91 | 86.92 | 88.19 | 86.11 | 81.73 | 80.55 | 66.85 | 85.31 | 89.36 | 85.87 | 88.62 | 88.06 | 86.67 | 84.79 | 82.71 | 86.45 | 85.19 | 86.67 | 85.77 | 86.36 | 87.21 | 88.09 | 87.17 | 89.40 | 88.26 | 86.74 | 86.73 | 87.25 | 88.87 | 88.81 | 72.45 | 87.62 | 87.86 | 87.08 | 87.01 | 87.58 | 86.92 | 86.70 | 85.10 | 85.74 | 77.81 | 86.83 | 90.40 | 85.41 | 89.04 | 88.77 | 86.13 | 86.67 | 86.32 | 89.27 | 87.92 |
138
+
139
+
140
+ #### WMT-23
141
+ | Model | AVG | AVG en-xx | AVG xx-en | AVG xx-xx | en-de | en-cs | en-uk | en-ru | en-zh-cn | de-en | uk-en | ru-en | zh-cn-en | cs-uk |
142
+ |--------------------------------|------|-----------|-----------|-----------|-------|-------|-------|-------|----------|-------|-------|-------|----------|-------|
143
+ | EuroLLM-1.7B-Instruct | 82.91 | 83.20 | 81.77 | 86.82 | 81.56 | 85.23 | 81.30 | 82.47 | 83.61 | 85.03 | 84.06 | 85.25 | 81.31 | 78.83 | 79.42 | 86.82 |
144
+ | Gemma-2B-EuroBlocks | 79.96 | 79.01 | 80.86 | 81.15 | 76.82 | 76.05 | 77.92 | 78.98 | 81.58 | 82.73 | 82.71 | 83.99 | 80.35 | 78.27 | 78.99 | 81.15 |
145
+ | Gemma-7B-EuroBlocks | 82.76 | 82.26 | 82.70 | 85.98 | 81.37 | 82.42 | 81.54 | 82.18 | 82.90 | 83.17 | 84.29 | 85.70 | 82.46 | 79.73 | 81.33 | 85.98 |
146
+
147
+
148
+
149
+ #### WMT-24
150
+ | Model | AVG | AVG en-xx | AVG xx-xx | en-de | en-es-latam | en-cs | en-ru | en-uk | en-ja | en-zh-cn | en-hi | cs-uk | ja-zh-cn |
151
+ |---------|------|------|-------|----|---|-------|-------|--------|--------|-------|-------|-------|-----|
152
+ | EuroLLM-1.7B-Instruct|79.32 | 79.32 | 79.34 | 79.42 | 80.67 | 80.55 | 78.65 | 80.12 | 82.96 | 80.60 | 71.59 | 83.48 | 75.20 |
153
+ |Gemma-2B-EuroBlocks| 74.72 | 74.41 | 75.97 | 74.93 | 78.81 | 70.54 | 74.90 | 75.84 | 79.48 | 78.06 | 62.70 | 79.87 | 72.07 |
154
+ |Gemma-7B-EuroBlocks| 78.67 | 78.34 | 80.00 | 78.88 | 80.47 | 78.55 | 78.55 | 80.12 | 80.55 | 78.90 | 70.71 | 84.33 | 75.66 |
155
+
156
+
157
+ ### General Benchmarks
158
+ We also compare EuroLLM-1.7B with [TinyLlama-v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) and [Gemma-2B](https://huggingface.co/google/gemma-2b) on 3 general benchmarks: Arc Challenge and Hellaswag.
159
+ For the non-english languages we use the [Okapi](https://aclanthology.org/2023.emnlp-demo.28.pdf) datasets.
160
+ Results show that EuroLLM-1.7B is superior to TinyLlama-v1.1 and similar to Gemma-2B on Hellaswag but worse on Arc Challenge. This can be due to the lower number of parameters of EuroLLM-1.7B (1.133B non-embedding parameters against 1.981B).
161
+
162
+ #### Arc Challenge
163
+ | Model | Average | English | German | Spanish | French | Italian | Portuguese | Chinese | Russian | Dutch | Arabic | Swedish | Hindi | Hungarian | Romanian | Ukrainian | Danish | Catalan |
164
+ |--------------------|---------|---------|--------|---------|--------|---------|------------|---------|---------|-------|--------|---------|--------|-----------|----------|-----------|--------|---------|
165
+ | EuroLLM-1.7B | 0.3496 | 0.4061 | 0.3464 | 0.3684 | 0.3627 | 0.3738 | 0.3855 | 0.3521 | 0.3208 | 0.3507 | 0.3045 | 0.3605 | 0.2928 | 0.3271 | 0.3488 | 0.3516 | 0.3513 | 0.3396 |
166
+ | TinyLlama-v1.1 | 0.2650 | 0.3712 | 0.2524 | 0.2795 | 0.2883 | 0.2652 | 0.2906 | 0.2410 | 0.2669 | 0.2404 | 0.2310 | 0.2687 | 0.2354 | 0.2449 | 0.2476 | 0.2524 | 0.2494 | 0.2796 |
167
+ | Gemma-2B | 0.3617 | 0.4846 | 0.3755 | 0.3940 | 0.4080 | 0.3687 | 0.3872 | 0.3726 | 0.3456 | 0.3328 | 0.3122 | 0.3519 | 0.2851 | 0.3039 | 0.3590 | 0.3601 | 0.3565 | 0.3516 |
168
+
169
+
170
+ #### Hellaswag
171
+ | Model | Average | English | German | Spanish | French | Italian | Portuguese | Russian | Dutch | Arabic | Swedish | Hindi | Hungarian | Romanian | Ukrainian | Danish | Catalan |
172
+ |--------------------|---------|---------|--------|---------|--------|---------|------------|---------|--------|--------|---------|--------|-----------|----------|-----------|--------|---------|
173
+ | EuroLLM-1.7B | 0.4744 | 0.4760 | 0.6057 | 0.4793 | 0.5337 | 0.5298 | 0.5085 | 0.5224 | 0.4654 | 0.4949 | 0.4104 | 0.4800 | 0.3655 | 0.4097 | 0.4606 | 0.436 | 0.4702 | 0.4445 |
174
+ | TinyLlama-v1.1 |0.3674 | 0.6248 | 0.3650 | 0.4137 | 0.4010 | 0.3780 | 0.3892 | 0.3494 | 0.3588 | 0.2880 | 0.3561 | 0.2841 | 0.3073 | 0.3267 | 0.3349 | 0.3408 | 0.3613 |
175
+ | Gemma-2B |0.4666 | 0.7165 | 0.4756 | 0.5414 | 0.5180 | 0.4841 | 0.5081 | 0.4664 | 0.4655 | 0.3868 | 0.4383 | 0.3413 | 0.3710 | 0.4316 | 0.4291 | 0.4471 | 0.4448 |
176
+
177
+
178
+ ## Bias, Risks, and Limitations
179
+
180
+ EuroLLM-1.7B-Instruct has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements).