openvino-ci
commited on
Commit
•
6b68701
1
Parent(s):
5635a7c
Upload folder using huggingface_hub
Browse files- README.md +5 -41
- config.json +3 -1
- configuration_phi3.py +227 -213
- generation_config.json +1 -1
- openvino_detokenizer.bin +2 -2
- openvino_detokenizer.xml +214 -20
- openvino_model.bin +2 -2
- openvino_model.xml +0 -0
- openvino_tokenizer.bin +2 -2
- openvino_tokenizer.xml +500 -150
- tokenizer.json +0 -0
README.md
CHANGED
@@ -8,17 +8,14 @@ license_link: https://choosealicense.com/licenses/mit/
|
|
8 |
|
9 |
## Description
|
10 |
|
11 |
-
This is [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format.
|
12 |
-
|
13 |
## Compatibility
|
14 |
|
15 |
The provided OpenVINO™ IR model is compatible with:
|
16 |
|
17 |
-
* OpenVINO version 2024.
|
18 |
-
* Optimum Intel 1.
|
19 |
-
|
20 |
-
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
|
21 |
|
|
|
22 |
|
23 |
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
24 |
|
@@ -45,42 +42,9 @@ print(text)
|
|
45 |
|
46 |
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
47 |
|
48 |
-
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
|
49 |
-
|
50 |
-
1. Install packages required for using OpenVINO GenAI.
|
51 |
-
```
|
52 |
-
pip install openvino-genai huggingface_hub
|
53 |
-
```
|
54 |
-
|
55 |
-
2. Download model from HuggingFace Hub
|
56 |
-
|
57 |
-
```
|
58 |
-
import huggingface_hub as hf_hub
|
59 |
-
|
60 |
-
model_id = "OpenVINO/Phi-3-mini-4k-instruct-fp16-ov"
|
61 |
-
model_path = "Phi-3-mini-4k-instruct-fp16-ov"
|
62 |
-
|
63 |
-
hf_hub.snapshot_download(model_id, local_dir=model_path)
|
64 |
-
|
65 |
-
```
|
66 |
-
|
67 |
-
3. Run model inference:
|
68 |
-
|
69 |
-
```
|
70 |
-
import openvino_genai as ov_genai
|
71 |
-
|
72 |
-
device = "CPU"
|
73 |
-
pipe = ov_genai.LLMPipeline(model_path, device)
|
74 |
-
print(pipe.generate("What is OpenVINO?", max_length=200))
|
75 |
-
```
|
76 |
-
|
77 |
-
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
|
78 |
-
|
79 |
-
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
80 |
-
|
81 |
## Limitations
|
82 |
|
83 |
-
Check the original model card for [
|
84 |
|
85 |
## Legal information
|
86 |
|
@@ -88,4 +52,4 @@ The original model is distributed under [mit](https://choosealicense.com/license
|
|
88 |
|
89 |
## Disclaimer
|
90 |
|
91 |
-
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
|
|
8 |
|
9 |
## Description
|
10 |
|
|
|
|
|
11 |
## Compatibility
|
12 |
|
13 |
The provided OpenVINO™ IR model is compatible with:
|
14 |
|
15 |
+
* OpenVINO version 2024.4.0 and higher
|
16 |
+
* Optimum Intel 1.23.1 and higher
|
|
|
|
|
17 |
|
18 |
+
## Running Model Inference
|
19 |
|
20 |
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
21 |
|
|
|
42 |
|
43 |
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
## Limitations
|
46 |
|
47 |
+
Check the original model card for [original model card](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) for limitations.
|
48 |
|
49 |
## Legal information
|
50 |
|
|
|
52 |
|
53 |
## Disclaimer
|
54 |
|
55 |
+
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
config.json
CHANGED
@@ -3,6 +3,7 @@
|
|
3 |
"architectures": [
|
4 |
"Phi3ForCausalLM"
|
5 |
],
|
|
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
@@ -28,7 +29,8 @@
|
|
28 |
"rope_theta": 10000.0,
|
29 |
"sliding_window": 2047,
|
30 |
"tie_word_embeddings": false,
|
31 |
-
"
|
|
|
32 |
"use_cache": true,
|
33 |
"vocab_size": 32064
|
34 |
}
|
|
|
3 |
"architectures": [
|
4 |
"Phi3ForCausalLM"
|
5 |
],
|
6 |
+
"attention_bias": false,
|
7 |
"attention_dropout": 0.0,
|
8 |
"auto_map": {
|
9 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
|
|
29 |
"rope_theta": 10000.0,
|
30 |
"sliding_window": 2047,
|
31 |
"tie_word_embeddings": false,
|
32 |
+
"torch_dtype": "float16",
|
33 |
+
"transformers_version": "4.45.2",
|
34 |
"use_cache": true,
|
35 |
"vocab_size": 32064
|
36 |
}
|
configuration_phi3.py
CHANGED
@@ -1,213 +1,227 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
""" Phi-3 model configuration"""
|
17 |
-
|
18 |
-
|
19 |
-
from transformers.configuration_utils import PretrainedConfig
|
20 |
-
from transformers.utils import logging
|
21 |
-
|
22 |
-
|
23 |
-
logger = logging.get_logger(__name__)
|
24 |
-
|
25 |
-
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
-
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
-
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
-
}
|
29 |
-
|
30 |
-
|
31 |
-
class Phi3Config(PretrainedConfig):
|
32 |
-
r"""
|
33 |
-
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
34 |
-
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
-
defaults will yield a similar configuration to that of the
|
36 |
-
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
37 |
-
|
38 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
-
documentation from [`PretrainedConfig`] for more information.
|
40 |
-
|
41 |
-
Args:
|
42 |
-
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
-
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
-
`inputs_ids` passed when calling [`Phi3Model`].
|
45 |
-
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
-
Dimension of the hidden representations.
|
47 |
-
intermediate_size (`int`, *optional*, defaults to 8192):
|
48 |
-
Dimension of the MLP representations.
|
49 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
-
Number of hidden layers in the Transformer decoder.
|
51 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
-
num_key_value_heads (`int`, *optional*):
|
54 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
-
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
-
`num_attention_heads`.
|
61 |
-
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
62 |
-
Dropout probability for mlp outputs.
|
63 |
-
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
64 |
-
The dropout ratio for the embeddings.
|
65 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
-
The dropout ratio after computing the attention scores.
|
67 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
68 |
-
The non-linear activation function (function or string) in the decoder.
|
69 |
-
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
-
The maximum sequence length that this model might ever be used with.
|
71 |
-
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
72 |
-
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
73 |
-
original RoPE embeddings when using long scaling.
|
74 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
77 |
-
The epsilon value used for the RMSNorm.
|
78 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
-
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
81 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
-
Whether to tie weight embeddings
|
83 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
-
The base period of the RoPE embeddings.
|
85 |
-
rope_scaling (`dict`, *optional*):
|
86 |
-
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
87 |
-
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be
|
88 |
-
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
89 |
-
divided by the number of attention heads divided by 2.
|
90 |
-
bos_token_id (`int`, *optional*, defaults to 1):
|
91 |
-
The id of the "beginning-of-sequence" token.
|
92 |
-
eos_token_id (`int`, *optional*, defaults to 32000):
|
93 |
-
The id of the "end-of-sequence" token.
|
94 |
-
pad_token_id (`int`, *optional*, defaults to 32000):
|
95 |
-
The id of the padding token.
|
96 |
-
sliding_window (`int`, *optional*):
|
97 |
-
Sliding window attention window size. If `None`, no sliding window is applied.
|
98 |
-
|
99 |
-
Example:
|
100 |
-
|
101 |
-
```python
|
102 |
-
>>> from transformers import Phi3Model, Phi3Config
|
103 |
-
|
104 |
-
>>> # Initializing a Phi-3 style configuration
|
105 |
-
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
106 |
-
|
107 |
-
>>> # Initializing a model from the configuration
|
108 |
-
>>> model = Phi3Model(configuration)
|
109 |
-
|
110 |
-
>>> # Accessing the model configuration
|
111 |
-
>>> configuration = model.config
|
112 |
-
```"""
|
113 |
-
|
114 |
-
model_type = "phi3"
|
115 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
-
|
117 |
-
def __init__(
|
118 |
-
self,
|
119 |
-
vocab_size=32064,
|
120 |
-
hidden_size=3072,
|
121 |
-
intermediate_size=8192,
|
122 |
-
num_hidden_layers=32,
|
123 |
-
num_attention_heads=32,
|
124 |
-
num_key_value_heads=None,
|
125 |
-
resid_pdrop=0.0,
|
126 |
-
embd_pdrop=0.0,
|
127 |
-
attention_dropout=0.0,
|
128 |
-
hidden_act="silu",
|
129 |
-
max_position_embeddings=4096,
|
130 |
-
original_max_position_embeddings=4096,
|
131 |
-
initializer_range=0.02,
|
132 |
-
rms_norm_eps=1e-5,
|
133 |
-
use_cache=True,
|
134 |
-
tie_word_embeddings=False,
|
135 |
-
rope_theta=10000.0,
|
136 |
-
rope_scaling=None,
|
137 |
-
bos_token_id=1,
|
138 |
-
eos_token_id=32000,
|
139 |
-
pad_token_id=32000,
|
140 |
-
sliding_window=None,
|
141 |
-
**kwargs,
|
142 |
-
):
|
143 |
-
self.vocab_size = vocab_size
|
144 |
-
self.hidden_size = hidden_size
|
145 |
-
self.intermediate_size = intermediate_size
|
146 |
-
self.num_hidden_layers = num_hidden_layers
|
147 |
-
self.num_attention_heads = num_attention_heads
|
148 |
-
|
149 |
-
if num_key_value_heads is None:
|
150 |
-
num_key_value_heads = num_attention_heads
|
151 |
-
|
152 |
-
self.num_key_value_heads = num_key_value_heads
|
153 |
-
self.resid_pdrop = resid_pdrop
|
154 |
-
self.embd_pdrop = embd_pdrop
|
155 |
-
self.attention_dropout = attention_dropout
|
156 |
-
self.hidden_act = hidden_act
|
157 |
-
self.max_position_embeddings = max_position_embeddings
|
158 |
-
self.original_max_position_embeddings = original_max_position_embeddings
|
159 |
-
self.initializer_range = initializer_range
|
160 |
-
self.rms_norm_eps = rms_norm_eps
|
161 |
-
self.use_cache = use_cache
|
162 |
-
self.rope_theta = rope_theta
|
163 |
-
self.rope_scaling = rope_scaling
|
164 |
-
self.
|
165 |
-
self.
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-3 model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
+
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class Phi3Config(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the
|
36 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
62 |
+
Dropout probability for mlp outputs.
|
63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the embeddings.
|
65 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout ratio after computing the attention scores.
|
67 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
68 |
+
The non-linear activation function (function or string) in the decoder.
|
69 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
+
The maximum sequence length that this model might ever be used with.
|
71 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
72 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
73 |
+
original RoPE embeddings when using long scaling.
|
74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
77 |
+
The epsilon value used for the RMSNorm.
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`dict`, *optional*):
|
86 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
87 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
88 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
89 |
+
divided by the number of attention heads divided by 2.
|
90 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
91 |
+
The id of the "beginning-of-sequence" token.
|
92 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
93 |
+
The id of the "end-of-sequence" token.
|
94 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
95 |
+
The id of the padding token.
|
96 |
+
sliding_window (`int`, *optional*):
|
97 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import Phi3Model, Phi3Config
|
103 |
+
|
104 |
+
>>> # Initializing a Phi-3 style configuration
|
105 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
106 |
+
|
107 |
+
>>> # Initializing a model from the configuration
|
108 |
+
>>> model = Phi3Model(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "phi3"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=32064,
|
120 |
+
hidden_size=3072,
|
121 |
+
intermediate_size=8192,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
resid_pdrop=0.0,
|
126 |
+
embd_pdrop=0.0,
|
127 |
+
attention_dropout=0.0,
|
128 |
+
hidden_act="silu",
|
129 |
+
max_position_embeddings=4096,
|
130 |
+
original_max_position_embeddings=4096,
|
131 |
+
initializer_range=0.02,
|
132 |
+
rms_norm_eps=1e-5,
|
133 |
+
use_cache=True,
|
134 |
+
tie_word_embeddings=False,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
bos_token_id=1,
|
138 |
+
eos_token_id=32000,
|
139 |
+
pad_token_id=32000,
|
140 |
+
sliding_window=None,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.intermediate_size = intermediate_size
|
146 |
+
self.num_hidden_layers = num_hidden_layers
|
147 |
+
self.num_attention_heads = num_attention_heads
|
148 |
+
|
149 |
+
if num_key_value_heads is None:
|
150 |
+
num_key_value_heads = num_attention_heads
|
151 |
+
|
152 |
+
self.num_key_value_heads = num_key_value_heads
|
153 |
+
self.resid_pdrop = resid_pdrop
|
154 |
+
self.embd_pdrop = embd_pdrop
|
155 |
+
self.attention_dropout = attention_dropout
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.max_position_embeddings = max_position_embeddings
|
158 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
159 |
+
self.initializer_range = initializer_range
|
160 |
+
self.rms_norm_eps = rms_norm_eps
|
161 |
+
self.use_cache = use_cache
|
162 |
+
self.rope_theta = rope_theta
|
163 |
+
self.rope_scaling = rope_scaling
|
164 |
+
self._rope_scaling_adjustment()
|
165 |
+
self._rope_scaling_validation()
|
166 |
+
self.sliding_window = sliding_window
|
167 |
+
|
168 |
+
super().__init__(
|
169 |
+
bos_token_id=bos_token_id,
|
170 |
+
eos_token_id=eos_token_id,
|
171 |
+
pad_token_id=pad_token_id,
|
172 |
+
tie_word_embeddings=tie_word_embeddings,
|
173 |
+
**kwargs,
|
174 |
+
)
|
175 |
+
|
176 |
+
def _rope_scaling_adjustment(self):
|
177 |
+
"""
|
178 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
179 |
+
"""
|
180 |
+
if self.rope_scaling is None:
|
181 |
+
return
|
182 |
+
|
183 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
184 |
+
|
185 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
186 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
187 |
+
self.rope_scaling["type"] = "longrope"
|
188 |
+
|
189 |
+
def _rope_scaling_validation(self):
|
190 |
+
"""
|
191 |
+
Validate the `rope_scaling` configuration.
|
192 |
+
"""
|
193 |
+
if self.rope_scaling is None:
|
194 |
+
return
|
195 |
+
|
196 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
197 |
+
raise ValueError(
|
198 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
199 |
+
f"got {self.rope_scaling}"
|
200 |
+
)
|
201 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
202 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
203 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
204 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
205 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
206 |
+
if not (
|
207 |
+
isinstance(rope_scaling_short_factor, list)
|
208 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
209 |
+
):
|
210 |
+
raise ValueError(
|
211 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
212 |
+
)
|
213 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
214 |
+
raise ValueError(
|
215 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
216 |
+
)
|
217 |
+
if not (
|
218 |
+
isinstance(rope_scaling_long_factor, list)
|
219 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
220 |
+
):
|
221 |
+
raise ValueError(
|
222 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
223 |
+
)
|
224 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
225 |
+
raise ValueError(
|
226 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
227 |
+
)
|
generation_config.json
CHANGED
@@ -7,5 +7,5 @@
|
|
7 |
32007
|
8 |
],
|
9 |
"pad_token_id": 32000,
|
10 |
-
"transformers_version": "4.
|
11 |
}
|
|
|
7 |
32007
|
8 |
],
|
9 |
"pad_token_id": 32000,
|
10 |
+
"transformers_version": "4.45.2"
|
11 |
}
|
openvino_detokenizer.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abf0a5ac7698c27f1f3a8573b76a628e4a6a2c7eaddc7dd549ee3607a34d4061
|
3 |
+
size 339125
|
openvino_detokenizer.xml
CHANGED
@@ -1,61 +1,235 @@
|
|
1 |
<?xml version="1.0"?>
|
2 |
<net name="detokenizer" version="11">
|
3 |
<layers>
|
4 |
-
<layer id="0" name="
|
5 |
<data shape="?,?" element_type="i64" />
|
6 |
<output>
|
7 |
-
<port id="0" precision="I64" names="
|
8 |
<dim>-1</dim>
|
9 |
<dim>-1</dim>
|
10 |
</port>
|
11 |
</output>
|
12 |
</layer>
|
13 |
-
<layer id="1" name="
|
14 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
<output>
|
16 |
<port id="0" precision="U8">
|
17 |
-
<dim>
|
18 |
</port>
|
19 |
</output>
|
20 |
</layer>
|
21 |
-
<layer id="
|
22 |
-
<data
|
23 |
<input>
|
24 |
-
<port id="0" precision="
|
|
|
|
|
|
|
|
|
|
|
25 |
<dim>-1</dim>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
<dim>-1</dim>
|
27 |
</port>
|
28 |
</input>
|
29 |
<output>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
<port id="1" precision="I32">
|
31 |
<dim>-1</dim>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
<dim>-1</dim>
|
33 |
</port>
|
34 |
</output>
|
35 |
</layer>
|
36 |
-
<layer id="
|
37 |
<input>
|
38 |
-
<port id="0" precision="
|
39 |
-
<dim
|
40 |
</port>
|
41 |
<port id="1" precision="I32">
|
42 |
<dim>-1</dim>
|
|
|
|
|
43 |
<dim>-1</dim>
|
44 |
</port>
|
45 |
</input>
|
46 |
<output>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
<port id="2" precision="I32">
|
48 |
<dim>-1</dim>
|
49 |
</port>
|
50 |
<port id="3" precision="I32">
|
51 |
<dim>-1</dim>
|
52 |
</port>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
<port id="4" precision="U8">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
<dim>-1</dim>
|
55 |
</port>
|
56 |
</output>
|
57 |
</layer>
|
58 |
-
<layer id="
|
59 |
<data mode="begins_ends" />
|
60 |
<input>
|
61 |
<port id="0" precision="I32">
|
@@ -74,7 +248,7 @@
|
|
74 |
</port>
|
75 |
</output>
|
76 |
</layer>
|
77 |
-
<layer id="
|
78 |
<input>
|
79 |
<port id="0" precision="STRING">
|
80 |
<dim>-1</dim>
|
@@ -83,13 +257,33 @@
|
|
83 |
</layer>
|
84 |
</layers>
|
85 |
<edges>
|
86 |
-
<edge from-layer="0" from-port="0" to-layer="
|
87 |
-
<edge from-layer="1" from-port="
|
88 |
-
<edge from-layer="2" from-port="
|
89 |
-
<edge from-layer="3" from-port="
|
90 |
-
<edge from-layer="3" from-port="
|
91 |
-
<edge from-layer="3" from-port="
|
92 |
-
<edge from-layer="4" from-port="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
</edges>
|
94 |
<rt_info>
|
95 |
<bos_token_id value="1" />
|
|
|
1 |
<?xml version="1.0"?>
|
2 |
<net name="detokenizer" version="11">
|
3 |
<layers>
|
4 |
+
<layer id="0" name="Parameter_138337" type="Parameter" version="opset1">
|
5 |
<data shape="?,?" element_type="i64" />
|
6 |
<output>
|
7 |
+
<port id="0" precision="I64" names="Parameter_138337">
|
8 |
<dim>-1</dim>
|
9 |
<dim>-1</dim>
|
10 |
</port>
|
11 |
</output>
|
12 |
</layer>
|
13 |
+
<layer id="1" name="Convert_138359" type="Convert" version="opset1">
|
14 |
+
<data destination_type="i32" />
|
15 |
+
<input>
|
16 |
+
<port id="0" precision="I64">
|
17 |
+
<dim>-1</dim>
|
18 |
+
<dim>-1</dim>
|
19 |
+
</port>
|
20 |
+
</input>
|
21 |
+
<output>
|
22 |
+
<port id="1" precision="I32">
|
23 |
+
<dim>-1</dim>
|
24 |
+
<dim>-1</dim>
|
25 |
+
</port>
|
26 |
+
</output>
|
27 |
+
</layer>
|
28 |
+
<layer id="2" name="Constant_138307" type="Const" version="opset1">
|
29 |
+
<data element_type="u8" shape="339118" offset="0" size="339118" />
|
30 |
<output>
|
31 |
<port id="0" precision="U8">
|
32 |
+
<dim>339118</dim>
|
33 |
</port>
|
34 |
</output>
|
35 |
</layer>
|
36 |
+
<layer id="3" name="StringTensorUnpack_138308" type="StringTensorUnpack" version="extension">
|
37 |
+
<data mode="begins_ends" />
|
38 |
<input>
|
39 |
+
<port id="0" precision="U8">
|
40 |
+
<dim>339118</dim>
|
41 |
+
</port>
|
42 |
+
</input>
|
43 |
+
<output>
|
44 |
+
<port id="1" precision="I32">
|
45 |
<dim>-1</dim>
|
46 |
+
</port>
|
47 |
+
<port id="2" precision="I32">
|
48 |
+
<dim>-1</dim>
|
49 |
+
</port>
|
50 |
+
<port id="3" precision="U8">
|
51 |
+
<dim>-1</dim>
|
52 |
+
</port>
|
53 |
+
</output>
|
54 |
+
</layer>
|
55 |
+
<layer id="4" name="VocabDecoder_138338" type="VocabDecoder" version="extension">
|
56 |
+
<data skip_tokens="0, 1, 32000, 32001, 32002, 32003, 32004, 32005, 32006, 32007, 32008, 32009, 32010" />
|
57 |
+
<input>
|
58 |
+
<port id="0" precision="I32">
|
59 |
+
<dim>-1</dim>
|
60 |
+
<dim>-1</dim>
|
61 |
+
</port>
|
62 |
+
<port id="1" precision="I32">
|
63 |
+
<dim>-1</dim>
|
64 |
+
</port>
|
65 |
+
<port id="2" precision="I32">
|
66 |
+
<dim>-1</dim>
|
67 |
+
</port>
|
68 |
+
<port id="3" precision="U8">
|
69 |
<dim>-1</dim>
|
70 |
</port>
|
71 |
</input>
|
72 |
<output>
|
73 |
+
<port id="4" precision="I32">
|
74 |
+
<dim>-1</dim>
|
75 |
+
</port>
|
76 |
+
<port id="5" precision="I32">
|
77 |
+
<dim>-1</dim>
|
78 |
+
</port>
|
79 |
+
<port id="6" precision="I32">
|
80 |
+
<dim>-1</dim>
|
81 |
+
</port>
|
82 |
+
<port id="7" precision="I32">
|
83 |
+
<dim>-1</dim>
|
84 |
+
</port>
|
85 |
+
<port id="8" precision="U8">
|
86 |
+
<dim>-1</dim>
|
87 |
+
</port>
|
88 |
+
</output>
|
89 |
+
</layer>
|
90 |
+
<layer id="5" name="Constant_138340" type="Const" version="opset1">
|
91 |
+
<data element_type="u8" shape="3" offset="339118" size="3" />
|
92 |
+
<output>
|
93 |
+
<port id="0" precision="U8">
|
94 |
+
<dim>3</dim>
|
95 |
+
</port>
|
96 |
+
</output>
|
97 |
+
</layer>
|
98 |
+
<layer id="6" name="Constant_138342" type="Const" version="opset1">
|
99 |
+
<data element_type="u8" shape="1" offset="339121" size="1" />
|
100 |
+
<output>
|
101 |
+
<port id="0" precision="U8">
|
102 |
+
<dim>1</dim>
|
103 |
+
</port>
|
104 |
+
</output>
|
105 |
+
</layer>
|
106 |
+
<layer id="7" name="RegexNormalization_138343" type="RegexNormalization" version="extension">
|
107 |
+
<data global_replace="true" />
|
108 |
+
<input>
|
109 |
+
<port id="0" precision="I32">
|
110 |
+
<dim>-1</dim>
|
111 |
+
</port>
|
112 |
<port id="1" precision="I32">
|
113 |
<dim>-1</dim>
|
114 |
+
</port>
|
115 |
+
<port id="2" precision="U8">
|
116 |
+
<dim>-1</dim>
|
117 |
+
</port>
|
118 |
+
<port id="3" precision="U8">
|
119 |
+
<dim>3</dim>
|
120 |
+
</port>
|
121 |
+
<port id="4" precision="U8">
|
122 |
+
<dim>1</dim>
|
123 |
+
</port>
|
124 |
+
</input>
|
125 |
+
<output>
|
126 |
+
<port id="5" precision="I32">
|
127 |
+
<dim>-1</dim>
|
128 |
+
</port>
|
129 |
+
<port id="6" precision="I32">
|
130 |
+
<dim>-1</dim>
|
131 |
+
</port>
|
132 |
+
<port id="7" precision="U8">
|
133 |
<dim>-1</dim>
|
134 |
</port>
|
135 |
</output>
|
136 |
</layer>
|
137 |
+
<layer id="8" name="ByteFallback_138344" type="ByteFallback" version="extension">
|
138 |
<input>
|
139 |
+
<port id="0" precision="I32">
|
140 |
+
<dim>-1</dim>
|
141 |
</port>
|
142 |
<port id="1" precision="I32">
|
143 |
<dim>-1</dim>
|
144 |
+
</port>
|
145 |
+
<port id="2" precision="U8">
|
146 |
<dim>-1</dim>
|
147 |
</port>
|
148 |
</input>
|
149 |
<output>
|
150 |
+
<port id="3" precision="I32">
|
151 |
+
<dim>-1</dim>
|
152 |
+
</port>
|
153 |
+
<port id="4" precision="I32">
|
154 |
+
<dim>-1</dim>
|
155 |
+
</port>
|
156 |
+
<port id="5" precision="U8">
|
157 |
+
<dim>-1</dim>
|
158 |
+
</port>
|
159 |
+
</output>
|
160 |
+
</layer>
|
161 |
+
<layer id="9" name="FuzeRagged_138345" type="FuzeRagged" version="extension">
|
162 |
+
<input>
|
163 |
+
<port id="0" precision="I32">
|
164 |
+
<dim>-1</dim>
|
165 |
+
</port>
|
166 |
+
<port id="1" precision="I32">
|
167 |
+
<dim>-1</dim>
|
168 |
+
</port>
|
169 |
<port id="2" precision="I32">
|
170 |
<dim>-1</dim>
|
171 |
</port>
|
172 |
<port id="3" precision="I32">
|
173 |
<dim>-1</dim>
|
174 |
</port>
|
175 |
+
</input>
|
176 |
+
<output>
|
177 |
+
<port id="4" precision="I32">
|
178 |
+
<dim>-1</dim>
|
179 |
+
</port>
|
180 |
+
<port id="5" precision="I32">
|
181 |
+
<dim>-1</dim>
|
182 |
+
</port>
|
183 |
+
</output>
|
184 |
+
</layer>
|
185 |
+
<layer id="10" name="Constant_138347" type="Const" version="opset1">
|
186 |
+
<data element_type="u8" shape="2" offset="339122" size="2" />
|
187 |
+
<output>
|
188 |
+
<port id="0" precision="U8">
|
189 |
+
<dim>2</dim>
|
190 |
+
</port>
|
191 |
+
</output>
|
192 |
+
</layer>
|
193 |
+
<layer id="11" name="Constant_138349" type="Const" version="opset1">
|
194 |
+
<data element_type="u8" shape="0" offset="339124" size="1" />
|
195 |
+
<output>
|
196 |
+
<port id="0" precision="U8">
|
197 |
+
<dim>0</dim>
|
198 |
+
</port>
|
199 |
+
</output>
|
200 |
+
</layer>
|
201 |
+
<layer id="12" name="RegexNormalization_138350" type="RegexNormalization" version="extension">
|
202 |
+
<data global_replace="true" />
|
203 |
+
<input>
|
204 |
+
<port id="0" precision="I32">
|
205 |
+
<dim>-1</dim>
|
206 |
+
</port>
|
207 |
+
<port id="1" precision="I32">
|
208 |
+
<dim>-1</dim>
|
209 |
+
</port>
|
210 |
+
<port id="2" precision="U8">
|
211 |
+
<dim>-1</dim>
|
212 |
+
</port>
|
213 |
+
<port id="3" precision="U8">
|
214 |
+
<dim>2</dim>
|
215 |
+
</port>
|
216 |
<port id="4" precision="U8">
|
217 |
+
<dim>0</dim>
|
218 |
+
</port>
|
219 |
+
</input>
|
220 |
+
<output>
|
221 |
+
<port id="5" precision="I32">
|
222 |
+
<dim>-1</dim>
|
223 |
+
</port>
|
224 |
+
<port id="6" precision="I32">
|
225 |
+
<dim>-1</dim>
|
226 |
+
</port>
|
227 |
+
<port id="7" precision="U8">
|
228 |
<dim>-1</dim>
|
229 |
</port>
|
230 |
</output>
|
231 |
</layer>
|
232 |
+
<layer id="13" name="StringTensorPack_138351" type="StringTensorPack" version="extension">
|
233 |
<data mode="begins_ends" />
|
234 |
<input>
|
235 |
<port id="0" precision="I32">
|
|
|
248 |
</port>
|
249 |
</output>
|
250 |
</layer>
|
251 |
+
<layer id="14" name="Result_138352" type="Result" version="opset1">
|
252 |
<input>
|
253 |
<port id="0" precision="STRING">
|
254 |
<dim>-1</dim>
|
|
|
257 |
</layer>
|
258 |
</layers>
|
259 |
<edges>
|
260 |
+
<edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
|
261 |
+
<edge from-layer="1" from-port="1" to-layer="4" to-port="0" />
|
262 |
+
<edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
|
263 |
+
<edge from-layer="3" from-port="1" to-layer="4" to-port="1" />
|
264 |
+
<edge from-layer="3" from-port="2" to-layer="4" to-port="2" />
|
265 |
+
<edge from-layer="3" from-port="3" to-layer="4" to-port="3" />
|
266 |
+
<edge from-layer="4" from-port="6" to-layer="7" to-port="0" />
|
267 |
+
<edge from-layer="4" from-port="7" to-layer="7" to-port="1" />
|
268 |
+
<edge from-layer="4" from-port="8" to-layer="7" to-port="2" />
|
269 |
+
<edge from-layer="4" from-port="5" to-layer="9" to-port="1" />
|
270 |
+
<edge from-layer="4" from-port="4" to-layer="9" to-port="0" />
|
271 |
+
<edge from-layer="5" from-port="0" to-layer="7" to-port="3" />
|
272 |
+
<edge from-layer="6" from-port="0" to-layer="7" to-port="4" />
|
273 |
+
<edge from-layer="7" from-port="7" to-layer="8" to-port="2" />
|
274 |
+
<edge from-layer="7" from-port="6" to-layer="8" to-port="1" />
|
275 |
+
<edge from-layer="7" from-port="5" to-layer="8" to-port="0" />
|
276 |
+
<edge from-layer="8" from-port="3" to-layer="9" to-port="2" />
|
277 |
+
<edge from-layer="8" from-port="4" to-layer="9" to-port="3" />
|
278 |
+
<edge from-layer="8" from-port="5" to-layer="12" to-port="2" />
|
279 |
+
<edge from-layer="9" from-port="4" to-layer="12" to-port="0" />
|
280 |
+
<edge from-layer="9" from-port="5" to-layer="12" to-port="1" />
|
281 |
+
<edge from-layer="10" from-port="0" to-layer="12" to-port="3" />
|
282 |
+
<edge from-layer="11" from-port="0" to-layer="12" to-port="4" />
|
283 |
+
<edge from-layer="12" from-port="5" to-layer="13" to-port="0" />
|
284 |
+
<edge from-layer="12" from-port="6" to-layer="13" to-port="1" />
|
285 |
+
<edge from-layer="12" from-port="7" to-layer="13" to-port="2" />
|
286 |
+
<edge from-layer="13" from-port="3" to-layer="14" to-port="0" />
|
287 |
</edges>
|
288 |
<rt_info>
|
289 |
<bos_token_id value="1" />
|
openvino_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f1e13132cf191e4108cf64e8293caf09c2f4facbaa084bc0151bfb2a6e0b500
|
3 |
+
size 7642159418
|
openvino_model.xml
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
openvino_tokenizer.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:012a18fef2df281b8293a03448630081625d563d29d199b482a64751609a5698
|
3 |
+
size 1262043
|
openvino_tokenizer.xml
CHANGED
@@ -1,64 +1,204 @@
|
|
1 |
<?xml version="1.0"?>
|
2 |
<net name="tokenizer" version="11">
|
3 |
<layers>
|
4 |
-
<layer id="0" name="
|
5 |
<data shape="?" element_type="string" />
|
6 |
<output>
|
7 |
-
<port id="0" precision="STRING" names="
|
8 |
<dim>-1</dim>
|
9 |
</port>
|
10 |
</output>
|
11 |
</layer>
|
12 |
-
<layer id="1" name="
|
13 |
-
<data element_type="
|
14 |
<output>
|
15 |
-
<port id="0" precision="
|
16 |
</output>
|
17 |
</layer>
|
18 |
-
<layer id="2" name="
|
19 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
20 |
<output>
|
21 |
-
<port id="
|
22 |
-
<dim
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
</port>
|
24 |
</output>
|
25 |
</layer>
|
26 |
-
<layer id="3" name="
|
27 |
-
<data
|
28 |
<input>
|
29 |
-
<port id="0" precision="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
<dim>-1</dim>
|
31 |
</port>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
</input>
|
33 |
<output>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
<port id="1" precision="I32">
|
35 |
<dim>-1</dim>
|
36 |
</port>
|
37 |
<port id="2" precision="I32">
|
38 |
<dim>-1</dim>
|
39 |
</port>
|
40 |
-
<port id="3" precision="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
<dim>-1</dim>
|
42 |
</port>
|
43 |
</output>
|
44 |
</layer>
|
45 |
-
<layer id="
|
46 |
-
<data element_type="u8" shape="7" offset="
|
47 |
<output>
|
48 |
<port id="0" precision="U8">
|
49 |
<dim>7</dim>
|
50 |
</port>
|
51 |
</output>
|
52 |
</layer>
|
53 |
-
<layer id="
|
54 |
-
<data element_type="u8" shape="
|
55 |
<output>
|
56 |
<port id="0" precision="U8">
|
57 |
-
<dim>
|
58 |
</port>
|
59 |
</output>
|
60 |
</layer>
|
61 |
-
<layer id="
|
62 |
<data global_replace="true" />
|
63 |
<input>
|
64 |
<port id="0" precision="I32">
|
@@ -70,27 +210,49 @@
|
|
70 |
<port id="2" precision="U8">
|
71 |
<dim>-1</dim>
|
72 |
</port>
|
73 |
-
<port id="3" precision="
|
74 |
-
<dim
|
75 |
</port>
|
76 |
<port id="4" precision="U8">
|
77 |
-
<dim>
|
|
|
|
|
|
|
78 |
</port>
|
79 |
</input>
|
80 |
<output>
|
81 |
-
<port id="
|
82 |
<dim>-1</dim>
|
83 |
</port>
|
84 |
-
<port id="
|
85 |
<dim>-1</dim>
|
86 |
</port>
|
87 |
-
<port id="
|
|
|
|
|
|
|
88 |
<dim>-1</dim>
|
89 |
</port>
|
90 |
</output>
|
91 |
</layer>
|
92 |
-
<layer id="
|
93 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
<input>
|
95 |
<port id="0" precision="I32">
|
96 |
<dim>-1</dim>
|
@@ -101,26 +263,44 @@
|
|
101 |
<port id="2" precision="U8">
|
102 |
<dim>-1</dim>
|
103 |
</port>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
</input>
|
105 |
<output>
|
106 |
-
<port id="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
<dim>-1</dim>
|
108 |
</port>
|
109 |
</output>
|
110 |
</layer>
|
111 |
-
<layer id="
|
112 |
-
<data element_type="u8" shape="
|
113 |
<output>
|
114 |
<port id="0" precision="U8">
|
115 |
-
<dim>
|
116 |
</port>
|
117 |
</output>
|
118 |
</layer>
|
119 |
-
<layer id="
|
120 |
<data mode="begins_ends" />
|
121 |
<input>
|
122 |
<port id="0" precision="U8">
|
123 |
-
<dim>
|
124 |
</port>
|
125 |
</input>
|
126 |
<output>
|
@@ -135,89 +315,173 @@
|
|
135 |
</port>
|
136 |
</output>
|
137 |
</layer>
|
138 |
-
<layer id="
|
139 |
-
<data element_type="
|
140 |
<output>
|
141 |
-
<port id="0" precision="
|
142 |
-
<dim>
|
143 |
</port>
|
144 |
</output>
|
145 |
</layer>
|
146 |
-
<layer id="
|
147 |
-
<data
|
148 |
<input>
|
149 |
<port id="0" precision="U8">
|
150 |
-
<dim>
|
151 |
</port>
|
152 |
-
|
|
|
|
|
153 |
<dim>-1</dim>
|
154 |
</port>
|
155 |
<port id="2" precision="I32">
|
156 |
<dim>-1</dim>
|
157 |
</port>
|
158 |
-
<port id="3" precision="
|
159 |
<dim>-1</dim>
|
160 |
</port>
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
163 |
</port>
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
166 |
</port>
|
167 |
</input>
|
168 |
<output>
|
169 |
-
<port id="
|
170 |
<dim>-1</dim>
|
171 |
-
<dim>2</dim>
|
172 |
</port>
|
173 |
-
<port id="
|
174 |
<dim>-1</dim>
|
175 |
</port>
|
176 |
-
<port id="
|
177 |
-
<dim
|
178 |
</port>
|
179 |
</output>
|
180 |
</layer>
|
181 |
-
<layer id="
|
182 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
<input>
|
184 |
-
<port id="0" precision="
|
185 |
-
|
186 |
-
<dim>2</dim>
|
187 |
</port>
|
188 |
</input>
|
189 |
<output>
|
|
|
|
|
|
|
190 |
<port id="2" precision="I32">
|
191 |
<dim>-1</dim>
|
|
|
|
|
192 |
<dim>-1</dim>
|
193 |
</port>
|
194 |
</output>
|
195 |
</layer>
|
196 |
-
<layer id="
|
197 |
-
<data element_type="i32" shape="" offset="
|
198 |
<output>
|
199 |
-
<port id="0" precision="I32"
|
|
|
|
|
200 |
</output>
|
201 |
</layer>
|
202 |
-
<layer id="
|
203 |
-
<data
|
204 |
<input>
|
205 |
<port id="0" precision="I32">
|
206 |
<dim>-1</dim>
|
207 |
</port>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
</input>
|
209 |
<output>
|
210 |
-
<port id="
|
211 |
-
<dim
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
</port>
|
213 |
</output>
|
214 |
</layer>
|
215 |
-
<layer id="
|
216 |
-
<data
|
217 |
<input>
|
218 |
-
<port id="0" precision="I32"
|
219 |
-
|
220 |
-
|
|
|
|
|
221 |
</port>
|
222 |
</input>
|
223 |
<output>
|
@@ -226,137 +490,183 @@
|
|
226 |
</port>
|
227 |
</output>
|
228 |
</layer>
|
229 |
-
<layer id="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
<input>
|
231 |
<port id="0" precision="I32">
|
232 |
<dim>-1</dim>
|
|
|
|
|
|
|
|
|
|
|
233 |
<dim>-1</dim>
|
234 |
</port>
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
236 |
<dim>-1</dim>
|
237 |
-
<dim>2</dim>
|
238 |
</port>
|
239 |
-
<port id="
|
240 |
<dim>-1</dim>
|
241 |
</port>
|
242 |
</input>
|
243 |
<output>
|
244 |
-
<port id="
|
245 |
-
<dim>-1</dim>
|
246 |
<dim>-1</dim>
|
247 |
</port>
|
248 |
</output>
|
249 |
</layer>
|
250 |
-
<layer id="
|
251 |
-
<data element_type="
|
252 |
<output>
|
253 |
-
<port id="0" precision="
|
254 |
<dim>1</dim>
|
255 |
</port>
|
256 |
</output>
|
257 |
</layer>
|
258 |
-
<layer id="
|
259 |
-
<data mode="index" />
|
260 |
<input>
|
261 |
<port id="0" precision="I32">
|
262 |
<dim>-1</dim>
|
|
|
|
|
263 |
<dim>-1</dim>
|
264 |
</port>
|
265 |
-
<port id="
|
|
|
|
|
|
|
266 |
<dim>1</dim>
|
267 |
</port>
|
268 |
</input>
|
269 |
<output>
|
270 |
-
<port id="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
<dim>-1</dim>
|
|
|
|
|
|
|
|
|
|
|
272 |
<dim>-1</dim>
|
273 |
</port>
|
274 |
</output>
|
275 |
</layer>
|
276 |
-
<layer id="
|
277 |
-
<data
|
278 |
<input>
|
279 |
<port id="0" precision="I32">
|
280 |
<dim>-1</dim>
|
|
|
|
|
281 |
<dim>-1</dim>
|
282 |
</port>
|
283 |
</input>
|
284 |
<output>
|
285 |
-
<port id="
|
286 |
-
<dim>-1</dim>
|
287 |
<dim>-1</dim>
|
288 |
</port>
|
289 |
</output>
|
290 |
</layer>
|
291 |
-
<layer id="
|
292 |
-
<data element_type="i32" shape="" offset="
|
293 |
<output>
|
294 |
<port id="0" precision="I32" />
|
295 |
</output>
|
296 |
</layer>
|
297 |
-
<layer id="
|
298 |
-
<data
|
299 |
<input>
|
300 |
-
<port id="0" precision="I32"
|
301 |
-
|
302 |
-
<dim>2</dim>
|
303 |
</port>
|
|
|
304 |
</input>
|
305 |
<output>
|
306 |
-
<port id="2" precision="I32"
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
310 |
</output>
|
311 |
</layer>
|
312 |
-
<layer id="
|
|
|
313 |
<input>
|
314 |
<port id="0" precision="I32">
|
315 |
<dim>-1</dim>
|
316 |
-
<dim>-1</dim>
|
317 |
</port>
|
318 |
-
<port id="1" precision="
|
319 |
<dim>-1</dim>
|
320 |
-
<dim>2</dim>
|
321 |
</port>
|
322 |
<port id="2" precision="I32">
|
323 |
<dim>-1</dim>
|
324 |
</port>
|
|
|
|
|
325 |
</input>
|
326 |
<output>
|
327 |
-
<port id="
|
|
|
|
|
|
|
|
|
328 |
<dim>-1</dim>
|
329 |
<dim>-1</dim>
|
330 |
</port>
|
331 |
</output>
|
332 |
</layer>
|
333 |
-
<layer id="
|
334 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
<output>
|
336 |
-
<port id="
|
337 |
-
<dim
|
|
|
338 |
</port>
|
339 |
</output>
|
340 |
</layer>
|
341 |
-
<layer id="
|
342 |
-
<data
|
343 |
<input>
|
344 |
<port id="0" precision="I32">
|
345 |
<dim>-1</dim>
|
346 |
<dim>-1</dim>
|
347 |
</port>
|
348 |
-
<port id="1" precision="I64">
|
349 |
-
<dim>1</dim>
|
350 |
-
</port>
|
351 |
</input>
|
352 |
<output>
|
353 |
-
<port id="
|
354 |
<dim>-1</dim>
|
355 |
<dim>-1</dim>
|
356 |
</port>
|
357 |
</output>
|
358 |
</layer>
|
359 |
-
<layer id="
|
360 |
<data destination_type="i64" />
|
361 |
<input>
|
362 |
<port id="0" precision="I32">
|
@@ -371,7 +681,7 @@
|
|
371 |
</port>
|
372 |
</output>
|
373 |
</layer>
|
374 |
-
<layer id="
|
375 |
<input>
|
376 |
<port id="0" precision="I64">
|
377 |
<dim>-1</dim>
|
@@ -379,7 +689,7 @@
|
|
379 |
</port>
|
380 |
</input>
|
381 |
</layer>
|
382 |
-
<layer id="
|
383 |
<input>
|
384 |
<port id="0" precision="I64">
|
385 |
<dim>-1</dim>
|
@@ -389,43 +699,83 @@
|
|
389 |
</layer>
|
390 |
</layers>
|
391 |
<edges>
|
392 |
-
<edge from-layer="0" from-port="0" to-layer="
|
393 |
-
<edge from-layer="1" from-port="0" to-layer="
|
394 |
-
<edge from-layer="2" from-port="
|
|
|
|
|
|
|
395 |
<edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
|
396 |
-
<edge from-layer="
|
397 |
-
<edge from-layer="
|
398 |
-
<edge from-layer="
|
399 |
-
<edge from-layer="
|
400 |
-
<edge from-layer="
|
401 |
-
<edge from-layer="
|
402 |
-
<edge from-layer="
|
403 |
-
<edge from-layer="
|
404 |
-
<edge from-layer="
|
405 |
-
<edge from-layer="
|
406 |
-
<edge from-layer="
|
407 |
-
<edge from-layer="
|
408 |
-
<edge from-layer="
|
409 |
-
<edge from-layer="
|
410 |
-
<edge from-layer="
|
411 |
-
<edge from-layer="
|
412 |
-
<edge from-layer="
|
413 |
-
<edge from-layer="
|
414 |
-
<edge from-layer="
|
415 |
-
<edge from-layer="
|
416 |
-
<edge from-layer="
|
417 |
-
<edge from-layer="
|
418 |
-
<edge from-layer="
|
419 |
-
<edge from-layer="
|
420 |
-
<edge from-layer="
|
421 |
-
<edge from-layer="
|
422 |
-
<edge from-layer="
|
423 |
-
<edge from-layer="21" from-port="
|
424 |
-
<edge from-layer="
|
425 |
-
<edge from-layer="
|
426 |
-
<edge from-layer="
|
427 |
-
<edge from-layer="
|
428 |
-
<edge from-layer="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
</edges>
|
430 |
<rt_info>
|
431 |
<bos_token_id value="1" />
|
|
|
1 |
<?xml version="1.0"?>
|
2 |
<net name="tokenizer" version="11">
|
3 |
<layers>
|
4 |
+
<layer id="0" name="Parameter_138219" type="Parameter" version="opset1">
|
5 |
<data shape="?" element_type="string" />
|
6 |
<output>
|
7 |
+
<port id="0" precision="STRING" names="Parameter_138219">
|
8 |
<dim>-1</dim>
|
9 |
</port>
|
10 |
</output>
|
11 |
</layer>
|
12 |
+
<layer id="1" name="Constant_138225" type="Const" version="opset1">
|
13 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
14 |
<output>
|
15 |
+
<port id="0" precision="I64" />
|
16 |
</output>
|
17 |
</layer>
|
18 |
+
<layer id="2" name="StringTensorUnpack_138220" type="StringTensorUnpack" version="extension">
|
19 |
+
<data mode="begins_ends" />
|
20 |
+
<input>
|
21 |
+
<port id="0" precision="STRING">
|
22 |
+
<dim>-1</dim>
|
23 |
+
</port>
|
24 |
+
</input>
|
25 |
<output>
|
26 |
+
<port id="1" precision="I32">
|
27 |
+
<dim>-1</dim>
|
28 |
+
</port>
|
29 |
+
<port id="2" precision="I32">
|
30 |
+
<dim>-1</dim>
|
31 |
+
</port>
|
32 |
+
<port id="3" precision="U8">
|
33 |
+
<dim>-1</dim>
|
34 |
</port>
|
35 |
</output>
|
36 |
</layer>
|
37 |
+
<layer id="3" name="ShapeOf_138221" type="ShapeOf" version="opset3">
|
38 |
+
<data output_type="i64" />
|
39 |
<input>
|
40 |
+
<port id="0" precision="I32">
|
41 |
+
<dim>-1</dim>
|
42 |
+
</port>
|
43 |
+
</input>
|
44 |
+
<output>
|
45 |
+
<port id="1" precision="I64">
|
46 |
+
<dim>1</dim>
|
47 |
+
</port>
|
48 |
+
</output>
|
49 |
+
</layer>
|
50 |
+
<layer id="4" name="Constant_138222" type="Const" version="opset1">
|
51 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
52 |
+
<output>
|
53 |
+
<port id="0" precision="I64" />
|
54 |
+
</output>
|
55 |
+
</layer>
|
56 |
+
<layer id="5" name="Constant_138223" type="Const" version="opset1">
|
57 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
58 |
+
<output>
|
59 |
+
<port id="0" precision="I64" />
|
60 |
+
</output>
|
61 |
+
</layer>
|
62 |
+
<layer id="6" name="Gather_138224" type="Gather" version="opset8">
|
63 |
+
<data batch_dims="0" />
|
64 |
+
<input>
|
65 |
+
<port id="0" precision="I64">
|
66 |
+
<dim>1</dim>
|
67 |
+
</port>
|
68 |
+
<port id="1" precision="I64" />
|
69 |
+
<port id="2" precision="I64" />
|
70 |
+
</input>
|
71 |
+
<output>
|
72 |
+
<port id="3" precision="I64" />
|
73 |
+
</output>
|
74 |
+
</layer>
|
75 |
+
<layer id="7" name="Constant_138226" type="Const" version="opset1">
|
76 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
77 |
+
<output>
|
78 |
+
<port id="0" precision="I64" />
|
79 |
+
</output>
|
80 |
+
</layer>
|
81 |
+
<layer id="8" name="Range_138227" type="Range" version="opset4">
|
82 |
+
<data output_type="i32" />
|
83 |
+
<input>
|
84 |
+
<port id="0" precision="I64" />
|
85 |
+
<port id="1" precision="I64" />
|
86 |
+
<port id="2" precision="I64" />
|
87 |
+
</input>
|
88 |
+
<output>
|
89 |
+
<port id="3" precision="I32">
|
90 |
<dim>-1</dim>
|
91 |
</port>
|
92 |
+
</output>
|
93 |
+
</layer>
|
94 |
+
<layer id="9" name="Constant_138228" type="Const" version="opset1">
|
95 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
96 |
+
<output>
|
97 |
+
<port id="0" precision="I64" />
|
98 |
+
</output>
|
99 |
+
</layer>
|
100 |
+
<layer id="10" name="Constant_138229" type="Const" version="opset1">
|
101 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
102 |
+
<output>
|
103 |
+
<port id="0" precision="I64" />
|
104 |
+
</output>
|
105 |
+
</layer>
|
106 |
+
<layer id="11" name="Add_138230" type="Add" version="opset1">
|
107 |
+
<data auto_broadcast="numpy" />
|
108 |
+
<input>
|
109 |
+
<port id="0" precision="I64" />
|
110 |
+
<port id="1" precision="I64" />
|
111 |
</input>
|
112 |
<output>
|
113 |
+
<port id="2" precision="I64" />
|
114 |
+
</output>
|
115 |
+
</layer>
|
116 |
+
<layer id="12" name="Constant_138231" type="Const" version="opset1">
|
117 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
118 |
+
<output>
|
119 |
+
<port id="0" precision="I64" />
|
120 |
+
</output>
|
121 |
+
</layer>
|
122 |
+
<layer id="13" name="Range_138232" type="Range" version="opset4">
|
123 |
+
<data output_type="i32" />
|
124 |
+
<input>
|
125 |
+
<port id="0" precision="I64" />
|
126 |
+
<port id="1" precision="I64" />
|
127 |
+
<port id="2" precision="I64" />
|
128 |
+
</input>
|
129 |
+
<output>
|
130 |
+
<port id="3" precision="I32">
|
131 |
+
<dim>-1</dim>
|
132 |
+
</port>
|
133 |
+
</output>
|
134 |
+
</layer>
|
135 |
+
<layer id="14" name="Constant_138294" type="Const" version="opset1">
|
136 |
+
<data element_type="u8" shape="328" offset="16" size="328" />
|
137 |
+
<output>
|
138 |
+
<port id="0" precision="U8">
|
139 |
+
<dim>328</dim>
|
140 |
+
</port>
|
141 |
+
</output>
|
142 |
+
</layer>
|
143 |
+
<layer id="15" name="SpecialTokensSplit_138295" type="SpecialTokensSplit" version="extension">
|
144 |
+
<input>
|
145 |
+
<port id="0" precision="I32">
|
146 |
+
<dim>-1</dim>
|
147 |
+
</port>
|
148 |
<port id="1" precision="I32">
|
149 |
<dim>-1</dim>
|
150 |
</port>
|
151 |
<port id="2" precision="I32">
|
152 |
<dim>-1</dim>
|
153 |
</port>
|
154 |
+
<port id="3" precision="I32">
|
155 |
+
<dim>-1</dim>
|
156 |
+
</port>
|
157 |
+
<port id="4" precision="U8">
|
158 |
+
<dim>-1</dim>
|
159 |
+
</port>
|
160 |
+
<port id="5" precision="U8">
|
161 |
+
<dim>328</dim>
|
162 |
+
</port>
|
163 |
+
</input>
|
164 |
+
<output>
|
165 |
+
<port id="6" precision="I32">
|
166 |
+
<dim>-1</dim>
|
167 |
+
</port>
|
168 |
+
<port id="7" precision="I32">
|
169 |
+
<dim>-1</dim>
|
170 |
+
</port>
|
171 |
+
<port id="8" precision="I32">
|
172 |
+
<dim>-1</dim>
|
173 |
+
</port>
|
174 |
+
<port id="9" precision="I32">
|
175 |
+
<dim>-1</dim>
|
176 |
+
</port>
|
177 |
+
<port id="10" precision="U8">
|
178 |
+
<dim>-1</dim>
|
179 |
+
</port>
|
180 |
+
<port id="11" precision="BOOL">
|
181 |
<dim>-1</dim>
|
182 |
</port>
|
183 |
</output>
|
184 |
</layer>
|
185 |
+
<layer id="16" name="Constant_138297" type="Const" version="opset1">
|
186 |
+
<data element_type="u8" shape="7" offset="344" size="7" />
|
187 |
<output>
|
188 |
<port id="0" precision="U8">
|
189 |
<dim>7</dim>
|
190 |
</port>
|
191 |
</output>
|
192 |
</layer>
|
193 |
+
<layer id="17" name="Constant_138299" type="Const" version="opset1">
|
194 |
+
<data element_type="u8" shape="5" offset="351" size="5" />
|
195 |
<output>
|
196 |
<port id="0" precision="U8">
|
197 |
+
<dim>5</dim>
|
198 |
</port>
|
199 |
</output>
|
200 |
</layer>
|
201 |
+
<layer id="18" name="RegexNormalization_138300" type="RegexNormalization" version="extension">
|
202 |
<data global_replace="true" />
|
203 |
<input>
|
204 |
<port id="0" precision="I32">
|
|
|
210 |
<port id="2" precision="U8">
|
211 |
<dim>-1</dim>
|
212 |
</port>
|
213 |
+
<port id="3" precision="BOOL">
|
214 |
+
<dim>-1</dim>
|
215 |
</port>
|
216 |
<port id="4" precision="U8">
|
217 |
+
<dim>7</dim>
|
218 |
+
</port>
|
219 |
+
<port id="5" precision="U8">
|
220 |
+
<dim>5</dim>
|
221 |
</port>
|
222 |
</input>
|
223 |
<output>
|
224 |
+
<port id="6" precision="I32">
|
225 |
<dim>-1</dim>
|
226 |
</port>
|
227 |
+
<port id="7" precision="I32">
|
228 |
<dim>-1</dim>
|
229 |
</port>
|
230 |
+
<port id="8" precision="U8">
|
231 |
+
<dim>-1</dim>
|
232 |
+
</port>
|
233 |
+
<port id="9" precision="BOOL">
|
234 |
<dim>-1</dim>
|
235 |
</port>
|
236 |
</output>
|
237 |
</layer>
|
238 |
+
<layer id="19" name="Constant_138302" type="Const" version="opset1">
|
239 |
+
<data element_type="u8" shape="1" offset="356" size="1" />
|
240 |
+
<output>
|
241 |
+
<port id="0" precision="U8">
|
242 |
+
<dim>1</dim>
|
243 |
+
</port>
|
244 |
+
</output>
|
245 |
+
</layer>
|
246 |
+
<layer id="20" name="Constant_138304" type="Const" version="opset1">
|
247 |
+
<data element_type="u8" shape="3" offset="357" size="3" />
|
248 |
+
<output>
|
249 |
+
<port id="0" precision="U8">
|
250 |
+
<dim>3</dim>
|
251 |
+
</port>
|
252 |
+
</output>
|
253 |
+
</layer>
|
254 |
+
<layer id="21" name="RegexNormalization_138305" type="RegexNormalization" version="extension">
|
255 |
+
<data global_replace="true" />
|
256 |
<input>
|
257 |
<port id="0" precision="I32">
|
258 |
<dim>-1</dim>
|
|
|
263 |
<port id="2" precision="U8">
|
264 |
<dim>-1</dim>
|
265 |
</port>
|
266 |
+
<port id="3" precision="BOOL">
|
267 |
+
<dim>-1</dim>
|
268 |
+
</port>
|
269 |
+
<port id="4" precision="U8">
|
270 |
+
<dim>1</dim>
|
271 |
+
</port>
|
272 |
+
<port id="5" precision="U8">
|
273 |
+
<dim>3</dim>
|
274 |
+
</port>
|
275 |
</input>
|
276 |
<output>
|
277 |
+
<port id="6" precision="I32">
|
278 |
+
<dim>-1</dim>
|
279 |
+
</port>
|
280 |
+
<port id="7" precision="I32">
|
281 |
+
<dim>-1</dim>
|
282 |
+
</port>
|
283 |
+
<port id="8" precision="U8">
|
284 |
+
<dim>-1</dim>
|
285 |
+
</port>
|
286 |
+
<port id="9" precision="BOOL">
|
287 |
<dim>-1</dim>
|
288 |
</port>
|
289 |
</output>
|
290 |
</layer>
|
291 |
+
<layer id="22" name="Constant_138307" type="Const" version="opset1">
|
292 |
+
<data element_type="u8" shape="339118" offset="360" size="339118" />
|
293 |
<output>
|
294 |
<port id="0" precision="U8">
|
295 |
+
<dim>339118</dim>
|
296 |
</port>
|
297 |
</output>
|
298 |
</layer>
|
299 |
+
<layer id="23" name="StringTensorUnpack_138308" type="StringTensorUnpack" version="extension">
|
300 |
<data mode="begins_ends" />
|
301 |
<input>
|
302 |
<port id="0" precision="U8">
|
303 |
+
<dim>339118</dim>
|
304 |
</port>
|
305 |
</input>
|
306 |
<output>
|
|
|
315 |
</port>
|
316 |
</output>
|
317 |
</layer>
|
318 |
+
<layer id="24" name="Constant_138313" type="Const" version="opset1">
|
319 |
+
<data element_type="u8" shape="499127" offset="339478" size="499127" />
|
320 |
<output>
|
321 |
+
<port id="0" precision="U8">
|
322 |
+
<dim>499127</dim>
|
323 |
</port>
|
324 |
</output>
|
325 |
</layer>
|
326 |
+
<layer id="25" name="StringTensorUnpack_138314" type="StringTensorUnpack" version="extension">
|
327 |
+
<data mode="begins_ends" />
|
328 |
<input>
|
329 |
<port id="0" precision="U8">
|
330 |
+
<dim>499127</dim>
|
331 |
</port>
|
332 |
+
</input>
|
333 |
+
<output>
|
334 |
+
<port id="1" precision="I32">
|
335 |
<dim>-1</dim>
|
336 |
</port>
|
337 |
<port id="2" precision="I32">
|
338 |
<dim>-1</dim>
|
339 |
</port>
|
340 |
+
<port id="3" precision="U8">
|
341 |
<dim>-1</dim>
|
342 |
</port>
|
343 |
+
</output>
|
344 |
+
</layer>
|
345 |
+
<layer id="26" name="Constant_138316" type="Const" version="opset1">
|
346 |
+
<data element_type="u8" shape="412810" offset="838605" size="412810" />
|
347 |
+
<output>
|
348 |
+
<port id="0" precision="U8">
|
349 |
+
<dim>412810</dim>
|
350 |
</port>
|
351 |
+
</output>
|
352 |
+
</layer>
|
353 |
+
<layer id="27" name="StringTensorUnpack_138317" type="StringTensorUnpack" version="extension">
|
354 |
+
<data mode="begins_ends" />
|
355 |
+
<input>
|
356 |
+
<port id="0" precision="U8">
|
357 |
+
<dim>412810</dim>
|
358 |
</port>
|
359 |
</input>
|
360 |
<output>
|
361 |
+
<port id="1" precision="I32">
|
362 |
<dim>-1</dim>
|
|
|
363 |
</port>
|
364 |
+
<port id="2" precision="I32">
|
365 |
<dim>-1</dim>
|
366 |
</port>
|
367 |
+
<port id="3" precision="U8">
|
368 |
+
<dim>-1</dim>
|
369 |
</port>
|
370 |
</output>
|
371 |
</layer>
|
372 |
+
<layer id="28" name="Constant_138310" type="Const" version="opset1">
|
373 |
+
<data element_type="u8" shape="8716" offset="1251415" size="8716" />
|
374 |
+
<output>
|
375 |
+
<port id="0" precision="U8">
|
376 |
+
<dim>8716</dim>
|
377 |
+
</port>
|
378 |
+
</output>
|
379 |
+
</layer>
|
380 |
+
<layer id="29" name="StringTensorUnpack_138311" type="StringTensorUnpack" version="extension">
|
381 |
+
<data mode="begins_ends" />
|
382 |
<input>
|
383 |
+
<port id="0" precision="U8">
|
384 |
+
<dim>8716</dim>
|
|
|
385 |
</port>
|
386 |
</input>
|
387 |
<output>
|
388 |
+
<port id="1" precision="I32">
|
389 |
+
<dim>-1</dim>
|
390 |
+
</port>
|
391 |
<port id="2" precision="I32">
|
392 |
<dim>-1</dim>
|
393 |
+
</port>
|
394 |
+
<port id="3" precision="U8">
|
395 |
<dim>-1</dim>
|
396 |
</port>
|
397 |
</output>
|
398 |
</layer>
|
399 |
+
<layer id="30" name="Constant_138318" type="Const" version="opset1">
|
400 |
+
<data element_type="i32" shape="475" offset="1260131" size="1900" />
|
401 |
<output>
|
402 |
+
<port id="0" precision="I32">
|
403 |
+
<dim>475</dim>
|
404 |
+
</port>
|
405 |
</output>
|
406 |
</layer>
|
407 |
+
<layer id="31" name="BPETokenizer_138319" type="BPETokenizer" version="extension">
|
408 |
+
<data unk_token="<unk>" fuse_unk="true" suffix_indicator="" end_suffix="" byte_fallback="true" cache_capacity="20000" />
|
409 |
<input>
|
410 |
<port id="0" precision="I32">
|
411 |
<dim>-1</dim>
|
412 |
</port>
|
413 |
+
<port id="1" precision="I32">
|
414 |
+
<dim>-1</dim>
|
415 |
+
</port>
|
416 |
+
<port id="2" precision="I32">
|
417 |
+
<dim>-1</dim>
|
418 |
+
</port>
|
419 |
+
<port id="3" precision="I32">
|
420 |
+
<dim>-1</dim>
|
421 |
+
</port>
|
422 |
+
<port id="4" precision="U8">
|
423 |
+
<dim>-1</dim>
|
424 |
+
</port>
|
425 |
+
<port id="5" precision="I32">
|
426 |
+
<dim>-1</dim>
|
427 |
+
</port>
|
428 |
+
<port id="6" precision="I32">
|
429 |
+
<dim>-1</dim>
|
430 |
+
</port>
|
431 |
+
<port id="7" precision="U8">
|
432 |
+
<dim>-1</dim>
|
433 |
+
</port>
|
434 |
+
<port id="8" precision="I32">
|
435 |
+
<dim>-1</dim>
|
436 |
+
</port>
|
437 |
+
<port id="9" precision="I32">
|
438 |
+
<dim>-1</dim>
|
439 |
+
</port>
|
440 |
+
<port id="10" precision="U8">
|
441 |
+
<dim>-1</dim>
|
442 |
+
</port>
|
443 |
+
<port id="11" precision="I32">
|
444 |
+
<dim>-1</dim>
|
445 |
+
</port>
|
446 |
+
<port id="12" precision="I32">
|
447 |
+
<dim>-1</dim>
|
448 |
+
</port>
|
449 |
+
<port id="13" precision="U8">
|
450 |
+
<dim>-1</dim>
|
451 |
+
</port>
|
452 |
+
<port id="14" precision="I32">
|
453 |
+
<dim>-1</dim>
|
454 |
+
</port>
|
455 |
+
<port id="15" precision="I32">
|
456 |
+
<dim>-1</dim>
|
457 |
+
</port>
|
458 |
+
<port id="16" precision="U8">
|
459 |
+
<dim>-1</dim>
|
460 |
+
</port>
|
461 |
+
<port id="17" precision="I32">
|
462 |
+
<dim>475</dim>
|
463 |
+
</port>
|
464 |
</input>
|
465 |
<output>
|
466 |
+
<port id="18" precision="I32">
|
467 |
+
<dim>-1</dim>
|
468 |
+
</port>
|
469 |
+
<port id="19" precision="I32">
|
470 |
+
<dim>-1</dim>
|
471 |
+
</port>
|
472 |
+
<port id="20" precision="I32">
|
473 |
+
<dim>-1</dim>
|
474 |
</port>
|
475 |
</output>
|
476 |
</layer>
|
477 |
+
<layer id="32" name="Subtract_138320" type="Subtract" version="opset1">
|
478 |
+
<data auto_broadcast="numpy" />
|
479 |
<input>
|
480 |
+
<port id="0" precision="I32">
|
481 |
+
<dim>-1</dim>
|
482 |
+
</port>
|
483 |
+
<port id="1" precision="I32">
|
484 |
+
<dim>-1</dim>
|
485 |
</port>
|
486 |
</input>
|
487 |
<output>
|
|
|
490 |
</port>
|
491 |
</output>
|
492 |
</layer>
|
493 |
+
<layer id="33" name="Constant_138321" type="Const" version="opset1">
|
494 |
+
<data element_type="i32" shape="" offset="1262031" size="4" />
|
495 |
+
<output>
|
496 |
+
<port id="0" precision="I32" />
|
497 |
+
</output>
|
498 |
+
</layer>
|
499 |
+
<layer id="34" name="Minimum_138322" type="Minimum" version="opset1">
|
500 |
+
<data auto_broadcast="numpy" />
|
501 |
<input>
|
502 |
<port id="0" precision="I32">
|
503 |
<dim>-1</dim>
|
504 |
+
</port>
|
505 |
+
<port id="1" precision="I32" />
|
506 |
+
</input>
|
507 |
+
<output>
|
508 |
+
<port id="2" precision="I32">
|
509 |
<dim>-1</dim>
|
510 |
</port>
|
511 |
+
</output>
|
512 |
+
</layer>
|
513 |
+
<layer id="35" name="Subtract_138323" type="Subtract" version="opset1">
|
514 |
+
<data auto_broadcast="numpy" />
|
515 |
+
<input>
|
516 |
+
<port id="0" precision="I32">
|
517 |
<dim>-1</dim>
|
|
|
518 |
</port>
|
519 |
+
<port id="1" precision="I32">
|
520 |
<dim>-1</dim>
|
521 |
</port>
|
522 |
</input>
|
523 |
<output>
|
524 |
+
<port id="2" precision="I32">
|
|
|
525 |
<dim>-1</dim>
|
526 |
</port>
|
527 |
</output>
|
528 |
</layer>
|
529 |
+
<layer id="36" name="Constant_138324" type="Const" version="opset1">
|
530 |
+
<data element_type="i32" shape="1" offset="1262035" size="4" />
|
531 |
<output>
|
532 |
+
<port id="0" precision="I32">
|
533 |
<dim>1</dim>
|
534 |
</port>
|
535 |
</output>
|
536 |
</layer>
|
537 |
+
<layer id="37" name="CombineSegments_138325" type="CombineSegments" version="extension">
|
|
|
538 |
<input>
|
539 |
<port id="0" precision="I32">
|
540 |
<dim>-1</dim>
|
541 |
+
</port>
|
542 |
+
<port id="1" precision="I32">
|
543 |
<dim>-1</dim>
|
544 |
</port>
|
545 |
+
<port id="2" precision="I32">
|
546 |
+
<dim>-1</dim>
|
547 |
+
</port>
|
548 |
+
<port id="3" precision="I32">
|
549 |
<dim>1</dim>
|
550 |
</port>
|
551 |
</input>
|
552 |
<output>
|
553 |
+
<port id="4" precision="I32">
|
554 |
+
<dim>-1</dim>
|
555 |
+
</port>
|
556 |
+
<port id="5" precision="I32">
|
557 |
+
<dim>-1</dim>
|
558 |
+
</port>
|
559 |
+
<port id="6" precision="I32">
|
560 |
+
<dim>-1</dim>
|
561 |
+
</port>
|
562 |
+
<port id="7" precision="I32">
|
563 |
<dim>-1</dim>
|
564 |
+
</port>
|
565 |
+
<port id="8" precision="I32">
|
566 |
+
<dim>-1</dim>
|
567 |
+
</port>
|
568 |
+
<port id="9" precision="I32">
|
569 |
<dim>-1</dim>
|
570 |
</port>
|
571 |
</output>
|
572 |
</layer>
|
573 |
+
<layer id="38" name="Subtract_138326" type="Subtract" version="opset1">
|
574 |
+
<data auto_broadcast="numpy" />
|
575 |
<input>
|
576 |
<port id="0" precision="I32">
|
577 |
<dim>-1</dim>
|
578 |
+
</port>
|
579 |
+
<port id="1" precision="I32">
|
580 |
<dim>-1</dim>
|
581 |
</port>
|
582 |
</input>
|
583 |
<output>
|
584 |
+
<port id="2" precision="I32">
|
|
|
585 |
<dim>-1</dim>
|
586 |
</port>
|
587 |
</output>
|
588 |
</layer>
|
589 |
+
<layer id="39" name="Constant_138327" type="Const" version="opset1">
|
590 |
+
<data element_type="i32" shape="" offset="1262035" size="4" />
|
591 |
<output>
|
592 |
<port id="0" precision="I32" />
|
593 |
</output>
|
594 |
</layer>
|
595 |
+
<layer id="40" name="ReduceMax_138328" type="ReduceMax" version="opset1">
|
596 |
+
<data keep_dims="false" />
|
597 |
<input>
|
598 |
+
<port id="0" precision="I32">
|
599 |
+
<dim>-1</dim>
|
|
|
600 |
</port>
|
601 |
+
<port id="1" precision="I32" />
|
602 |
</input>
|
603 |
<output>
|
604 |
+
<port id="2" precision="I32" />
|
605 |
+
</output>
|
606 |
+
</layer>
|
607 |
+
<layer id="41" name="Constant_138329" type="Const" version="opset1">
|
608 |
+
<data element_type="i32" shape="" offset="1262039" size="4" />
|
609 |
+
<output>
|
610 |
+
<port id="0" precision="I32" />
|
611 |
</output>
|
612 |
</layer>
|
613 |
+
<layer id="42" name="RaggedToDense_138330" type="RaggedToDense" version="extension">
|
614 |
+
<data pad_right="false" />
|
615 |
<input>
|
616 |
<port id="0" precision="I32">
|
617 |
<dim>-1</dim>
|
|
|
618 |
</port>
|
619 |
+
<port id="1" precision="I32">
|
620 |
<dim>-1</dim>
|
|
|
621 |
</port>
|
622 |
<port id="2" precision="I32">
|
623 |
<dim>-1</dim>
|
624 |
</port>
|
625 |
+
<port id="3" precision="I32" />
|
626 |
+
<port id="4" precision="I32" />
|
627 |
</input>
|
628 |
<output>
|
629 |
+
<port id="5" precision="I32">
|
630 |
+
<dim>-1</dim>
|
631 |
+
<dim>-1</dim>
|
632 |
+
</port>
|
633 |
+
<port id="6" precision="BOOL">
|
634 |
<dim>-1</dim>
|
635 |
<dim>-1</dim>
|
636 |
</port>
|
637 |
</output>
|
638 |
</layer>
|
639 |
+
<layer id="43" name="Convert_138331" type="Convert" version="opset1">
|
640 |
+
<data destination_type="i32" />
|
641 |
+
<input>
|
642 |
+
<port id="0" precision="BOOL">
|
643 |
+
<dim>-1</dim>
|
644 |
+
<dim>-1</dim>
|
645 |
+
</port>
|
646 |
+
</input>
|
647 |
<output>
|
648 |
+
<port id="1" precision="I32">
|
649 |
+
<dim>-1</dim>
|
650 |
+
<dim>-1</dim>
|
651 |
</port>
|
652 |
</output>
|
653 |
</layer>
|
654 |
+
<layer id="44" name="Convert_138331" type="Convert" version="opset1">
|
655 |
+
<data destination_type="i64" />
|
656 |
<input>
|
657 |
<port id="0" precision="I32">
|
658 |
<dim>-1</dim>
|
659 |
<dim>-1</dim>
|
660 |
</port>
|
|
|
|
|
|
|
661 |
</input>
|
662 |
<output>
|
663 |
+
<port id="1" precision="I64" names="attention_mask">
|
664 |
<dim>-1</dim>
|
665 |
<dim>-1</dim>
|
666 |
</port>
|
667 |
</output>
|
668 |
</layer>
|
669 |
+
<layer id="46" name="RaggedToDense_138330.0" type="Convert" version="opset1">
|
670 |
<data destination_type="i64" />
|
671 |
<input>
|
672 |
<port id="0" precision="I32">
|
|
|
681 |
</port>
|
682 |
</output>
|
683 |
</layer>
|
684 |
+
<layer id="47" name="Result_138334" type="Result" version="opset1">
|
685 |
<input>
|
686 |
<port id="0" precision="I64">
|
687 |
<dim>-1</dim>
|
|
|
689 |
</port>
|
690 |
</input>
|
691 |
</layer>
|
692 |
+
<layer id="45" name="Result_138336" type="Result" version="opset1">
|
693 |
<input>
|
694 |
<port id="0" precision="I64">
|
695 |
<dim>-1</dim>
|
|
|
699 |
</layer>
|
700 |
</layers>
|
701 |
<edges>
|
702 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
703 |
+
<edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
|
704 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
|
705 |
+
<edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
|
706 |
+
<edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
|
707 |
+
<edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
|
708 |
<edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
|
709 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
|
710 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
|
711 |
+
<edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
|
712 |
+
<edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
|
713 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
|
714 |
+
<edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
|
715 |
+
<edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
|
716 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
|
717 |
+
<edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
|
718 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
|
719 |
+
<edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
|
720 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
|
721 |
+
<edge from-layer="15" from-port="9" to-layer="18" to-port="1" />
|
722 |
+
<edge from-layer="15" from-port="6" to-layer="31" to-port="0" />
|
723 |
+
<edge from-layer="15" from-port="7" to-layer="31" to-port="1" />
|
724 |
+
<edge from-layer="15" from-port="11" to-layer="18" to-port="3" />
|
725 |
+
<edge from-layer="15" from-port="10" to-layer="18" to-port="2" />
|
726 |
+
<edge from-layer="15" from-port="8" to-layer="18" to-port="0" />
|
727 |
+
<edge from-layer="16" from-port="0" to-layer="18" to-port="4" />
|
728 |
+
<edge from-layer="17" from-port="0" to-layer="18" to-port="5" />
|
729 |
+
<edge from-layer="18" from-port="6" to-layer="21" to-port="0" />
|
730 |
+
<edge from-layer="18" from-port="7" to-layer="21" to-port="1" />
|
731 |
+
<edge from-layer="18" from-port="8" to-layer="21" to-port="2" />
|
732 |
+
<edge from-layer="18" from-port="9" to-layer="21" to-port="3" />
|
733 |
+
<edge from-layer="19" from-port="0" to-layer="21" to-port="4" />
|
734 |
+
<edge from-layer="20" from-port="0" to-layer="21" to-port="5" />
|
735 |
+
<edge from-layer="21" from-port="8" to-layer="31" to-port="4" />
|
736 |
+
<edge from-layer="21" from-port="7" to-layer="31" to-port="3" />
|
737 |
+
<edge from-layer="21" from-port="6" to-layer="31" to-port="2" />
|
738 |
+
<edge from-layer="22" from-port="0" to-layer="23" to-port="0" />
|
739 |
+
<edge from-layer="23" from-port="1" to-layer="31" to-port="5" />
|
740 |
+
<edge from-layer="23" from-port="2" to-layer="31" to-port="6" />
|
741 |
+
<edge from-layer="23" from-port="3" to-layer="31" to-port="7" />
|
742 |
+
<edge from-layer="24" from-port="0" to-layer="25" to-port="0" />
|
743 |
+
<edge from-layer="25" from-port="1" to-layer="31" to-port="8" />
|
744 |
+
<edge from-layer="25" from-port="2" to-layer="31" to-port="9" />
|
745 |
+
<edge from-layer="25" from-port="3" to-layer="31" to-port="10" />
|
746 |
+
<edge from-layer="26" from-port="0" to-layer="27" to-port="0" />
|
747 |
+
<edge from-layer="27" from-port="3" to-layer="31" to-port="13" />
|
748 |
+
<edge from-layer="27" from-port="2" to-layer="31" to-port="12" />
|
749 |
+
<edge from-layer="27" from-port="1" to-layer="31" to-port="11" />
|
750 |
+
<edge from-layer="28" from-port="0" to-layer="29" to-port="0" />
|
751 |
+
<edge from-layer="29" from-port="1" to-layer="31" to-port="14" />
|
752 |
+
<edge from-layer="29" from-port="2" to-layer="31" to-port="15" />
|
753 |
+
<edge from-layer="29" from-port="3" to-layer="31" to-port="16" />
|
754 |
+
<edge from-layer="30" from-port="0" to-layer="31" to-port="17" />
|
755 |
+
<edge from-layer="31" from-port="19" to-layer="32" to-port="0" />
|
756 |
+
<edge from-layer="31" from-port="18" to-layer="32" to-port="1" />
|
757 |
+
<edge from-layer="31" from-port="19" to-layer="35" to-port="0" />
|
758 |
+
<edge from-layer="31" from-port="20" to-layer="37" to-port="2" />
|
759 |
+
<edge from-layer="31" from-port="19" to-layer="37" to-port="1" />
|
760 |
+
<edge from-layer="32" from-port="2" to-layer="34" to-port="0" />
|
761 |
+
<edge from-layer="33" from-port="0" to-layer="34" to-port="1" />
|
762 |
+
<edge from-layer="34" from-port="2" to-layer="35" to-port="1" />
|
763 |
+
<edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
|
764 |
+
<edge from-layer="36" from-port="0" to-layer="37" to-port="3" />
|
765 |
+
<edge from-layer="37" from-port="5" to-layer="42" to-port="1" />
|
766 |
+
<edge from-layer="37" from-port="6" to-layer="42" to-port="2" />
|
767 |
+
<edge from-layer="37" from-port="4" to-layer="42" to-port="0" />
|
768 |
+
<edge from-layer="37" from-port="4" to-layer="38" to-port="1" />
|
769 |
+
<edge from-layer="37" from-port="5" to-layer="38" to-port="0" />
|
770 |
+
<edge from-layer="38" from-port="2" to-layer="40" to-port="0" />
|
771 |
+
<edge from-layer="39" from-port="0" to-layer="40" to-port="1" />
|
772 |
+
<edge from-layer="40" from-port="2" to-layer="42" to-port="3" />
|
773 |
+
<edge from-layer="41" from-port="0" to-layer="42" to-port="4" />
|
774 |
+
<edge from-layer="42" from-port="6" to-layer="43" to-port="0" />
|
775 |
+
<edge from-layer="42" from-port="5" to-layer="46" to-port="0" />
|
776 |
+
<edge from-layer="43" from-port="1" to-layer="44" to-port="0" />
|
777 |
+
<edge from-layer="44" from-port="1" to-layer="45" to-port="0" />
|
778 |
+
<edge from-layer="46" from-port="1" to-layer="47" to-port="0" />
|
779 |
</edges>
|
780 |
<rt_info>
|
781 |
<bos_token_id value="1" />
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|