--- base_model: airesearch/wangchanberta-base-att-spm-uncased tags: - generated_from_trainer datasets: - universal_dependencies metrics: - accuracy - recall - precision - f1 model-index: - name: wangchanberta-ud-thai-pud-upos results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies type: universal_dependencies config: th_pud split: test args: th_pud metrics: - name: Accuracy type: accuracy value: 0.9883334914161055 widget: - text: นักวิจัยกล่าวว่าการวิเคราะห์ดีเอ็นเอของเนื้องอกอาจช่วยอธิบายถึงสาเหตุที่แท้จริงของมะเร็งชนิดอื่นๆ ได้ example_title: test1 - text: >- คือผมไม่ได้ชอบกดดันพวกคุณหรอกนะ แต่ชะตากรรมของสาธารณรัฐอยู่ในกำมือคุณ example_title: test2 language: - th library_name: transformers --- # wangchanberta-ud-thai-pud-upos This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the universal_dependencies dataset. It achieves the following results on the evaluation set: - Loss: 0.0442 - Macro avg precision: 0.9221 - Macro avg recall: 0.9178 - Macro avg f1: 0.9199 - Weighted avg precision: 0.9883 - Weighted avg recall: 0.9883 - Weighted avg f1: 0.9883 - Accuracy: 0.9883 ## Model description This model is train on thai UD Thai PUD corpus with `Universal Part-of-speech (UPOS)` tag to help with pos tagging in Thai language. ## Example ```python from transformers import AutoModelForTokenClassification, AutoTokenizer, TokenClassificationPipeline model = AutoModelForTokenClassification.from_pretrained("Pavarissy/wangchanberta-ud-thai-pud-upos") tokenizer = AutoTokenizer.from_pretrained("Pavarissy/wangchanberta-ud-thai-pud-upos") pipeline = TokenClassificationPipeline(model=model, tokenizer=tokenizer, grouped_entities=True) outputs = pipeline("ประเทศไทย อยู่ใน ทวีป เอเชีย") print(outputs) # [{'entity_group': 'NOUN', 'score': 0.419697, 'word': '', 'start': 0, 'end': 1}, {'entity_group': 'PROPN', 'score': 0.8809489, 'word': 'ประเทศไทย', 'start': 0, 'end': 9}, {'entity_group': 'VERB', 'score': 0.7754166, 'word': 'อยู่ใน', 'start': 9, 'end': 16}, {'entity_group': 'NOUN', 'score': 0.9976932, 'word': 'ทวีป', 'start': 16, 'end': 21}, {'entity_group': 'PROPN', 'score': 0.97770107, 'word': 'เอเชีย', 'start': 21, 'end': 28}] ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro avg precision | Macro avg recall | Macro avg f1 | Weighted avg precision | Weighted avg recall | Weighted avg f1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------------:|:-------------------:|:---------------:|:--------:| | No log | 1.0 | 125 | 0.5563 | 0.8103 | 0.7235 | 0.7552 | 0.8574 | 0.8522 | 0.8495 | 0.8522 | | No log | 2.0 | 250 | 0.2316 | 0.8701 | 0.8460 | 0.8564 | 0.9320 | 0.9315 | 0.9310 | 0.9315 | | No log | 3.0 | 375 | 0.1635 | 0.8903 | 0.8729 | 0.8809 | 0.9511 | 0.9511 | 0.9508 | 0.9511 | | 0.5782 | 4.0 | 500 | 0.1112 | 0.9037 | 0.8964 | 0.8998 | 0.9687 | 0.9685 | 0.9685 | 0.9685 | | 0.5782 | 5.0 | 625 | 0.0860 | 0.9110 | 0.9050 | 0.9079 | 0.9752 | 0.9752 | 0.9751 | 0.9752 | | 0.5782 | 6.0 | 750 | 0.0675 | 0.9160 | 0.9103 | 0.9131 | 0.9815 | 0.9814 | 0.9814 | 0.9814 | | 0.5782 | 7.0 | 875 | 0.0588 | 0.9189 | 0.9138 | 0.9163 | 0.9839 | 0.9839 | 0.9839 | 0.9839 | | 0.1073 | 8.0 | 1000 | 0.0514 | 0.9214 | 0.9155 | 0.9184 | 0.9858 | 0.9858 | 0.9858 | 0.9858 | | 0.1073 | 9.0 | 1125 | 0.0463 | 0.9225 | 0.9171 | 0.9197 | 0.9877 | 0.9876 | 0.9876 | 0.9876 | | 0.1073 | 10.0 | 1250 | 0.0442 | 0.9221 | 0.9178 | 0.9199 | 0.9883 | 0.9883 | 0.9883 | 0.9883 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1