sylwia-kuros commited on
Commit
277dfcb
1 Parent(s): 4d64a6d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ ---
6
+
7
+ # dolly-v2-3b-int4-ov
8
+
9
+ * Model creator: [Databricks](https://huggingface.co/databricks)
10
+ * Original model: [dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b)
11
+
12
+ ## Description
13
+
14
+ This is [dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to int8 by [NNCF](https://github.com/openvinotoolkit/nncf).
15
+
16
+ ## Quantization Parameters
17
+
18
+ Weight compression was performed using `nncf.compress_weights` with the following parameters:
19
+
20
+ * mode: **INT4_ASYM**
21
+ * group_size: **32**
22
+ * ratio: **0.5**
23
+ * sensitivity_metric: **weight_quantization_error**
24
+
25
+ For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
26
+
27
+ ## Compatibility
28
+
29
+ The provided OpenVINO™ IR model is compatible with:
30
+
31
+ * OpenVINO version 2024.1.0 and higher
32
+ * Optimum Intel 1.16.0 and higher
33
+
34
+ ## Running Model Inference
35
+
36
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
37
+
38
+ ```
39
+ pip install optimum[openvino]
40
+ ```
41
+
42
+ 2. Run model inference:
43
+
44
+ ```
45
+ from transformers import AutoTokenizer
46
+ from optimum.intel.openvino import OVModelForCausalLM
47
+
48
+ model_id = "OpenVINO/dolly-v2-3b-int4-ov"
49
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
50
+ model = OVModelForCausalLM.from_pretrained(model_id)
51
+
52
+ inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
53
+
54
+ outputs = model.generate(**inputs, max_length=200)
55
+ text = tokenizer.batch_decode(outputs)[0]
56
+ print(text)
57
+ ```
58
+
59
+ For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
60
+
61
+ ## Limitations
62
+
63
+ Check the original model card for [limitations](https://huggingface.co/databricks/dolly-v2-3b#known-limitations).
64
+
65
+ ## Legal information
66
+
67
+ The original model is distributed under mit license. More details can be found in [original model card](https://huggingface.co/databricks/dolly-v2-3b).