Pavarissy/wangchanberta-ud-thai-pud-upos
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: airesearch/wangchanberta-base-att-spm-uncased
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- universal_dependencies
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: wangchanberta-ud-thai-pud-upos
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Token Classification
|
14 |
+
type: token-classification
|
15 |
+
dataset:
|
16 |
+
name: universal_dependencies
|
17 |
+
type: universal_dependencies
|
18 |
+
config: th_pud
|
19 |
+
split: test
|
20 |
+
args: th_pud
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9883334914161055
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wangchanberta-ud-thai-pud-upos
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the universal_dependencies dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0442
|
35 |
+
- Macro avg precision: 0.9221
|
36 |
+
- Macro avg recall: 0.9178
|
37 |
+
- Macro avg f1: 0.9199
|
38 |
+
- Weighted avg precision: 0.9883
|
39 |
+
- Weighted avg recall: 0.9883
|
40 |
+
- Weighted avg f1: 0.9883
|
41 |
+
- Accuracy: 0.9883
|
42 |
+
|
43 |
+
## Model description
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Intended uses & limitations
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training and evaluation data
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training procedure
|
56 |
+
|
57 |
+
### Training hyperparameters
|
58 |
+
|
59 |
+
The following hyperparameters were used during training:
|
60 |
+
- learning_rate: 2e-05
|
61 |
+
- train_batch_size: 8
|
62 |
+
- eval_batch_size: 8
|
63 |
+
- seed: 42
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- num_epochs: 10
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Macro avg precision | Macro avg recall | Macro avg f1 | Weighted avg precision | Weighted avg recall | Weighted avg f1 | Accuracy |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------------:|:-------------------:|:---------------:|:--------:|
|
72 |
+
| No log | 1.0 | 125 | 0.5563 | 0.8103 | 0.7235 | 0.7552 | 0.8574 | 0.8522 | 0.8495 | 0.8522 |
|
73 |
+
| No log | 2.0 | 250 | 0.2316 | 0.8701 | 0.8460 | 0.8564 | 0.9320 | 0.9315 | 0.9310 | 0.9315 |
|
74 |
+
| No log | 3.0 | 375 | 0.1635 | 0.8903 | 0.8729 | 0.8809 | 0.9511 | 0.9511 | 0.9508 | 0.9511 |
|
75 |
+
| 0.5782 | 4.0 | 500 | 0.1112 | 0.9037 | 0.8964 | 0.8998 | 0.9687 | 0.9685 | 0.9685 | 0.9685 |
|
76 |
+
| 0.5782 | 5.0 | 625 | 0.0860 | 0.9110 | 0.9050 | 0.9079 | 0.9752 | 0.9752 | 0.9751 | 0.9752 |
|
77 |
+
| 0.5782 | 6.0 | 750 | 0.0675 | 0.9160 | 0.9103 | 0.9131 | 0.9815 | 0.9814 | 0.9814 | 0.9814 |
|
78 |
+
| 0.5782 | 7.0 | 875 | 0.0588 | 0.9189 | 0.9138 | 0.9163 | 0.9839 | 0.9839 | 0.9839 | 0.9839 |
|
79 |
+
| 0.1073 | 8.0 | 1000 | 0.0514 | 0.9214 | 0.9155 | 0.9184 | 0.9858 | 0.9858 | 0.9858 | 0.9858 |
|
80 |
+
| 0.1073 | 9.0 | 1125 | 0.0463 | 0.9225 | 0.9171 | 0.9197 | 0.9877 | 0.9876 | 0.9876 | 0.9876 |
|
81 |
+
| 0.1073 | 10.0 | 1250 | 0.0442 | 0.9221 | 0.9178 | 0.9199 | 0.9883 | 0.9883 | 0.9883 | 0.9883 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.34.1
|
87 |
+
- Pytorch 2.1.0+cu118
|
88 |
+
- Datasets 2.14.6
|
89 |
+
- Tokenizers 0.14.1
|