aashish1904
commited on
Commit
•
43ab529
1
Parent(s):
9f486c5
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
license: apache-2.0
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- de
|
8 |
+
- es
|
9 |
+
- fr
|
10 |
+
- it
|
11 |
+
- pt
|
12 |
+
- pl
|
13 |
+
- nl
|
14 |
+
- tr
|
15 |
+
- sv
|
16 |
+
- cs
|
17 |
+
- el
|
18 |
+
- hu
|
19 |
+
- ro
|
20 |
+
- fi
|
21 |
+
- uk
|
22 |
+
- sl
|
23 |
+
- sk
|
24 |
+
- da
|
25 |
+
- lt
|
26 |
+
- lv
|
27 |
+
- et
|
28 |
+
- bg
|
29 |
+
- 'no'
|
30 |
+
- ca
|
31 |
+
- hr
|
32 |
+
- ga
|
33 |
+
- mt
|
34 |
+
- gl
|
35 |
+
- zh
|
36 |
+
- ru
|
37 |
+
- ko
|
38 |
+
- ja
|
39 |
+
- ar
|
40 |
+
- hi
|
41 |
+
base_model:
|
42 |
+
- utter-project/EuroLLM-1.7B
|
43 |
+
|
44 |
+
---
|
45 |
+
|
46 |
+
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
|
47 |
+
|
48 |
+
|
49 |
+
# QuantFactory/EuroLLM-1.7B-Instruct-GGUF
|
50 |
+
This is quantized version of [utter-project/EuroLLM-1.7B-Instruct](https://huggingface.co/utter-project/EuroLLM-1.7B-Instruct) created using llama.cpp
|
51 |
+
|
52 |
+
# Original Model Card
|
53 |
+
|
54 |
+
|
55 |
+
## *Model updated on September 24*
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
# Model Card for EuroLLM-1.7B-Instruct
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
This is the model card for the first instruction tuned model of the EuroLLM series: EuroLLM-1.7B-Instruct. You can also check the pre-trained version: [EuroLLM-1.7B](https://huggingface.co/utter-project/EuroLLM-1.7B).
|
66 |
+
|
67 |
+
- **Developed by:** Unbabel, Instituto Superior Técnico, University of Edinburgh, Aveni, University of Paris-Saclay, University of Amsterdam, Naver Labs, Sorbonne Université.
|
68 |
+
- **Funded by:** European Union.
|
69 |
+
- **Model type:** A 1.7B parameter instruction tuned multilingual transfomer LLM.
|
70 |
+
- **Language(s) (NLP):** Bulgarian, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish, Arabic, Catalan, Chinese, Galician, Hindi, Japanese, Korean, Norwegian, Russian, Turkish, and Ukrainian.
|
71 |
+
- **License:** Apache License 2.0.
|
72 |
+
|
73 |
+
## Model Details
|
74 |
+
|
75 |
+
The EuroLLM project has the goal of creating a suite of LLMs capable of understanding and generating text in all European Union languages as well as some additional relevant languages.
|
76 |
+
EuroLLM-1.7B is a 1.7B parameter model trained on 4 trillion tokens divided across the considered languages and several data sources: Web data, parallel data (en-xx and xx-en), and high-quality datasets.
|
77 |
+
EuroLLM-1.7B-Instruct was further instruction tuned on EuroBlocks, an instruction tuning dataset with focus on general instruction-following and machine translation.
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
### Model Description
|
82 |
+
|
83 |
+
EuroLLM uses a standard, dense Transformer architecture:
|
84 |
+
- We use grouped query attention (GQA) with 8 key-value heads, since it has been shown to increase speed at inference time while maintaining downstream performance.
|
85 |
+
- We perform pre-layer normalization, since it improves the training stability, and use the RMSNorm, which is faster.
|
86 |
+
- We use the SwiGLU activation function, since it has been shown to lead to good results on downstream tasks.
|
87 |
+
- We use rotary positional embeddings (RoPE) in every layer, since these have been shown to lead to good performances while allowing the extension of the context length.
|
88 |
+
|
89 |
+
For pre-training, we use 256 Nvidia H100 GPUs of the Marenostrum 5 supercomputer, training the model with a constant batch size of 3,072 sequences, which corresponds to approximately 12 million tokens, using the Adam optimizer, and BF16 precision.
|
90 |
+
Here is a summary of the model hyper-parameters:
|
91 |
+
| | |
|
92 |
+
|--------------------------------------|----------------------|
|
93 |
+
| Sequence Length | 4,096 |
|
94 |
+
| Number of Layers | 24 |
|
95 |
+
| Embedding Size | 2,048 |
|
96 |
+
| FFN Hidden Size | 5,632 |
|
97 |
+
| Number of Heads | 16 |
|
98 |
+
| Number of KV Heads (GQA) | 8 |
|
99 |
+
| Activation Function | SwiGLU |
|
100 |
+
| Position Encodings | RoPE (\Theta=10,000) |
|
101 |
+
| Layer Norm | RMSNorm |
|
102 |
+
| Tied Embeddings | No |
|
103 |
+
| Embedding Parameters | 0.262B |
|
104 |
+
| LM Head Parameters | 0.262B |
|
105 |
+
| Non-embedding Parameters | 1.133B |
|
106 |
+
| Total Parameters | 1.657B |
|
107 |
+
|
108 |
+
## Run the model
|
109 |
+
|
110 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
111 |
+
|
112 |
+
model_id = "utter-project/EuroLLM-1.7B-Instruct"
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
114 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
115 |
+
|
116 |
+
text = '<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following English source text to Portuguese:\nEnglish: I am a language model for european languages. \nPortuguese: <|im_end|>\n<|im_start|>assistant\n'
|
117 |
+
|
118 |
+
inputs = tokenizer(text, return_tensors="pt")
|
119 |
+
outputs = model.generate(**inputs, max_new_tokens=20)
|
120 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
## Results
|
125 |
+
|
126 |
+
### Machine Translation
|
127 |
+
|
128 |
+
We evaluate EuroLLM-1.7B-Instruct on several machine translation benchmarks: FLORES-200, WMT-23, and WMT-24 comparing it with [Gemma-2B](https://huggingface.co/google/gemma-2b) and [Gemma-7B](https://huggingface.co/google/gemma-7b) (also instruction tuned on EuroBlocks).
|
129 |
+
The results show that EuroLLM-1.7B is substantially better than Gemma-2B in Machine Translation and competitive with Gemma-7B.
|
130 |
+
|
131 |
+
|
132 |
+
#### Flores-200
|
133 |
+
| Model | AVG | AVG en-xx | AVG xx-en | en-ar | en-bg | en-ca | en-cs | en-da | en-de | en-el | en-es-latam | en-et | en-fi | en-fr | en-ga | en-gl | en-hi | en-hr | en-hu | en-it | en-ja | en-ko | en-lt | en-lv | en-mt | en-nl | en-no | en-pl | en-pt-br | en-ro | en-ru | en-sk | en-sl | en-sv | en-tr | en-uk | en-zh-cn | ar-en | bg-en | ca-en | cs-en | da-en | de-en | el-en | es-latam-en | et-en | fi-en | fr-en | ga-en | gl-en | hi-en | hr-en | hu-en | it-en | ja-en | ko-en | lt-en | lv-en | mt-en | nl-en | no-en | pl-en | pt-br-en | ro-en | ru-en | sk-en | sl-en | sv-en | tr-en | uk-en | zh-cn-en |
|
134 |
+
|--------------------------------|------|-----------|-----------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|----------|
|
135 |
+
| EuroLLM-1.7B-Instruct |86.89 | 86.53 | 87.25 | 85.17 | 89.42 | 84.72 | 89.13 | 89.47 | 86.90 | 87.60 | 86.29 | 88.95 | 89.40 | 87.69 | 74.89 | 86.41 | 76.92 | 84.79 | 86.78 | 88.17 | 89.76 | 87.70 | 87.27 | 87.62 | 67.84 | 87.10 | 90.00 | 88.18 | 89.29 | 89.49 | 88.32 | 88.18 | 86.85 | 90.00 | 87.31 | 87.89 | 86.60 | 86.34 | 87.45 | 87.57 | 87.95 | 89.72 | 88.80 | 87.00 | 86.77 | 88.34 | 89.09 | 88.95 | 82.69 | 87.80 | 88.37 | 86.71 | 87.20 | 87.81 | 86.79 | 86.79 | 85.62 | 86.48 | 81.10 | 86.97 | 90.25 | 85.75 | 89.20 | 88.88 | 86.00 | 87.38 | 86.76 | 89.61 | 87.94 |
|
136 |
+
| Gemma-2B-EuroBlocks | 81.59 | 78.97 | 84.21 | 76.68 | 82.73 | 83.14 | 81.63 | 84.63 | 83.15 | 79.42 | 84.05 | 72.58 | 79.73 | 84.97 | 40.50 | 82.13 | 67.79 | 80.53 | 78.36 | 84.90 | 87.43 | 82.98 | 72.29 | 68.68 | 58.55 | 83.13 | 86.15 | 82.78 | 86.79 | 83.14 | 84.61 | 78.18 | 75.37 | 80.89 | 78.38 | 84.38 | 84.35 | 83.88 | 85.77 | 86.85 | 86.31 | 88.24 | 88.12 | 84.79 | 84.90 | 82.51 | 86.32 | 88.29 | 54.78 | 86.53 | 85.83 | 85.41 | 85.18 | 86.77 | 85.78 | 84.99 | 81.65 | 81.78 | 67.27 | 85.92 | 89.07 | 84.14 | 88.07 | 87.17 | 85.23 | 85.09 | 83.95 | 87.57 | 84.77 |
|
137 |
+
| Gemma-7B-EuroBlocks |85.27 | 83.90 | 86.64 | 86.38 | 87.87 | 85.74 | 84.25 | 85.69 | 81.49 | 85.52 | 86.93 | 62.83 | 84.96 | 75.34 | 84.93 | 83.91 | 86.92 | 88.19 | 86.11 | 81.73 | 80.55 | 66.85 | 85.31 | 89.36 | 85.87 | 88.62 | 88.06 | 86.67 | 84.79 | 82.71 | 86.45 | 85.19 | 86.67 | 85.77 | 86.36 | 87.21 | 88.09 | 87.17 | 89.40 | 88.26 | 86.74 | 86.73 | 87.25 | 88.87 | 88.81 | 72.45 | 87.62 | 87.86 | 87.08 | 87.01 | 87.58 | 86.92 | 86.70 | 85.10 | 85.74 | 77.81 | 86.83 | 90.40 | 85.41 | 89.04 | 88.77 | 86.13 | 86.67 | 86.32 | 89.27 | 87.92 |
|
138 |
+
|
139 |
+
|
140 |
+
#### WMT-23
|
141 |
+
| Model | AVG | AVG en-xx | AVG xx-en | AVG xx-xx | en-de | en-cs | en-uk | en-ru | en-zh-cn | de-en | uk-en | ru-en | zh-cn-en | cs-uk |
|
142 |
+
|--------------------------------|------|-----------|-----------|-----------|-------|-------|-------|-------|----------|-------|-------|-------|----------|-------|
|
143 |
+
| EuroLLM-1.7B-Instruct | 82.91 | 83.20 | 81.77 | 86.82 | 81.56 | 85.23 | 81.30 | 82.47 | 83.61 | 85.03 | 84.06 | 85.25 | 81.31 | 78.83 | 79.42 | 86.82 |
|
144 |
+
| Gemma-2B-EuroBlocks | 79.96 | 79.01 | 80.86 | 81.15 | 76.82 | 76.05 | 77.92 | 78.98 | 81.58 | 82.73 | 82.71 | 83.99 | 80.35 | 78.27 | 78.99 | 81.15 |
|
145 |
+
| Gemma-7B-EuroBlocks | 82.76 | 82.26 | 82.70 | 85.98 | 81.37 | 82.42 | 81.54 | 82.18 | 82.90 | 83.17 | 84.29 | 85.70 | 82.46 | 79.73 | 81.33 | 85.98 |
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
#### WMT-24
|
150 |
+
| Model | AVG | AVG en-xx | AVG xx-xx | en-de | en-es-latam | en-cs | en-ru | en-uk | en-ja | en-zh-cn | en-hi | cs-uk | ja-zh-cn |
|
151 |
+
|---------|------|------|-------|----|---|-------|-------|--------|--------|-------|-------|-------|-----|
|
152 |
+
| EuroLLM-1.7B-Instruct|79.32 | 79.32 | 79.34 | 79.42 | 80.67 | 80.55 | 78.65 | 80.12 | 82.96 | 80.60 | 71.59 | 83.48 | 75.20 |
|
153 |
+
|Gemma-2B-EuroBlocks| 74.72 | 74.41 | 75.97 | 74.93 | 78.81 | 70.54 | 74.90 | 75.84 | 79.48 | 78.06 | 62.70 | 79.87 | 72.07 |
|
154 |
+
|Gemma-7B-EuroBlocks| 78.67 | 78.34 | 80.00 | 78.88 | 80.47 | 78.55 | 78.55 | 80.12 | 80.55 | 78.90 | 70.71 | 84.33 | 75.66 |
|
155 |
+
|
156 |
+
|
157 |
+
### General Benchmarks
|
158 |
+
We also compare EuroLLM-1.7B with [TinyLlama-v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) and [Gemma-2B](https://huggingface.co/google/gemma-2b) on 3 general benchmarks: Arc Challenge and Hellaswag.
|
159 |
+
For the non-english languages we use the [Okapi](https://aclanthology.org/2023.emnlp-demo.28.pdf) datasets.
|
160 |
+
Results show that EuroLLM-1.7B is superior to TinyLlama-v1.1 and similar to Gemma-2B on Hellaswag but worse on Arc Challenge. This can be due to the lower number of parameters of EuroLLM-1.7B (1.133B non-embedding parameters against 1.981B).
|
161 |
+
|
162 |
+
#### Arc Challenge
|
163 |
+
| Model | Average | English | German | Spanish | French | Italian | Portuguese | Chinese | Russian | Dutch | Arabic | Swedish | Hindi | Hungarian | Romanian | Ukrainian | Danish | Catalan |
|
164 |
+
|--------------------|---------|---------|--------|---------|--------|---------|------------|---------|---------|-------|--------|---------|--------|-----------|----------|-----------|--------|---------|
|
165 |
+
| EuroLLM-1.7B | 0.3496 | 0.4061 | 0.3464 | 0.3684 | 0.3627 | 0.3738 | 0.3855 | 0.3521 | 0.3208 | 0.3507 | 0.3045 | 0.3605 | 0.2928 | 0.3271 | 0.3488 | 0.3516 | 0.3513 | 0.3396 |
|
166 |
+
| TinyLlama-v1.1 | 0.2650 | 0.3712 | 0.2524 | 0.2795 | 0.2883 | 0.2652 | 0.2906 | 0.2410 | 0.2669 | 0.2404 | 0.2310 | 0.2687 | 0.2354 | 0.2449 | 0.2476 | 0.2524 | 0.2494 | 0.2796 |
|
167 |
+
| Gemma-2B | 0.3617 | 0.4846 | 0.3755 | 0.3940 | 0.4080 | 0.3687 | 0.3872 | 0.3726 | 0.3456 | 0.3328 | 0.3122 | 0.3519 | 0.2851 | 0.3039 | 0.3590 | 0.3601 | 0.3565 | 0.3516 |
|
168 |
+
|
169 |
+
|
170 |
+
#### Hellaswag
|
171 |
+
| Model | Average | English | German | Spanish | French | Italian | Portuguese | Russian | Dutch | Arabic | Swedish | Hindi | Hungarian | Romanian | Ukrainian | Danish | Catalan |
|
172 |
+
|--------------------|---------|---------|--------|---------|--------|---------|------------|---------|--------|--------|---------|--------|-----------|----------|-----------|--------|---------|
|
173 |
+
| EuroLLM-1.7B | 0.4744 | 0.4760 | 0.6057 | 0.4793 | 0.5337 | 0.5298 | 0.5085 | 0.5224 | 0.4654 | 0.4949 | 0.4104 | 0.4800 | 0.3655 | 0.4097 | 0.4606 | 0.436 | 0.4702 | 0.4445 |
|
174 |
+
| TinyLlama-v1.1 |0.3674 | 0.6248 | 0.3650 | 0.4137 | 0.4010 | 0.3780 | 0.3892 | 0.3494 | 0.3588 | 0.2880 | 0.3561 | 0.2841 | 0.3073 | 0.3267 | 0.3349 | 0.3408 | 0.3613 |
|
175 |
+
| Gemma-2B |0.4666 | 0.7165 | 0.4756 | 0.5414 | 0.5180 | 0.4841 | 0.5081 | 0.4664 | 0.4655 | 0.3868 | 0.4383 | 0.3413 | 0.3710 | 0.4316 | 0.4291 | 0.4471 | 0.4448 |
|
176 |
+
|
177 |
+
|
178 |
+
## Bias, Risks, and Limitations
|
179 |
+
|
180 |
+
EuroLLM-1.7B-Instruct has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements).
|