Upload 8 files
Browse files- README.md +54 -0
- config.json +28 -0
- generation_config.json +6 -0
- openvino_model.bin +3 -0
- openvino_model.xml +0 -0
- special_tokens_map.json +9 -0
- tokenization_codegen25.py +248 -0
- tokenizer_config.json +24 -0
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
---
|
6 |
+
|
7 |
+
# codegen25-7b-multi
|
8 |
+
|
9 |
+
* Model creator: [Salesforce](https://huggingface.co/Salesforce)
|
10 |
+
* Original model: [CodeGen2.5-7B-multi](https://huggingface.co/Salesforce/codegen25-7b-multi_P)
|
11 |
+
|
12 |
+
## Description
|
13 |
+
|
14 |
+
This is [CodeGen2.5-7B-multi](https://huggingface.co/Salesforce/codegen25-7b-multi_P) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to FP16.
|
15 |
+
|
16 |
+
## Compatibility
|
17 |
+
|
18 |
+
The provided OpenVINO™ IR model is compatible with:
|
19 |
+
|
20 |
+
* OpenVINO version 2024.1.0 and higher
|
21 |
+
* Optimum Intel 1.16.0 and higher
|
22 |
+
|
23 |
+
## Running Model Inference
|
24 |
+
|
25 |
+
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
26 |
+
|
27 |
+
```
|
28 |
+
pip install optimum[openvino] tiktoken
|
29 |
+
```
|
30 |
+
|
31 |
+
2. Run model inference:
|
32 |
+
|
33 |
+
```
|
34 |
+
from transformers import AutoTokenizer
|
35 |
+
from optimum.intel.openvino import OVModelForCausalLM
|
36 |
+
|
37 |
+
model_id = "OpenVINO/codegen25-7b-multi-fp16-ov"
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
39 |
+
model = OVModelForCausalLM.from_pretrained(model_id)
|
40 |
+
text = "def hello_world():"
|
41 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
42 |
+
generated_ids = model.generate(input_ids, max_length=128)
|
43 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
44 |
+
```
|
45 |
+
|
46 |
+
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
47 |
+
|
48 |
+
## Limitations
|
49 |
+
|
50 |
+
Check the original model card for [limitations](https://huggingface.co/Salesforce/codegen25-7b-instruct_P#intended-use-and-limitations).
|
51 |
+
|
52 |
+
## Legal information
|
53 |
+
|
54 |
+
The original model is distributed under [Apache 2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/Salesforce/codegen25-7b-multi_P).
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Salesforce/codegen25-7b-multi_P",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 50256,
|
9 |
+
"eos_token_id": 50256,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 4096,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 11008,
|
14 |
+
"max_position_embeddings": 2048,
|
15 |
+
"model_type": "llama",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 32,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pretraining_tp": 1,
|
21 |
+
"rms_norm_eps": 1e-06,
|
22 |
+
"rope_scaling": null,
|
23 |
+
"rope_theta": 10000.0,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"transformers_version": "4.40.1",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 51200
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50256,
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"transformers_version": "4.40.1"
|
6 |
+
}
|
openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8677a6df83a63050a5eeb464d446e7d21dccc0b044d4ec6d0f3eb2d3da1e97f7
|
3 |
+
size 6900888080
|
openvino_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
}
|
9 |
+
}
|
tokenization_codegen25.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, salesforce.com, inc.
|
2 |
+
# All rights reserved.
|
3 |
+
# SPDX-License-Identifier: Apache-2.0
|
4 |
+
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
|
5 |
+
"""Tokenization classes for CodeGen2.5."""
|
6 |
+
|
7 |
+
from typing import List, Optional
|
8 |
+
|
9 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
try:
|
13 |
+
import tiktoken
|
14 |
+
except ModuleNotFoundError as e:
|
15 |
+
raise ModuleNotFoundError("CodeGen2.5 requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
MAX_MODEL_INPUT_SIZES = {
|
21 |
+
"Salesforce/codegen25-7b-multi": 2048,
|
22 |
+
"Salesforce/codegen25-7b-mono": 2048,
|
23 |
+
"Salesforce/codegen25-7b-instruct": 2048,
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
|
28 |
+
if not add_special:
|
29 |
+
return tiktoken.get_encoding(base)
|
30 |
+
|
31 |
+
def include_whitespace(n_min=2, n_max=20):
|
32 |
+
whitespaces = [" " * n for n in reversed(range(n_min, n_max))]
|
33 |
+
return whitespaces
|
34 |
+
|
35 |
+
def include_tabs(n_min=2, n_max=20):
|
36 |
+
tabs = ["\t" * n for n in reversed(range(n_min, n_max))]
|
37 |
+
return tabs
|
38 |
+
|
39 |
+
def include_fim_tokens():
|
40 |
+
fim_tokens = [
|
41 |
+
"<fim_prefix>",
|
42 |
+
"<fim_middle>",
|
43 |
+
"<fim_suffix>",
|
44 |
+
"<fim_pad>",
|
45 |
+
"<filename>",
|
46 |
+
"<gh_stars>",
|
47 |
+
"<issue_start>",
|
48 |
+
"<issue_comment>",
|
49 |
+
"<issue_closed>",
|
50 |
+
"<jupyter_start>",
|
51 |
+
"<jupyter_text>",
|
52 |
+
"<jupyter_code>",
|
53 |
+
"<jupyter_output>",
|
54 |
+
"<empty_output>",
|
55 |
+
"<commit_before>",
|
56 |
+
"<commit_msg>",
|
57 |
+
"<commit_after>",
|
58 |
+
"<reponame>"
|
59 |
+
]
|
60 |
+
return fim_tokens
|
61 |
+
|
62 |
+
def include_codegen2_tokens():
|
63 |
+
tokens = []
|
64 |
+
tokens += [f"<dummy_{i}>" for i in range(4)]
|
65 |
+
tokens.append("<sep>") # 50317
|
66 |
+
tokens.append("<eom>") # 50318
|
67 |
+
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))]
|
68 |
+
return tokens
|
69 |
+
|
70 |
+
add_whitespaces = include_whitespace(n_min=2, n_max=32)
|
71 |
+
add_tabs = include_tabs(n_min=2, n_max=10)
|
72 |
+
fim_tokens = include_fim_tokens()
|
73 |
+
codegen2_tokens = include_codegen2_tokens()
|
74 |
+
|
75 |
+
tokenizer = tiktoken.get_encoding(base)
|
76 |
+
|
77 |
+
idx = tokenizer.n_vocab
|
78 |
+
|
79 |
+
bpe_ranks = tokenizer._mergeable_ranks
|
80 |
+
|
81 |
+
for wsp in add_whitespaces:
|
82 |
+
bpe_ranks[bytes(wsp, 'ascii')] = idx
|
83 |
+
idx += 1
|
84 |
+
for t in add_tabs:
|
85 |
+
bpe_ranks[bytes(t, 'ascii')] = idx
|
86 |
+
idx += 1
|
87 |
+
|
88 |
+
special_tokens = dict()
|
89 |
+
|
90 |
+
for sp in fim_tokens:
|
91 |
+
special_tokens[sp] = idx
|
92 |
+
idx += 1
|
93 |
+
for sp in codegen2_tokens:
|
94 |
+
special_tokens[sp] = idx
|
95 |
+
idx += 1
|
96 |
+
|
97 |
+
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
|
98 |
+
special_tokens[pad_token] = idx
|
99 |
+
idx += 1
|
100 |
+
# In production, load the arguments directly instead of accessing private attributes
|
101 |
+
# See openai_public.py for examples of arguments for specific encodings
|
102 |
+
enc = tiktoken.Encoding(
|
103 |
+
# If you're changing the set of special tokens, make sure to use a different name
|
104 |
+
# It should be clear from the name what behaviour to expect.
|
105 |
+
name=base.replace("base", "im"),
|
106 |
+
pat_str=tokenizer._pat_str,
|
107 |
+
mergeable_ranks=bpe_ranks,
|
108 |
+
special_tokens={
|
109 |
+
**tokenizer._special_tokens,
|
110 |
+
**special_tokens
|
111 |
+
}
|
112 |
+
)
|
113 |
+
return enc
|
114 |
+
|
115 |
+
|
116 |
+
class CodeGen25Tokenizer(PreTrainedTokenizer):
|
117 |
+
"""
|
118 |
+
Construct a CodeGen2.5 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
119 |
+
Args:
|
120 |
+
vocab_file (`str`):
|
121 |
+
Path to the vocabulary file.
|
122 |
+
"""
|
123 |
+
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
|
124 |
+
model_input_names = ["input_ids", "attention_mask"]
|
125 |
+
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
pad_token=None,
|
129 |
+
eos_token="<|endoftext|>",
|
130 |
+
add_eos_token=False,
|
131 |
+
add_special_tokens=True,
|
132 |
+
**kwargs,
|
133 |
+
):
|
134 |
+
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
135 |
+
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
136 |
+
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
|
137 |
+
super().__init__(
|
138 |
+
pad_token=pad_token_added,
|
139 |
+
eos_token=eos_token_added,
|
140 |
+
add_eos_token=add_eos_token,
|
141 |
+
**kwargs,
|
142 |
+
)
|
143 |
+
self.add_eos_token = add_eos_token
|
144 |
+
|
145 |
+
@property
|
146 |
+
def vocab_size(self):
|
147 |
+
"""Returns vocab size"""
|
148 |
+
return self.encoder.n_vocab
|
149 |
+
|
150 |
+
def get_vocab(self):
|
151 |
+
"""Returns vocab as a dict"""
|
152 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
153 |
+
return vocab
|
154 |
+
|
155 |
+
def _tokenize(self, text, **kwargs):
|
156 |
+
"""Returns a tokenized string."""
|
157 |
+
return self.encoder.encode(text, allowed_special="all")
|
158 |
+
|
159 |
+
def _convert_token_to_id(self, token):
|
160 |
+
"""Converts a token (str) in an id using the vocab."""
|
161 |
+
if isinstance(token, str):
|
162 |
+
return self.encoder.encode_single_token(token)
|
163 |
+
else:
|
164 |
+
return token
|
165 |
+
|
166 |
+
def _convert_id_to_token(self, index):
|
167 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
168 |
+
try:
|
169 |
+
token = self.encoder.decode_single_token_bytes(index).decode("utf-8")
|
170 |
+
except Exception:
|
171 |
+
token = ""
|
172 |
+
return token
|
173 |
+
|
174 |
+
def _decode(self, token_ids: List[int], skip_special_tokens: bool = False, **kwargs):
|
175 |
+
if skip_special_tokens:
|
176 |
+
token_ids = [t for t in token_ids if t not in self.all_special_ids]
|
177 |
+
return self.encoder.decode(token_ids)
|
178 |
+
|
179 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
|
180 |
+
"""Build model inputs from a sequence by appending eos_token_id."""
|
181 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
182 |
+
|
183 |
+
output = token_ids_0 + eos_token_id
|
184 |
+
|
185 |
+
if token_ids_1 is not None:
|
186 |
+
output = output + token_ids_1 + eos_token_id
|
187 |
+
|
188 |
+
return output
|
189 |
+
|
190 |
+
def get_special_tokens_mask(
|
191 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
192 |
+
already_has_special_tokens: bool = False
|
193 |
+
) -> List[int]:
|
194 |
+
"""
|
195 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
196 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
197 |
+
Args:
|
198 |
+
token_ids_0 (`List[int]`):
|
199 |
+
List of IDs.
|
200 |
+
token_ids_1 (`List[int]`, *optional*):
|
201 |
+
Optional second list of IDs for sequence pairs.
|
202 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
203 |
+
Whether the token list is already formatted with special tokens for the model.
|
204 |
+
Returns:
|
205 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
206 |
+
"""
|
207 |
+
if already_has_special_tokens:
|
208 |
+
return super().get_special_tokens_mask(
|
209 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
210 |
+
)
|
211 |
+
|
212 |
+
eos_token_id = [1] if self.add_eos_token else []
|
213 |
+
|
214 |
+
if token_ids_1 is None:
|
215 |
+
return ([0] * len(token_ids_0)) + eos_token_id
|
216 |
+
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
217 |
+
|
218 |
+
def create_token_type_ids_from_sequences(
|
219 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
220 |
+
) -> List[int]:
|
221 |
+
"""
|
222 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
223 |
+
sequence pair mask has the following format:
|
224 |
+
```
|
225 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
226 |
+
| first sequence | second sequence |
|
227 |
+
```
|
228 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
229 |
+
Args:
|
230 |
+
token_ids_0 (`List[int]`):
|
231 |
+
List of ids.
|
232 |
+
token_ids_1 (`List[int]`, *optional*):
|
233 |
+
Optional second list of IDs for sequence pairs.
|
234 |
+
Returns:
|
235 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
236 |
+
"""
|
237 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
238 |
+
|
239 |
+
output = [0] * len(token_ids_0 + eos_token_id)
|
240 |
+
|
241 |
+
if token_ids_1 is not None:
|
242 |
+
output += [1] * len(token_ids_1 + eos_token_id)
|
243 |
+
|
244 |
+
return output
|
245 |
+
|
246 |
+
# has no vocab file
|
247 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
|
248 |
+
return ()
|
tokenizer_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_eos_token": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"50256": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"auto_map": {
|
14 |
+
"AutoTokenizer": [
|
15 |
+
"tokenization_codegen25.CodeGen25Tokenizer",
|
16 |
+
null
|
17 |
+
]
|
18 |
+
},
|
19 |
+
"clean_up_tokenization_spaces": true,
|
20 |
+
"eos_token": "<|endoftext|>",
|
21 |
+
"model_max_length": 2048,
|
22 |
+
"pad_token": null,
|
23 |
+
"tokenizer_class": "CodeGen25Tokenizer"
|
24 |
+
}
|