File size: 3,836 Bytes
255a3b9 4d91d90 255a3b9 e7da494 547f7fe e7da494 547f7fe e7da494 40760e5 e7da494 40760e5 e7da494 40760e5 547f7fe e7da494 ca613a4 4707eb8 547f7fe ca613a4 547f7fe e7da494 547f7fe e7da494 547f7fe 5bbbd8d 547f7fe ca613a4 547f7fe ca613a4 547f7fe e7da494 ca613a4 d01e8d8 ca613a4 e7da494 547f7fe e7da494 547f7fe 6ca96de 4d91d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: apache-2.0
language:
- en
base_model:
- mistralai/Mixtral-8x7B-Instruct-v0.1
base_model_relation: quantized
---
# Mixtral-8x7b-Instruct-v0.1-int4-ov
* Model creator: [Mistral AI](https://huggingface.co/mistralai)
* Original model: [Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
## Description
This is [Mixtral-8x7b-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
## Quantization Parameters
Weight compression was performed using `nncf.compress_weights` with the following parameters:
* mode: **INT4_SYM**
* group_size: **128**
* ratio: **0.8**
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2024.2.0 and higher
* Optimum Intel 1.17.0 and higher
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "OpenVINO/mixtral-8x7b-instruct-v0.1-int4-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```
2. Download model from HuggingFace Hub
```
import huggingface_hub as hf_hub
model_id = "OpenVINO/mixtral-8x7b-instruct-v0.1-int4-ov"
model_path = "mixtral-8x7b-instruct-v0.1-int4-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path)
```
3. Run model inference:
```
import openvino_genai as ov_genai
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
print(pipe.generate("What is OpenVINO?", max_length=200))
```
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
## Limitations
Check the original model card for [limitations](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#limitations).
## Legal information
The original model is distributed under [Apache 2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights. |