|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
from diffusers.loaders import (
|
|
FromSingleFileMixin,
|
|
IPAdapterMixin,
|
|
StableDiffusionXLLoraLoaderMixin,
|
|
TextualInversionLoaderMixin,
|
|
)
|
|
from diffusers.models import (
|
|
AutoencoderKL,
|
|
ControlNetModel,
|
|
ImageProjection,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import (
|
|
StableDiffusionXLPipelineOutput,
|
|
)
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils.torch_utils import (
|
|
is_compiled_module,
|
|
is_torch_version,
|
|
randn_tensor,
|
|
)
|
|
from transformers import (
|
|
CLIPImageProcessor,
|
|
CLIPTextModel,
|
|
CLIPTextModelWithProjection,
|
|
CLIPTokenizer,
|
|
CLIPVisionModelWithProjection,
|
|
)
|
|
|
|
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
**kwargs,
|
|
):
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
class StableDiffusionXLRecolorPipeline(
|
|
DiffusionPipeline,
|
|
StableDiffusionMixin,
|
|
TextualInversionLoaderMixin,
|
|
StableDiffusionXLLoraLoaderMixin,
|
|
IPAdapterMixin,
|
|
FromSingleFileMixin,
|
|
):
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
|
_optional_components = [
|
|
"tokenizer",
|
|
"tokenizer_2",
|
|
"text_encoder",
|
|
"text_encoder_2",
|
|
"feature_extractor",
|
|
"image_encoder",
|
|
]
|
|
_callback_tensor_inputs = [
|
|
"latents",
|
|
"prompt_embeds",
|
|
"negative_prompt_embeds",
|
|
"add_text_embeds",
|
|
"add_time_ids",
|
|
"negative_pooled_prompt_embeds",
|
|
"negative_add_time_ids",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
text_encoder_2: CLIPTextModelWithProjection,
|
|
tokenizer: CLIPTokenizer,
|
|
tokenizer_2: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
controlnet: Union[
|
|
ControlNetModel,
|
|
List[ControlNetModel],
|
|
Tuple[ControlNetModel],
|
|
MultiControlNetModel,
|
|
],
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
force_zeros_for_empty_prompt: bool = True,
|
|
add_watermarker: Optional[bool] = None,
|
|
feature_extractor: CLIPImageProcessor = None,
|
|
image_encoder: CLIPVisionModelWithProjection = None,
|
|
):
|
|
super().__init__()
|
|
|
|
if isinstance(controlnet, (list, tuple)):
|
|
controlnet = MultiControlNetModel(controlnet)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
text_encoder_2=text_encoder_2,
|
|
tokenizer=tokenizer,
|
|
tokenizer_2=tokenizer_2,
|
|
unet=unet,
|
|
controlnet=controlnet,
|
|
scheduler=scheduler,
|
|
feature_extractor=feature_extractor,
|
|
image_encoder=image_encoder,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
|
)
|
|
self.control_image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor,
|
|
do_convert_rgb=True,
|
|
do_normalize=False,
|
|
)
|
|
self.register_to_config(
|
|
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
|
|
)
|
|
|
|
def encode_prompt(
|
|
self,
|
|
prompt: str,
|
|
negative_prompt: Optional[str] = None,
|
|
device: Optional[torch.device] = None,
|
|
do_classifier_free_guidance: bool = True,
|
|
):
|
|
device = device or self._execution_device
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
if prompt is not None:
|
|
batch_size = len(prompt)
|
|
|
|
|
|
tokenizers = (
|
|
[self.tokenizer, self.tokenizer_2]
|
|
if self.tokenizer is not None
|
|
else [self.tokenizer_2]
|
|
)
|
|
text_encoders = (
|
|
[self.text_encoder, self.text_encoder_2]
|
|
if self.text_encoder is not None
|
|
else [self.text_encoder_2]
|
|
)
|
|
|
|
prompt_2 = prompt
|
|
|
|
|
|
prompt_embeds_list = []
|
|
prompts = [prompt, prompt_2]
|
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
text_inputs = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
|
|
prompt_embeds = text_encoder(
|
|
text_input_ids.to(device), output_hidden_states=True
|
|
)
|
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0]
|
|
prompt_embeds = prompt_embeds.hidden_states[-2]
|
|
prompt_embeds_list.append(prompt_embeds)
|
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
|
|
|
|
negative_prompt_embeds = None
|
|
negative_pooled_prompt_embeds = None
|
|
|
|
if do_classifier_free_guidance:
|
|
negative_prompt = negative_prompt or ""
|
|
|
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
|
|
|
|
|
negative_prompt = [negative_prompt]
|
|
negative_prompt_2 = negative_prompt
|
|
|
|
uncond_tokens: List[str]
|
|
uncond_tokens = [negative_prompt, negative_prompt_2]
|
|
|
|
negative_prompt_embeds_list = []
|
|
for negative_prompt, tokenizer, text_encoder in zip(
|
|
uncond_tokens, tokenizers, text_encoders
|
|
):
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = tokenizer(
|
|
negative_prompt,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
negative_prompt_embeds = text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
output_hidden_states=True,
|
|
)
|
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
|
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(
|
|
dtype=self.text_encoder_2.dtype, device=device
|
|
)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.view(
|
|
batch_size, seq_len, -1
|
|
)
|
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
|
|
|
if do_classifier_free_guidance:
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.view(
|
|
bs_embed, -1
|
|
)
|
|
|
|
return (
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
)
|
|
|
|
|
|
def encode_image(
|
|
self, image, device, num_images_per_prompt, output_hidden_states=None
|
|
):
|
|
dtype = next(self.image_encoder.parameters()).dtype
|
|
|
|
if not isinstance(image, torch.Tensor):
|
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
if output_hidden_states:
|
|
image_enc_hidden_states = self.image_encoder(
|
|
image, output_hidden_states=True
|
|
).hidden_states[-2]
|
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(
|
|
num_images_per_prompt, dim=0
|
|
)
|
|
uncond_image_enc_hidden_states = self.image_encoder(
|
|
torch.zeros_like(image), output_hidden_states=True
|
|
).hidden_states[-2]
|
|
uncond_image_enc_hidden_states = (
|
|
uncond_image_enc_hidden_states.repeat_interleave(
|
|
num_images_per_prompt, dim=0
|
|
)
|
|
)
|
|
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
|
else:
|
|
image_embeds = self.image_encoder(image).image_embeds
|
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
|
uncond_image_embeds = torch.zeros_like(image_embeds)
|
|
|
|
return image_embeds, uncond_image_embeds
|
|
|
|
def prepare_ip_adapter_image_embeds(
|
|
self,
|
|
ip_adapter_image,
|
|
device,
|
|
do_classifier_free_guidance,
|
|
):
|
|
image_embeds = []
|
|
if do_classifier_free_guidance:
|
|
negative_image_embeds = []
|
|
|
|
if not isinstance(ip_adapter_image, list):
|
|
ip_adapter_image = [ip_adapter_image]
|
|
|
|
if len(ip_adapter_image) != len(
|
|
self.unet.encoder_hid_proj.image_projection_layers
|
|
):
|
|
raise ValueError(
|
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
|
)
|
|
|
|
for single_ip_adapter_image, image_proj_layer in zip(
|
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
|
):
|
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
|
single_ip_adapter_image, device, 1, output_hidden_state
|
|
)
|
|
|
|
image_embeds.append(single_image_embeds[None, :])
|
|
if do_classifier_free_guidance:
|
|
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
|
|
|
ip_adapter_image_embeds = []
|
|
|
|
for i, single_image_embeds in enumerate(image_embeds):
|
|
if do_classifier_free_guidance:
|
|
single_image_embeds = torch.cat(
|
|
[negative_image_embeds[i], single_image_embeds], dim=0
|
|
)
|
|
|
|
single_image_embeds = single_image_embeds.to(device=device)
|
|
ip_adapter_image_embeds.append(single_image_embeds)
|
|
|
|
return ip_adapter_image_embeds
|
|
|
|
def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False):
|
|
image = self.control_image_processor.preprocess(image).to(dtype=torch.float32)
|
|
|
|
image_batch_size = image.shape[0]
|
|
|
|
image = image.repeat_interleave(image_batch_size, dim=0)
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
if do_classifier_free_guidance:
|
|
image = torch.cat([image] * 2)
|
|
|
|
return image
|
|
|
|
def prepare_latents(
|
|
self, batch_size, num_channels_latents, height, width, dtype, device
|
|
):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
int(height) // self.vae_scale_factor,
|
|
int(width) // self.vae_scale_factor,
|
|
)
|
|
|
|
latents = randn_tensor(shape, device=device, dtype=dtype)
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
|
|
|
|
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
|
|
|
@property
|
|
def denoising_end(self):
|
|
return self._denoising_end
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
image: PipelineImageInput = None,
|
|
num_inference_steps: int = 8,
|
|
guidance_scale: float = 2.0,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
|
**kwargs,
|
|
):
|
|
controlnet = self.controlnet
|
|
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(
|
|
control_guidance_end, list
|
|
):
|
|
control_guidance_start = len(control_guidance_end) * [
|
|
control_guidance_start
|
|
]
|
|
elif not isinstance(control_guidance_end, list) and isinstance(
|
|
control_guidance_start, list
|
|
):
|
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
|
elif not isinstance(control_guidance_start, list) and not isinstance(
|
|
control_guidance_end, list
|
|
):
|
|
mult = (
|
|
len(controlnet.nets)
|
|
if isinstance(controlnet, MultiControlNetModel)
|
|
else 1
|
|
)
|
|
control_guidance_start, control_guidance_end = (
|
|
mult * [control_guidance_start],
|
|
mult * [control_guidance_end],
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
|
|
|
|
batch_size = 1
|
|
device = self._execution_device
|
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(
|
|
controlnet_conditioning_scale, float
|
|
):
|
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(
|
|
controlnet.nets
|
|
)
|
|
|
|
|
|
if ip_adapter_image is not None:
|
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
|
ip_adapter_image,
|
|
device,
|
|
self.do_classifier_free_guidance,
|
|
)
|
|
|
|
|
|
if isinstance(controlnet, ControlNetModel):
|
|
image = self.prepare_image(
|
|
image=image,
|
|
device=device,
|
|
dtype=controlnet.dtype,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
)
|
|
height, width = image.shape[-2:]
|
|
elif isinstance(controlnet, MultiControlNetModel):
|
|
images = []
|
|
|
|
for image_ in image:
|
|
image_ = self.prepare_image(
|
|
image=image_,
|
|
device=device,
|
|
dtype=controlnet.dtype,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
)
|
|
|
|
images.append(image_)
|
|
|
|
image = images
|
|
height, width = image[0].shape[-2:]
|
|
else:
|
|
assert False
|
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler, num_inference_steps, device
|
|
)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
)
|
|
|
|
|
|
controlnet_keep = []
|
|
for i in range(len(timesteps)):
|
|
keeps = [
|
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
|
for s, e in zip(control_guidance_start, control_guidance_end)
|
|
]
|
|
controlnet_keep.append(
|
|
keeps[0] if isinstance(controlnet, ControlNetModel) else keeps
|
|
)
|
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds
|
|
|
|
add_time_ids = negative_add_time_ids = torch.tensor(
|
|
image[0].shape[-2:] + torch.Size([0, 0]) + image[0].shape[-2:]
|
|
).unsqueeze(0)
|
|
|
|
negative_add_time_ids = add_time_ids
|
|
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat(
|
|
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
|
)
|
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
add_time_ids = add_time_ids.to(device)
|
|
|
|
added_cond_kwargs = {
|
|
"text_embeds": add_text_embeds,
|
|
"time_ids": add_time_ids,
|
|
}
|
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
|
|
latent_model_input = (
|
|
torch.cat([latents] * 2)
|
|
if self.do_classifier_free_guidance
|
|
else latents
|
|
)
|
|
latent_model_input = self.scheduler.scale_model_input(
|
|
latent_model_input, t
|
|
)
|
|
|
|
|
|
control_model_input = latent_model_input
|
|
controlnet_prompt_embeds = prompt_embeds
|
|
controlnet_added_cond_kwargs = added_cond_kwargs
|
|
|
|
if isinstance(controlnet_keep[i], list):
|
|
cond_scale = [
|
|
c * s
|
|
for c, s in zip(
|
|
controlnet_conditioning_scale, controlnet_keep[i]
|
|
)
|
|
]
|
|
else:
|
|
controlnet_cond_scale = controlnet_conditioning_scale
|
|
if isinstance(controlnet_cond_scale, list):
|
|
controlnet_cond_scale = controlnet_cond_scale[0]
|
|
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
|
control_model_input,
|
|
t,
|
|
encoder_hidden_states=controlnet_prompt_embeds,
|
|
controlnet_cond=image,
|
|
conditioning_scale=cond_scale,
|
|
guess_mode=False,
|
|
added_cond_kwargs=controlnet_added_cond_kwargs,
|
|
return_dict=False,
|
|
)
|
|
|
|
if ip_adapter_image is not None:
|
|
added_cond_kwargs["image_embeds"] = image_embeds
|
|
|
|
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep_cond=None,
|
|
cross_attention_kwargs={},
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (
|
|
noise_pred_text - noise_pred_uncond
|
|
)
|
|
|
|
|
|
latents = self.scheduler.step(
|
|
noise_pred, t, latents, return_dict=False
|
|
)[0]
|
|
|
|
if i == 2:
|
|
prompt_embeds = prompt_embeds[-1:]
|
|
add_text_embeds = add_text_embeds[-1:]
|
|
add_time_ids = add_time_ids[-1:]
|
|
|
|
added_cond_kwargs = {
|
|
"text_embeds": add_text_embeds,
|
|
"time_ids": add_time_ids,
|
|
}
|
|
|
|
controlnet_prompt_embeds = prompt_embeds
|
|
controlnet_added_cond_kwargs = added_cond_kwargs
|
|
|
|
image = [single_image[-1:] for single_image in image]
|
|
self._guidance_scale = 0.0
|
|
|
|
|
|
if i == len(timesteps) - 1 or (
|
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
|
):
|
|
progress_bar.update()
|
|
|
|
latents = latents / self.vae.config.scaling_factor
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
image = self.image_processor.postprocess(image)[0]
|
|
|
|
|
|
self.maybe_free_model_hooks()
|
|
|
|
return StableDiffusionXLPipelineOutput(images=image)
|
|
|