OpenNLPLab commited on
Commit
92d0fa0
1 Parent(s): ec12bd9

Publish 1B Model

Browse files
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TransnormerForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_transnormer.TransnormerConfig",
7
+ "AutoModelForCausalLM": "modeling_transnormer.TransnormerForCausalLM"
8
+ },
9
+ "pad_token_id": 0,
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "vocab_size": 64000,
13
+ "use_cache": true,
14
+ "init_std": 0.02,
15
+ "decoder_embed_dim": 2048,
16
+ "decoder_layers": 16,
17
+ "decoder_attention_heads": 16,
18
+ "no_scale_embedding": false,
19
+ "add_bos_token": false,
20
+ "norm_type": "simplermsnorm",
21
+ "linear_use_lrpe_list": [
22
+ 1,
23
+ 0,
24
+ 0,
25
+ 0,
26
+ 0,
27
+ 0,
28
+ 0,
29
+ 0,
30
+ 0,
31
+ 0,
32
+ 0,
33
+ 0,
34
+ 0,
35
+ 0,
36
+ 0,
37
+ 0
38
+ ],
39
+ "hidden_dim": 2048,
40
+ "linear_act_fun": "swish",
41
+ "glu_dim": 5632,
42
+ "bias": false,
43
+ "torch_dtype": "bfloat16",
44
+ "transformers_version": "4.32.0"
45
+ }
configuration_transnormer.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 OpenNLPLab
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # coding=utf-8
16
+ """ Transnormer configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class TransnormerConfig(PretrainedConfig):
25
+ model_type = "transnormer"
26
+ keys_to_ignore_at_inference = ["past_key_values"]
27
+
28
+ def __init__(
29
+ self,
30
+ pad_token_id=0,
31
+ bos_token_id=1,
32
+ eos_token_id=2,
33
+ vocab_size=64000,
34
+ use_cache=True,
35
+ init_std=0.02,
36
+ # model config
37
+ decoder_embed_dim=1024,
38
+ decoder_layers=24,
39
+ decoder_attention_heads=8,
40
+ no_scale_embedding=False,
41
+ add_bos_token=False,
42
+ norm_type="simplermsnorm",
43
+ linear_use_lrpe_list=[],
44
+ hidden_dim=1024,
45
+ linear_act_fun="silu",
46
+ glu_dim=2816,
47
+ bias=False,
48
+ **kwargs,
49
+ ):
50
+ super().__init__(
51
+ pad_token_id=pad_token_id,
52
+ bos_token_id=bos_token_id,
53
+ eos_token_id=eos_token_id,
54
+ **kwargs,
55
+ )
56
+ # hf origin
57
+ self.vocab_size = vocab_size
58
+ self.use_cache = use_cache
59
+ self.init_std = init_std
60
+ # add
61
+ self.decoder_embed_dim = decoder_embed_dim
62
+ self.decoder_layers = decoder_layers
63
+ self.decoder_attention_heads = decoder_attention_heads
64
+ self.no_scale_embedding = no_scale_embedding
65
+ self.add_bos_token = add_bos_token
66
+ self.norm_type = norm_type
67
+ self.linear_use_lrpe_list = linear_use_lrpe_list
68
+ self.hidden_dim = hidden_dim
69
+ self.linear_act_fun = linear_act_fun
70
+ self.glu_dim = glu_dim
71
+ self.bias = bias
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.31.0"
6
+ }
lightning_attention.py ADDED
@@ -0,0 +1,540 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 OpenNLPLab
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import triton
17
+ import triton.language as tl
18
+
19
+
20
+ @triton.jit
21
+ def _fwd_kernel(
22
+ Q,
23
+ K,
24
+ V,
25
+ Out,
26
+ S,
27
+ stride_qz,
28
+ stride_qh,
29
+ stride_qm,
30
+ stride_qk,
31
+ stride_kz,
32
+ stride_kh,
33
+ stride_kn,
34
+ stride_kk,
35
+ stride_vz,
36
+ stride_vh,
37
+ stride_vn,
38
+ stride_ve,
39
+ stride_oz,
40
+ stride_oh,
41
+ stride_om,
42
+ stride_oe,
43
+ stride_sh,
44
+ Z,
45
+ H,
46
+ N_CTX,
47
+ BLOCK_M: tl.constexpr,
48
+ BLOCK_DMODEL_QK: tl.constexpr,
49
+ BLOCK_N: tl.constexpr,
50
+ BLOCK_DMODEL_V: tl.constexpr,
51
+ IS_CAUSAL: tl.constexpr,
52
+ USE_DECAY: tl.constexpr,
53
+ ):
54
+ start_m = tl.program_id(0)
55
+ off_hz = tl.program_id(1)
56
+ off_h = off_hz % H
57
+ # initialize offsets
58
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
59
+ offs_n = tl.arange(0, BLOCK_N)
60
+ offs_k = tl.arange(0, BLOCK_DMODEL_QK)
61
+ offs_e = tl.arange(0, BLOCK_DMODEL_V)
62
+ # get current offset of q k v
63
+ off_q = (off_hz * stride_qh + offs_m[:, None] * stride_qm +
64
+ offs_k[None, :] * stride_qk)
65
+ off_k = (off_hz * stride_kh + offs_n[:, None] * stride_kn +
66
+ offs_k[None, :] * stride_kk)
67
+ off_v = (off_hz * stride_vh + offs_n[:, None] * stride_vn +
68
+ offs_e[None, :] * stride_ve)
69
+ off_o = (off_hz * stride_oh + offs_m[:, None] * stride_om +
70
+ offs_e[None, :] * stride_oe)
71
+
72
+ # Initialize pointers to Q, K, V
73
+ q_ptrs = Q + off_q
74
+ k_ptrs = K + off_k
75
+ v_ptrs = V + off_v
76
+
77
+ # initialize pointer to m and l
78
+ acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_V], dtype=tl.float32)
79
+ # load q: it will stay in SRAM throughout
80
+ q = tl.load(q_ptrs, mask=offs_m[:, None] < N_CTX, other=0.0)
81
+ # loop over k, v and update accumulator
82
+ lo = 0
83
+ # print(start_m)
84
+ hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX
85
+ for start_n in range(lo, hi, BLOCK_N):
86
+ # -- load k, v --
87
+ k = tl.load(
88
+ k_ptrs + start_n * stride_kn,
89
+ mask=(start_n + offs_n)[:, None] < N_CTX,
90
+ other=0.0,
91
+ )
92
+ v = tl.load(
93
+ v_ptrs + start_n * stride_vn,
94
+ mask=(start_n + offs_n)[:, None] < N_CTX,
95
+ other=0.0,
96
+ )
97
+ # -- compute qk ---
98
+ # qk = tl.dot(q, k)
99
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
100
+ # qk += tl.dot(q, k, trans_b=True)
101
+ qk += tl.dot(q, tl.trans(k))
102
+ if IS_CAUSAL:
103
+ index = offs_m[:, None] - (start_n + offs_n[None, :])
104
+ if USE_DECAY:
105
+ S_block_ptr = S + off_h * stride_sh
106
+ s = tl.load(S_block_ptr)
107
+ s_index = s * index
108
+ s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
109
+ qk = tl.exp(s_index) * qk
110
+ else:
111
+ qk = tl.where(index >= 0, qk, 0)
112
+ acc += tl.dot(qk, v.to(qk.dtype))
113
+
114
+ out_ptrs = Out + off_o
115
+ tl.store(out_ptrs, acc.to(q.dtype), mask=offs_m[:, None] < N_CTX)
116
+
117
+
118
+ @triton.jit
119
+ def _bwd_kernel_kv(
120
+ Q,
121
+ K,
122
+ V,
123
+ S,
124
+ DO,
125
+ DQ,
126
+ DK,
127
+ DV,
128
+ stride_qz,
129
+ stride_qh,
130
+ stride_qm,
131
+ stride_qk,
132
+ stride_kz,
133
+ stride_kh,
134
+ stride_kn,
135
+ stride_kk,
136
+ stride_vz,
137
+ stride_vh,
138
+ stride_vn,
139
+ stride_ve,
140
+ stride_oz,
141
+ stride_oh,
142
+ stride_om,
143
+ stride_oe,
144
+ stride_sh,
145
+ Z,
146
+ H,
147
+ N_CTX,
148
+ num_block,
149
+ BLOCK_M: tl.constexpr,
150
+ BLOCK_DMODEL_QK: tl.constexpr,
151
+ BLOCK_N: tl.constexpr,
152
+ BLOCK_DMODEL_V: tl.constexpr,
153
+ CAUSAL: tl.constexpr,
154
+ USE_DECAY: tl.constexpr,
155
+ ):
156
+ start_n = tl.program_id(0)
157
+ off_hz = tl.program_id(1)
158
+
159
+ off_z = off_hz // H
160
+ off_h = off_hz % H
161
+ # offset pointers for batch/head
162
+ Q += off_z * stride_qz + off_h * stride_qh
163
+ K += off_z * stride_kz + off_h * stride_kh
164
+ V += off_z * stride_vz + off_h * stride_vh
165
+ DO += off_z * stride_oz + off_h * stride_oh
166
+ DQ += off_z * stride_qz + off_h * stride_qh
167
+ DK += off_z * stride_kz + off_h * stride_kh
168
+ DV += off_z * stride_vz + off_h * stride_vh
169
+
170
+ # start of q
171
+ if CAUSAL:
172
+ lo = start_n * BLOCK_M
173
+ else:
174
+ lo = 0
175
+ # initialize row/col offsets
176
+ # seqlence offset
177
+ offs_qm = lo + tl.arange(0, BLOCK_M)
178
+ offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
179
+ # feature offset
180
+ offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
181
+ offs_ve = tl.arange(0, BLOCK_DMODEL_V)
182
+ # row block index
183
+ offs_m = tl.arange(0, BLOCK_M)
184
+ # initialize pointers to value-like data
185
+ q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_qkk[None, :] * stride_qk)
186
+ k_ptrs = K + (offs_kvn[:, None] * stride_kn +
187
+ offs_qkk[None, :] * stride_kk)
188
+ v_ptrs = V + (offs_kvn[:, None] * stride_vn + offs_ve[None, :] * stride_ve)
189
+ do_ptrs = DO + (offs_qm[:, None] * stride_om +
190
+ offs_ve[None, :] * stride_oe)
191
+ dq_ptrs = DQ + (offs_qm[:, None] * stride_qm +
192
+ offs_qkk[None, :] * stride_qk)
193
+ # initialize dv amd dk
194
+ dv = tl.zeros([BLOCK_N, BLOCK_DMODEL_V], dtype=tl.float32)
195
+ dk = tl.zeros([BLOCK_N, BLOCK_DMODEL_QK], dtype=tl.float32)
196
+ # k and v stay in SRAM throughout
197
+ k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
198
+ v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
199
+ # loop over rows
200
+ for start_m in range(lo, num_block * BLOCK_M, BLOCK_M):
201
+ offs_m_curr = start_m + offs_m
202
+ # load q, k, v, do on-chip
203
+ q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
204
+ qk = tl.dot(q, tl.trans(k))
205
+ # qk = tl.dot(q, k, trans_b=True)
206
+ if CAUSAL:
207
+ index = offs_m_curr[:, None] - offs_kvn[None, :]
208
+ if USE_DECAY:
209
+ S_block_ptr = S + off_h * stride_sh
210
+ s = tl.load(S_block_ptr)
211
+ s_index = s * index
212
+ s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
213
+ s = tl.exp(s_index)
214
+ qk = qk * s
215
+ else:
216
+ qk = tl.where(index >= 0, qk, 0)
217
+
218
+ p = qk
219
+ # compute dv
220
+ do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
221
+ dv += tl.dot(tl.trans(p.to(do.dtype)), do)
222
+ dp = tl.dot(do, tl.trans(v).to(do.dtype))
223
+ if CAUSAL:
224
+ if USE_DECAY:
225
+ dp = dp * s
226
+ else:
227
+ dp = tl.where(index >= 0, dp, 0)
228
+
229
+ dk += tl.dot(tl.trans(dp.to(q.dtype)), q).to(tl.float32)
230
+
231
+ # increment pointers
232
+ q_ptrs += BLOCK_M * stride_qm
233
+ do_ptrs += BLOCK_M * stride_om
234
+ # write-back
235
+ dv_ptrs = DV + (offs_kvn[:, None] * stride_vn +
236
+ offs_ve[None, :] * stride_ve)
237
+ dk_ptrs = DK + (offs_kvn[:, None] * stride_kn +
238
+ offs_qkk[None, :] * stride_kk)
239
+ tl.store(dv_ptrs, dv, mask=offs_kvn[:, None] < N_CTX)
240
+ tl.store(dk_ptrs, dk, mask=offs_kvn[:, None] < N_CTX)
241
+
242
+
243
+ @triton.jit
244
+ def _bwd_kernel_q(
245
+ Q,
246
+ K,
247
+ V,
248
+ S,
249
+ DO,
250
+ DQ,
251
+ DK,
252
+ DV,
253
+ stride_qz,
254
+ stride_qh,
255
+ stride_qm,
256
+ stride_qk,
257
+ stride_kz,
258
+ stride_kh,
259
+ stride_kn,
260
+ stride_kk,
261
+ stride_vz,
262
+ stride_vh,
263
+ stride_vn,
264
+ stride_ve,
265
+ stride_oz,
266
+ stride_oh,
267
+ stride_om,
268
+ stride_oe,
269
+ stride_sh,
270
+ Z,
271
+ H,
272
+ N_CTX,
273
+ num_block,
274
+ BLOCK_M: tl.constexpr,
275
+ BLOCK_DMODEL_QK: tl.constexpr,
276
+ BLOCK_N: tl.constexpr,
277
+ BLOCK_DMODEL_V: tl.constexpr,
278
+ CAUSAL: tl.constexpr,
279
+ USE_DECAY: tl.constexpr,
280
+ ):
281
+ start_m = tl.program_id(0)
282
+ off_hz = tl.program_id(1)
283
+ off_z = off_hz // H
284
+ off_h = off_hz % H
285
+ # offset pointers for batch/head
286
+ K += off_z * stride_kz + off_h * stride_kh
287
+ V += off_z * stride_vz + off_h * stride_vh
288
+ DO += off_z * stride_oz + off_h * stride_oh
289
+ DQ += off_z * stride_qz + off_h * stride_qh
290
+ # feature offset
291
+ offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
292
+ offs_ve = tl.arange(0, BLOCK_DMODEL_V)
293
+ # row block index
294
+ offs_m = tl.arange(0, BLOCK_M)
295
+ # row block index
296
+ offs_qm = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
297
+ # do
298
+ do_ptrs = DO + (offs_qm[:, None] * stride_om +
299
+ offs_ve[None, :] * stride_oe)
300
+ dq_ptrs = DQ + (offs_qm[:, None] * stride_qm +
301
+ offs_qkk[None, :] * stride_qk)
302
+
303
+ do = tl.load(do_ptrs, mask=offs_qm[:, None] < N_CTX, other=0.0)
304
+
305
+ dq = tl.zeros([BLOCK_M, BLOCK_DMODEL_QK], dtype=tl.float32)
306
+ lo = 0
307
+ hi = (start_m + 1) * BLOCK_M if CAUSAL else N_CTX
308
+
309
+ offs_m_curr = start_m * BLOCK_M + offs_m
310
+
311
+ for start_n in range(0, num_block):
312
+ offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
313
+ k_ptrs = K + (offs_kvn[:, None] * stride_kn +
314
+ offs_qkk[None, :] * stride_kk)
315
+ v_ptrs = V + (offs_kvn[:, None] * stride_vn +
316
+ offs_ve[None, :] * stride_ve)
317
+ # k and v stay in SRAM throughout
318
+ k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
319
+ v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
320
+ # dp = do vT
321
+ dp = tl.dot(do, tl.trans(v).to(do.dtype))
322
+ if CAUSAL:
323
+ index = offs_m_curr[:, None] - offs_kvn[None, :]
324
+ if USE_DECAY:
325
+ S_block_ptr = S + off_h * stride_sh
326
+ s = tl.load(S_block_ptr)
327
+ s_index = s * index
328
+ s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
329
+ s = tl.exp(s_index)
330
+ dp = dp * s
331
+ else:
332
+ dp = tl.where(index >= 0, dp, 0)
333
+ # dq = dq + dp k
334
+ dq += tl.dot(dp.to(k.dtype), k)
335
+
336
+ tl.store(dq_ptrs, dq, mask=offs_qm[:, None] < N_CTX)
337
+
338
+
339
+ class _attention(torch.autograd.Function):
340
+
341
+ @staticmethod
342
+ def forward(ctx, q, k, v, causal, s):
343
+ q = q.contiguous()
344
+ k = k.contiguous()
345
+ v = v.contiguous()
346
+ s = s.contiguous()
347
+ # only support for Ampere now
348
+ capability = torch.cuda.get_device_capability()
349
+ if capability[0] < 8:
350
+ raise RuntimeError(
351
+ "Flash attention currently only supported for compute capability >= 80"
352
+ )
353
+ # shape constraints
354
+ Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
355
+ # right
356
+ o = torch.empty(
357
+ (q.shape[0], q.shape[1], q.shape[2], v.shape[-1]),
358
+ dtype=q.dtype,
359
+ device=q.device,
360
+ )
361
+
362
+ BLOCK_M = 128
363
+ BLOCK_N = 64
364
+ num_warps = 4 if Lk <= 64 else 8
365
+ num_stages = 1
366
+
367
+ grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
368
+ use_decay = s.shape[0] > 0
369
+
370
+ _fwd_kernel[grid](
371
+ q,
372
+ k,
373
+ v,
374
+ o,
375
+ s,
376
+ q.stride(0),
377
+ q.stride(1),
378
+ q.stride(2),
379
+ q.stride(3),
380
+ k.stride(0),
381
+ k.stride(1),
382
+ k.stride(2),
383
+ k.stride(3),
384
+ v.stride(0),
385
+ v.stride(1),
386
+ v.stride(2),
387
+ v.stride(3),
388
+ o.stride(0),
389
+ o.stride(1),
390
+ o.stride(2),
391
+ o.stride(3),
392
+ s.stride(0),
393
+ q.shape[0],
394
+ q.shape[1],
395
+ q.shape[2],
396
+ BLOCK_M=BLOCK_M,
397
+ BLOCK_DMODEL_QK=Lk,
398
+ BLOCK_N=BLOCK_N,
399
+ BLOCK_DMODEL_V=Lv,
400
+ IS_CAUSAL=causal,
401
+ USE_DECAY=use_decay,
402
+ num_warps=num_warps,
403
+ num_stages=num_stages,
404
+ )
405
+
406
+ ctx.save_for_backward(q, k, v, s)
407
+ ctx.grid = grid
408
+ ctx.BLOCK_M = BLOCK_M
409
+ ctx.BLOCK_DMODEL_QK = Lk
410
+ ctx.BLOCK_N = BLOCK_N
411
+ ctx.BLOCK_DMODEL_V = Lv
412
+ ctx.causal = causal
413
+ ctx.use_decay = use_decay
414
+ return o
415
+
416
+ @staticmethod
417
+ def backward(ctx, do):
418
+ q, k, v, s = ctx.saved_tensors
419
+ BLOCK_M = 32
420
+ BLOCK_N = 32
421
+ num_warps = 4
422
+ num_stages = 1
423
+
424
+ do = do.contiguous()
425
+ dq = torch.zeros_like(q, dtype=torch.float32)
426
+ dk = torch.empty_like(k)
427
+ dv = torch.empty_like(v)
428
+
429
+ grid_kv = (triton.cdiv(k.shape[2],
430
+ BLOCK_N), k.shape[0] * k.shape[1], 1)
431
+ _bwd_kernel_kv[grid_kv](
432
+ q,
433
+ k,
434
+ v,
435
+ s,
436
+ do,
437
+ dq,
438
+ dk,
439
+ dv,
440
+ q.stride(0),
441
+ q.stride(1),
442
+ q.stride(2),
443
+ q.stride(3),
444
+ k.stride(0),
445
+ k.stride(1),
446
+ k.stride(2),
447
+ k.stride(3),
448
+ v.stride(0),
449
+ v.stride(1),
450
+ v.stride(2),
451
+ v.stride(3),
452
+ do.stride(0),
453
+ do.stride(1),
454
+ do.stride(2),
455
+ do.stride(3),
456
+ s.stride(0),
457
+ q.shape[0],
458
+ q.shape[1],
459
+ q.shape[2],
460
+ grid_kv[0],
461
+ BLOCK_M=BLOCK_M,
462
+ BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
463
+ BLOCK_N=BLOCK_N,
464
+ BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
465
+ CAUSAL=ctx.causal,
466
+ USE_DECAY=ctx.use_decay,
467
+ num_warps=num_warps,
468
+ num_stages=num_stages,
469
+ )
470
+
471
+ grid_q = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
472
+
473
+ _bwd_kernel_q[grid_q](
474
+ q,
475
+ k,
476
+ v,
477
+ s,
478
+ do,
479
+ dq,
480
+ dk,
481
+ dv,
482
+ q.stride(0),
483
+ q.stride(1),
484
+ q.stride(2),
485
+ q.stride(3),
486
+ k.stride(0),
487
+ k.stride(1),
488
+ k.stride(2),
489
+ k.stride(3),
490
+ v.stride(0),
491
+ v.stride(1),
492
+ v.stride(2),
493
+ v.stride(3),
494
+ do.stride(0),
495
+ do.stride(1),
496
+ do.stride(2),
497
+ do.stride(3),
498
+ s.stride(0),
499
+ q.shape[0],
500
+ q.shape[1],
501
+ q.shape[2],
502
+ grid_q[0],
503
+ BLOCK_M=BLOCK_M,
504
+ BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
505
+ BLOCK_N=BLOCK_N,
506
+ BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
507
+ CAUSAL=ctx.causal,
508
+ USE_DECAY=ctx.use_decay,
509
+ num_warps=num_warps,
510
+ num_stages=num_stages,
511
+ )
512
+
513
+ return dq.to(q.dtype), dk, dv, None, None
514
+
515
+
516
+ attention = _attention.apply
517
+
518
+
519
+ def lightning_attention(q, k, v, causal, ed):
520
+ d = q.shape[-1]
521
+ e = v.shape[-1]
522
+ # arr = f(d)
523
+ if d >= 128:
524
+ m = 128
525
+ else:
526
+ m = 64
527
+ arr = [m * i for i in range(d // m + 1)]
528
+ if arr[-1] != d:
529
+ arr.append(d)
530
+ n = len(arr)
531
+ output = 0
532
+ for i in range(n - 1):
533
+ s = arr[i]
534
+ e = arr[i + 1]
535
+ q1 = q[..., s:e]
536
+ k1 = k[..., s:e]
537
+ o = attention(q1, k1, v, causal, ed)
538
+ output = output + o
539
+
540
+ return output
modeling_transnormer.py ADDED
@@ -0,0 +1,1072 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 OpenNLPLab
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # coding=utf-8
16
+ """ PyTorch Transnormer model."""
17
+ import math
18
+ import os
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ from einops import rearrange
22
+ import numpy as np
23
+ import torch
24
+ from torch import nn
25
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from transformers.activations import ACT2FN
29
+ from transformers.modeling_outputs import (
30
+ BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast,
33
+ )
34
+ from transformers.modeling_utils import PreTrainedModel
35
+ from transformers.utils import (
36
+ add_start_docstrings,
37
+ add_start_docstrings_to_model_forward,
38
+ logging,
39
+ replace_return_docstrings,
40
+ )
41
+
42
+ from .configuration_transnormer import TransnormerConfig
43
+ from .norm import SimpleRMSNorm as SimpleRMSNorm_torch
44
+ from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNorm_triton
45
+ from .utils import (
46
+ get_activation_fn,
47
+ get_norm_fn,
48
+ logging_info,
49
+ print_module,
50
+ print_params,
51
+ )
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CONFIG_FOR_DOC = "TransnormerConfig"
56
+
57
+ use_triton = eval(os.environ.get("use_triton", default="True"))
58
+ debug = eval(os.environ.get("debug", default="False"))
59
+
60
+ if use_triton:
61
+ try:
62
+ from .lightning_attention import lightning_attention
63
+
64
+ has_lightning_attention = True
65
+ except (ImportError, ModuleNotFoundError):
66
+ has_lightning_attention = False
67
+ else:
68
+ has_lightning_attention = False
69
+
70
+ if debug:
71
+ logger.info(f"Use triton: {use_triton}")
72
+ logger.info(f"Use lightning attention: {has_lightning_attention}")
73
+ logger.info(f"Debug mode: {debug}, {type(debug)}")
74
+
75
+ if not has_lightning_attention:
76
+
77
+ def linear_attention(q, k, v, attn_mask):
78
+ energy = torch.einsum("... n d, ... m d -> ... n m", q, k)
79
+ energy = energy * attn_mask
80
+ output = torch.einsum("... n m, ... m d -> ... n d", energy, v)
81
+
82
+ return output
83
+
84
+
85
+ ########## start Transnormer
86
+ ##### Linearized Relative Positional Encoding: https://openreview.net/forum?id=xoLyps2qWc&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
87
+ class Lrpe(nn.Module):
88
+
89
+ def __init__(
90
+ self,
91
+ num_heads=8,
92
+ embed_dim=64,
93
+ ):
94
+ super().__init__()
95
+ d = num_heads * embed_dim
96
+
97
+ self.index = torch.empty(0)
98
+ self.theta = nn.Parameter(10000**(-2 / d * torch.arange(d)).reshape(
99
+ num_heads, 1, -1))
100
+
101
+ def extra_repr(self):
102
+ return print_module(self)
103
+
104
+ def forward(self, x, offset=0):
105
+ # x: b, h, n, d
106
+ # offset: for k, v cache
107
+ n = x.shape[-2]
108
+ if self.index.shape[0] < n:
109
+ self.index = torch.arange(n).reshape(1, -1, 1).to(x)
110
+ index = self.index[:, :n] + offset
111
+ theta = self.theta * index
112
+ x = torch.concat([x * torch.cos(theta), x * torch.sin(theta)], dim=-1)
113
+
114
+ return x
115
+
116
+
117
+ class GLU(nn.Module):
118
+
119
+ def __init__(self, d1, d2, bias=False):
120
+ super().__init__()
121
+ if debug:
122
+ # get local varables
123
+ params = locals()
124
+ # print params
125
+ print_params(**params)
126
+
127
+ self.l1 = nn.Linear(d1, d2, bias=bias)
128
+ self.l2 = nn.Linear(d1, d2, bias=bias)
129
+ self.l3 = nn.Linear(d2, d1, bias=bias)
130
+
131
+ def forward(self, x):
132
+ o1 = self.l1(x)
133
+ o2 = self.l2(x)
134
+ output = o1 * o2
135
+ output = self.l3(output)
136
+
137
+ return output
138
+
139
+
140
+ class NormLinearAttention(nn.Module):
141
+
142
+ def __init__(
143
+ self,
144
+ embed_dim,
145
+ hidden_dim,
146
+ num_heads,
147
+ linear_act_fun="silu",
148
+ norm_type="simplermsnorm",
149
+ linear_use_lrpe=False,
150
+ bias=False,
151
+ ):
152
+ super().__init__()
153
+ if debug:
154
+ # get local varables
155
+ params = locals()
156
+ # print params
157
+ print_params(**params)
158
+
159
+ self.out_proj = nn.Linear(hidden_dim, embed_dim, bias=bias)
160
+ self.act = get_activation_fn(linear_act_fun)
161
+ self.num_heads = num_heads
162
+ self.embed_dim = embed_dim
163
+ self.head_dim = self.embed_dim // self.num_heads
164
+ self.norm = get_norm_fn(norm_type)(hidden_dim)
165
+
166
+ self.linear_use_lrpe = linear_use_lrpe
167
+ if self.linear_use_lrpe:
168
+ self.lrpe = Lrpe(
169
+ num_heads=self.num_heads,
170
+ embed_dim=self.head_dim,
171
+ )
172
+
173
+ self.qkvu_proj = nn.Linear(embed_dim, 4 * hidden_dim, bias=bias)
174
+
175
+ # for inference only
176
+ self.offset = 0
177
+
178
+ def forward(
179
+ self,
180
+ x,
181
+ attn_mask: Optional[torch.Tensor] = None, # (b, h, n, m)
182
+ attn_padding_mask: Optional[torch.Tensor] = None, # (b, m)
183
+ output_attentions: bool = False,
184
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
185
+ use_cache: bool = False,
186
+ slope_rate: Optional[torch.Tensor] = None,
187
+ ):
188
+ do_eval = eval(os.environ.get("do_eval", default="False"))
189
+ if (not self.training) and (not do_eval):
190
+ return self.inference(
191
+ x,
192
+ attn_mask,
193
+ attn_padding_mask,
194
+ output_attentions,
195
+ past_key_value,
196
+ use_cache,
197
+ slope_rate=slope_rate,
198
+ )
199
+ # x: b n d
200
+ n = x.shape[-2]
201
+ # linear map
202
+ q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
203
+ # reshape
204
+ q, k, v = map(
205
+ lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
206
+ [q, k, v])
207
+ # act
208
+ q = self.act(q)
209
+ k = self.act(k)
210
+
211
+ q_offset = 0
212
+ # lrpe relys on position, get cache first
213
+ if past_key_value is not None:
214
+ # reuse k, v, self_attention
215
+ k = torch.cat([past_key_value[0], k], dim=-2)
216
+ v = torch.cat([past_key_value[1], v], dim=-2)
217
+ q_offset = past_key_value[0].shape[-2]
218
+
219
+ past_key_value = (k, v) if use_cache else None
220
+
221
+ # lrpe
222
+ if self.linear_use_lrpe:
223
+ q = self.lrpe(q, offset=q_offset)
224
+ k = self.lrpe(k)
225
+
226
+ if attn_mask == None:
227
+ attn_mask = (torch.tril(torch.ones(n, n))).to(q)
228
+
229
+ if attn_padding_mask is not None:
230
+ v = v.masked_fill(
231
+ (1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(
232
+ torch.bool), 0)
233
+
234
+ if not has_lightning_attention:
235
+ if slope_rate != None:
236
+ attn_mask = torch.exp(slope_rate * attn_mask)
237
+
238
+ output = linear_attention(q, k, v, attn_mask)
239
+ else:
240
+ output = lightning_attention(q, k, v, True,
241
+ slope_rate.squeeze(-1).squeeze(-1))
242
+
243
+ # reshape
244
+ output = rearrange(output, "b h n d -> b n (h d)")
245
+ # normalize
246
+ output = self.norm(output)
247
+ # gate
248
+ output = u * output
249
+ # outproj
250
+ output = self.out_proj(output)
251
+
252
+ if not output_attentions:
253
+ attn_weights = None
254
+ else:
255
+ attn_weights = torch.einsum("... n d, ... m d -> ... n m", q, k)
256
+
257
+ return output, attn_weights, past_key_value
258
+
259
+ def inference(
260
+ self,
261
+ x,
262
+ attn_mask: Optional[torch.Tensor] = None, # (b, h, n, m)
263
+ attn_padding_mask: Optional[torch.Tensor] = None, # (b, m)
264
+ output_attentions: bool = False,
265
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
266
+ use_cache: bool = False,
267
+ slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
268
+ ):
269
+ # x: b n d
270
+ n = x.shape[-2]
271
+ # linear map
272
+ q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
273
+ # reshape
274
+ q, k, v = map(
275
+ lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
276
+ [q, k, v])
277
+ # act
278
+ q = self.act(q)
279
+ k = self.act(k)
280
+
281
+ # rpe
282
+ if self.linear_use_lrpe:
283
+ q = self.lrpe(q, offset=self.offset)
284
+ k = self.lrpe(k, offset=self.offset)
285
+
286
+ if past_key_value == None:
287
+ self.offset = q.shape[-2]
288
+ else:
289
+ self.offset += 1
290
+
291
+ ratio = torch.exp(-slope_rate)
292
+
293
+ # only use for the first time
294
+ if past_key_value == None:
295
+ if attn_mask == None:
296
+ attn_mask = (torch.tril(torch.ones(n, n))).to(q)
297
+ if slope_rate != None:
298
+ attn_mask = torch.exp(slope_rate * attn_mask)
299
+
300
+ if attn_padding_mask is not None:
301
+ attn_mask = attn_mask.masked_fill(
302
+ (1 - attn_padding_mask).unsqueeze(1).unsqueeze(2).to(
303
+ torch.bool),
304
+ 0,
305
+ )
306
+ energy = torch.einsum("... n d, ... m d -> ... n m", q, k)
307
+
308
+ if attn_mask != None:
309
+ energy = energy * attn_mask
310
+
311
+ output = torch.einsum("... n m, ... m d -> ... n d", energy, v)
312
+
313
+ eval_and_not_generate = eval(
314
+ os.environ.get("eval_and_not_generate", default="False"))
315
+ if eval_and_not_generate:
316
+ kv = None
317
+ else:
318
+ # b, h, n, e, d
319
+ kv_outproduct = torch.einsum("... n e, ... n d -> ... n e d",
320
+ k, v)
321
+ # 1, 1, n, 1, 1
322
+ index = torch.arange(n - 1, -1, -1).reshape(1, 1, -1, 1,
323
+ 1).to(x)
324
+ # (h, 1, 1) -> (1, h, 1, 1, 1); (1, h, 1, 1, 1), (1, 1, n, 1, 1) -> (1, h, n, 1, 1)
325
+ decay = ratio.unsqueeze(0).unsqueeze(-1)**index
326
+
327
+ kv_outproduct_with_decay = kv_outproduct * decay
328
+ kv = torch.sum(kv_outproduct_with_decay, dim=-3)
329
+ else:
330
+ kv = past_key_value
331
+
332
+ output = []
333
+ for i in range(n):
334
+ kv = ratio * kv + torch.einsum(
335
+ "... n d, ... n e -> ... d e",
336
+ k[:, :, i:i + 1],
337
+ v[:, :, i:i + 1],
338
+ )
339
+ qkv = torch.einsum("... n e, ... e d -> ... n d",
340
+ q[:, :, i:i + 1], kv)
341
+ output.append(qkv)
342
+ output = torch.concat(output, dim=-2)
343
+
344
+ # reshape
345
+ output = rearrange(output, "b h n d -> b n (h d)")
346
+ # normalize
347
+ output = self.norm(output)
348
+ # gate
349
+ output = u * output
350
+ # outproj
351
+ output = self.out_proj(output)
352
+
353
+ attn_weights = None
354
+
355
+ return output, attn_weights, kv
356
+
357
+
358
+ class TransnormerDecoderLayer(nn.Module):
359
+
360
+ def __init__(self, config: TransnormerConfig):
361
+ super().__init__()
362
+ self.embed_dim = config.decoder_embed_dim
363
+ ##### normalize
364
+ norm_type = config.norm_type
365
+ if debug:
366
+ logging_info(f"Decoder Norm Type: {norm_type}")
367
+ self.token_norm = get_norm_fn(norm_type)(self.embed_dim)
368
+ self.channel_norm = get_norm_fn(norm_type)(self.embed_dim)
369
+
370
+ ##### token mixer
371
+ self.token_mixer = self.build_token_mixer(
372
+ self.embed_dim,
373
+ config,
374
+ )
375
+
376
+ ##### channel mixer
377
+ self.glu_dim = config.glu_dim
378
+ if self.glu_dim == -1:
379
+ self.glu_dim = self.embed_dim
380
+ bias = config.bias
381
+ self.channel_mixer = GLU(self.embed_dim, self.glu_dim, bias)
382
+
383
+ def build_token_mixer(self, embed_dim, config):
384
+ return NormLinearAttention(
385
+ embed_dim=embed_dim,
386
+ hidden_dim=config.hidden_dim,
387
+ num_heads=config.decoder_attention_heads,
388
+ linear_act_fun=config.linear_act_fun,
389
+ norm_type=config.norm_type,
390
+ linear_use_lrpe=config.linear_use_lrpe,
391
+ bias=config.bias,
392
+ )
393
+
394
+ def residual_connection(self, x, residual):
395
+ return residual + x
396
+
397
+ def forward(
398
+ self,
399
+ x,
400
+ attn_mask: Optional[torch.Tensor] = None,
401
+ attn_padding_mask: Optional[torch.Tensor] = None,
402
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
403
+ output_attentions: Optional[bool] = False,
404
+ use_cache: Optional[bool] = False,
405
+ slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
406
+ ):
407
+ residual = x
408
+ x = self.token_norm(x)
409
+ x, self_attn_weights, present_key_value = self.token_mixer(
410
+ x=x,
411
+ attn_mask=attn_mask,
412
+ attn_padding_mask=attn_padding_mask,
413
+ past_key_value=past_key_value,
414
+ output_attentions=output_attentions,
415
+ use_cache=use_cache,
416
+ slope_rate=slope_rate,
417
+ )
418
+ x = self.residual_connection(x, residual)
419
+
420
+ residual = x
421
+ x = self.channel_norm(x)
422
+ x = self.channel_mixer(x)
423
+ x = self.residual_connection(x, residual)
424
+
425
+ outputs = (x, )
426
+
427
+ if output_attentions:
428
+ outputs += (self_attn_weights, )
429
+
430
+ if use_cache:
431
+ outputs += (present_key_value, )
432
+
433
+ return outputs
434
+
435
+
436
+ TRANSNORMER_START_DOCSTRING = r"""
437
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
438
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
439
+ etc.)
440
+
441
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
442
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
443
+ and behavior.
444
+
445
+ Parameters:
446
+ config ([`TransnormerConfig`]):
447
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
448
+ load the weights associated with the model, only the configuration. Check out the
449
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
450
+ """
451
+
452
+
453
+ @add_start_docstrings(TRANSNORMER_START_DOCSTRING, )
454
+ class TransnormerPreTrainedModel(PreTrainedModel):
455
+ config_class = TransnormerConfig
456
+ base_model_prefix = "model"
457
+ supports_gradient_checkpointing = True
458
+ _no_split_modules = ["TransnormerDecoderLayer"]
459
+ _skip_keys_device_placement = "past_key_values"
460
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
461
+
462
+ def _init_weights(self, module):
463
+ std = self.config.init_std
464
+ if isinstance(module, nn.Linear):
465
+ module.weight.data.normal_(mean=0.0, std=std)
466
+ if module.bias is not None:
467
+ module.bias.data.zero_()
468
+ elif isinstance(module, nn.Embedding):
469
+ module.weight.data.normal_(mean=0.0, std=std)
470
+ if module.padding_idx is not None:
471
+ module.weight.data[module.padding_idx].zero_()
472
+
473
+ def _set_gradient_checkpointing(self, module, value=False):
474
+ if isinstance(module, TransnormerModel):
475
+ module.gradient_checkpointing = value
476
+
477
+
478
+ TRANSNORMER_INPUTS_DOCSTRING = r"""
479
+ Args:
480
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
481
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
482
+ it.
483
+
484
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
485
+ [`PreTrainedTokenizer.__call__`] for details.
486
+
487
+ [What are input IDs?](../glossary#input-ids)
488
+ attn_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
489
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
490
+
491
+ - 1 for tokens that are **not masked**,
492
+ - 0 for tokens that are **masked**.
493
+
494
+ [What are attention masks?](../glossary#attention-mask)
495
+
496
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
497
+ [`PreTrainedTokenizer.__call__`] for details.
498
+
499
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
500
+ `past_key_values`).
501
+
502
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attn_mask`]
503
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
504
+ information on the default strategy.
505
+
506
+ - 1 indicates the head is **not masked**,
507
+ - 0 indicates the head is **masked**.
508
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
509
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
510
+ config.n_positions - 1]`.
511
+
512
+ [What are position IDs?](../glossary#position-ids)
513
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
514
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
515
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
516
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
517
+
518
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
519
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
520
+
521
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
522
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
523
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
524
+ use_cache (`bool`, *optional*):
525
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
526
+ `past_key_values`).
527
+ output_attentions (`bool`, *optional*):
528
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
529
+ tensors for more detail.
530
+ output_hidden_states (`bool`, *optional*):
531
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
532
+ more detail.
533
+ return_dict (`bool`, *optional*):
534
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
535
+ """
536
+
537
+
538
+ @add_start_docstrings(TRANSNORMER_START_DOCSTRING, )
539
+ class TransnormerModel(TransnormerPreTrainedModel):
540
+ """
541
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TransnormerDecoderLayer`]
542
+
543
+ Args:
544
+ config: TransnormerConfig
545
+ """
546
+
547
+ def __init__(self, config: TransnormerConfig):
548
+ super().__init__(config)
549
+ # hf origin
550
+ self.padding_idx = config.pad_token_id
551
+ self.vocab_size = config.vocab_size
552
+ self.gradient_checkpointing = False
553
+ # mask
554
+ self._linear_attn_mask = torch.empty(0)
555
+ # config
556
+ self.linear_use_lrpe_list = config.linear_use_lrpe_list
557
+ self.num_layers = config.decoder_layers
558
+ # h, 1, 1
559
+ self.slopes = self._build_slope_tensor(config.decoder_attention_heads)
560
+
561
+ # params
562
+ self.embed_tokens = nn.Embedding(config.vocab_size,
563
+ config.decoder_embed_dim,
564
+ self.padding_idx)
565
+ self.layers = nn.ModuleList([])
566
+ for i in range(config.decoder_layers):
567
+ if len(self.linear_use_lrpe_list) > 0:
568
+ config.linear_use_lrpe = self.linear_use_lrpe_list[i]
569
+ self.layers.append(TransnormerDecoderLayer(config))
570
+
571
+ self.final_norm = get_norm_fn(config.norm_type)(
572
+ config.decoder_embed_dim)
573
+ self.embed_dim = config.decoder_embed_dim
574
+ self.embed_scale = (1.0 if config.no_scale_embedding else math.sqrt(
575
+ self.embed_dim))
576
+
577
+ # Initialize weights and apply final processing
578
+ self.post_init()
579
+
580
+ @staticmethod
581
+ def _build_slope_tensor(n_attention_heads: int):
582
+
583
+ def get_slopes(n):
584
+
585
+ def get_slopes_power_of_2(n):
586
+ start = 2**(-(2**-(math.log2(n) - 3)))
587
+ ratio = start
588
+ return [start * ratio**i for i in range(n)]
589
+
590
+ if math.log2(n).is_integer():
591
+ return get_slopes_power_of_2(
592
+ n
593
+ ) # In the paper, we only train models that have 2^a heads for some a. This function has
594
+ else: # some good properties that only occur when the input is a power of 2. To maintain that even
595
+ closest_power_of_2 = 2**math.floor(
596
+ math.log2(n)
597
+ ) # when the number of heads is not a power of 2, we use this workaround.
598
+ return (get_slopes_power_of_2(closest_power_of_2) + get_slopes(
599
+ 2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
600
+
601
+ # h, 1, 1
602
+ slopes = torch.tensor(get_slopes(n_attention_heads)).reshape(
603
+ n_attention_heads, 1, 1)
604
+
605
+ return slopes
606
+
607
+ def extra_repr(self):
608
+ return print_module(self)
609
+
610
+ def get_input_embeddings(self):
611
+ return self.embed_tokens
612
+
613
+ def set_input_embeddings(self, value):
614
+ self.embed_tokens = value
615
+
616
+ def _prepare_decoder_linear_attn_mask(self, input_shape, inputs_embeds,
617
+ past_key_values_length):
618
+ bsz, tgt_len = input_shape
619
+ src_len = tgt_len + past_key_values_length
620
+
621
+ def power_log(x):
622
+ return 2**(math.ceil(math.log(x, 2)))
623
+
624
+ n = power_log(max(tgt_len, src_len))
625
+ if self._linear_attn_mask.shape[-1] < n:
626
+
627
+ def get_mask(n):
628
+ mask = torch.triu(
629
+ torch.zeros(n, n).float().fill_(float("-inf")), 1)
630
+ # no slope version
631
+ # -n, ..., -2, -1, 0
632
+ for i in range(n):
633
+ x = torch.arange(i + 1)
634
+ y = x
635
+ mask[i, :i + 1] = -torch.flip(y, [0])
636
+
637
+ return mask
638
+
639
+ arr = []
640
+ for slope in self.slopes:
641
+ arr.append(get_mask(n))
642
+ self._linear_attn_mask = torch.stack(arr, dim=0).to(inputs_embeds)
643
+
644
+ linear_attn_mask = self._linear_attn_mask[:, -tgt_len:, -src_len:]
645
+ num_heads = linear_attn_mask.shape[0]
646
+
647
+ return linear_attn_mask[None, :, :, :].expand(bsz, num_heads, tgt_len,
648
+ src_len)
649
+
650
+ @add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
651
+ def forward(
652
+ self,
653
+ input_ids: torch.LongTensor = None,
654
+ attn_padding_mask: Optional[torch.Tensor] = None,
655
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
656
+ inputs_embeds: Optional[torch.FloatTensor] = None,
657
+ use_cache: Optional[bool] = None,
658
+ output_attentions: Optional[bool] = None,
659
+ output_hidden_states: Optional[bool] = None,
660
+ return_dict: Optional[bool] = None,
661
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
662
+ output_attentions = (output_attentions if output_attentions is not None
663
+ else self.config.output_attentions)
664
+ output_hidden_states = (output_hidden_states
665
+ if output_hidden_states is not None else
666
+ self.config.output_hidden_states)
667
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
668
+
669
+ return_dict = (return_dict if return_dict is not None else
670
+ self.config.use_return_dict)
671
+
672
+ # retrieve input_ids and inputs_embeds
673
+ if input_ids is not None and inputs_embeds is not None:
674
+ raise ValueError(
675
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
676
+ )
677
+ elif input_ids is not None:
678
+ batch_size, seq_length = input_ids.shape
679
+ elif inputs_embeds is not None:
680
+ batch_size, seq_length, _ = inputs_embeds.shape
681
+ else:
682
+ raise ValueError(
683
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
684
+ )
685
+
686
+ seq_length_with_past = seq_length
687
+ past_key_values_length = 0
688
+
689
+ if past_key_values is not None:
690
+ past_key_values_length = past_key_values[0][0].shape[-2]
691
+ seq_length_with_past = seq_length_with_past + past_key_values_length
692
+
693
+ if inputs_embeds is None:
694
+ # !!! use embed_scale
695
+ inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
696
+
697
+ hidden_states = inputs_embeds
698
+
699
+ if self.gradient_checkpointing and self.training:
700
+ if use_cache:
701
+ logger.warning_once(
702
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
703
+ )
704
+ use_cache = False
705
+
706
+ # decoder layers
707
+ all_hidden_states = () if output_hidden_states else None
708
+ all_self_attns = () if output_attentions else None
709
+ next_decoder_cache = () if use_cache else None
710
+
711
+ ##### norm linear layers
712
+ linear_attn_padding_mask = attn_padding_mask
713
+ linear_attn_mask = self._prepare_decoder_linear_attn_mask(
714
+ (batch_size, seq_length), inputs_embeds, past_key_values_length)
715
+
716
+ slope_rates = [
717
+ self.slopes.to(input_ids.device) for _ in range(self.num_layers)
718
+ ]
719
+
720
+ for idx, layer in enumerate(self.layers):
721
+ if output_hidden_states:
722
+ all_hidden_states += (hidden_states, )
723
+
724
+ past_key_value = (past_key_values[idx]
725
+ if past_key_values is not None else None)
726
+
727
+ slope_rate = slope_rates[idx]
728
+ slope_rate = slope_rate * (1 - idx / (self.num_layers - 1) + 1e-5)
729
+ mask = linear_attn_mask
730
+
731
+ if self.gradient_checkpointing and self.training:
732
+
733
+ def create_custom_forward(module):
734
+
735
+ def custom_forward(*inputs):
736
+ # None for past_key_value
737
+ return module(*inputs, output_attentions, None)
738
+
739
+ return custom_forward
740
+
741
+ layer_outputs = torch.utils.checkpoint.checkpoint(
742
+ create_custom_forward(layer),
743
+ hidden_states,
744
+ mask,
745
+ linear_attn_padding_mask,
746
+ None,
747
+ )
748
+ else:
749
+ layer_outputs = layer(
750
+ hidden_states,
751
+ attn_mask=mask,
752
+ attn_padding_mask=linear_attn_padding_mask,
753
+ past_key_value=past_key_value,
754
+ output_attentions=output_attentions,
755
+ use_cache=use_cache,
756
+ slope_rate=slope_rate,
757
+ )
758
+
759
+ hidden_states = layer_outputs[0]
760
+
761
+ if use_cache:
762
+ next_decoder_cache += (
763
+ layer_outputs[2 if output_attentions else 1], )
764
+
765
+ if output_attentions:
766
+ all_self_attns += (layer_outputs[1], )
767
+
768
+ hidden_states = self.final_norm(hidden_states)
769
+
770
+ # add hidden states from the last decoder layer
771
+ if output_hidden_states:
772
+ all_hidden_states += (hidden_states, )
773
+
774
+ next_cache = next_decoder_cache if use_cache else None
775
+ if not return_dict:
776
+ return tuple(
777
+ v for v in
778
+ [hidden_states, next_cache, all_hidden_states, all_self_attns]
779
+ if v is not None)
780
+ return BaseModelOutputWithPast(
781
+ last_hidden_state=hidden_states,
782
+ past_key_values=next_cache,
783
+ hidden_states=all_hidden_states,
784
+ attentions=all_self_attns,
785
+ )
786
+
787
+
788
+ class TransnormerForCausalLM(TransnormerPreTrainedModel):
789
+
790
+ def __init__(self, config):
791
+ super().__init__(config)
792
+ self.model = TransnormerModel(config)
793
+ if debug:
794
+ logging_info(self.model)
795
+
796
+ # the lm_head weight is automatically tied to the embed tokens weight
797
+ self.lm_head = nn.Linear(config.decoder_embed_dim,
798
+ config.vocab_size,
799
+ bias=False)
800
+
801
+ # Initialize weights and apply final processing
802
+ self.post_init()
803
+
804
+ def get_input_embeddings(self):
805
+ return self.model.embed_tokens
806
+
807
+ def set_input_embeddings(self, value):
808
+ self.model.embed_tokens = value
809
+
810
+ def get_output_embeddings(self):
811
+ return self.lm_head
812
+
813
+ def set_output_embeddings(self, new_embeddings):
814
+ self.lm_head = new_embeddings
815
+
816
+ def set_decoder(self, decoder):
817
+ self.model = decoder
818
+
819
+ def get_decoder(self):
820
+ return self.model
821
+
822
+ @add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
823
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast,
824
+ config_class=_CONFIG_FOR_DOC)
825
+ def forward(
826
+ self,
827
+ input_ids: torch.LongTensor = None,
828
+ attention_mask: Optional[torch.Tensor] = None,
829
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
830
+ inputs_embeds: Optional[torch.FloatTensor] = None,
831
+ labels: Optional[torch.LongTensor] = None,
832
+ use_cache: Optional[bool] = None,
833
+ output_attentions: Optional[bool] = None,
834
+ output_hidden_states: Optional[bool] = None,
835
+ return_dict: Optional[bool] = None,
836
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
837
+ r"""
838
+ Args:
839
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
840
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
841
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
842
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
843
+
844
+ Returns:
845
+
846
+ Example:
847
+
848
+ ```python
849
+ >>> from transformers import AutoTokenizer, TransnormerForCausalLM
850
+
851
+ >>> model = TransnormerForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
852
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
853
+
854
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
855
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
856
+
857
+ >>> # Generate
858
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
859
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
860
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
861
+ ```"""
862
+ output_attentions = (output_attentions if output_attentions is not None
863
+ else self.config.output_attentions)
864
+ output_hidden_states = (output_hidden_states
865
+ if output_hidden_states is not None else
866
+ self.config.output_hidden_states)
867
+ return_dict = (return_dict if return_dict is not None else
868
+ self.config.use_return_dict)
869
+
870
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
871
+ outputs = self.model(
872
+ input_ids=input_ids,
873
+ attn_padding_mask=attention_mask,
874
+ past_key_values=past_key_values,
875
+ inputs_embeds=inputs_embeds,
876
+ use_cache=use_cache,
877
+ output_attentions=output_attentions,
878
+ output_hidden_states=output_hidden_states,
879
+ return_dict=return_dict,
880
+ )
881
+
882
+ hidden_states = outputs[0]
883
+ logits = self.lm_head(hidden_states)
884
+
885
+ loss = None
886
+ if labels is not None:
887
+ # Shift so that tokens < n predict n
888
+ shift_logits = logits[..., :-1, :].contiguous()
889
+ shift_labels = labels[..., 1:].contiguous()
890
+ # Flatten the tokens
891
+ loss_fct = CrossEntropyLoss()
892
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
893
+ shift_labels = shift_labels.view(-1)
894
+ # Enable model parallelism
895
+ shift_labels = shift_labels.to(shift_logits.device)
896
+ loss = loss_fct(shift_logits, shift_labels)
897
+
898
+ if not return_dict:
899
+ output = (logits, ) + outputs[1:]
900
+ return (loss, ) + output if loss is not None else output
901
+
902
+ return CausalLMOutputWithPast(
903
+ loss=loss,
904
+ logits=logits,
905
+ past_key_values=outputs.past_key_values,
906
+ hidden_states=outputs.hidden_states,
907
+ attentions=outputs.attentions,
908
+ )
909
+
910
+ def prepare_inputs_for_generation(
911
+ self,
912
+ input_ids,
913
+ past_key_values=None,
914
+ attention_mask=None,
915
+ inputs_embeds=None,
916
+ **kwargs,
917
+ ):
918
+ if past_key_values:
919
+ input_ids = input_ids[:, -1:]
920
+
921
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
922
+ if inputs_embeds is not None and past_key_values is None:
923
+ model_inputs = {"inputs_embeds": inputs_embeds}
924
+ else:
925
+ model_inputs = {"input_ids": input_ids}
926
+
927
+ model_inputs.update({
928
+ "past_key_values": past_key_values,
929
+ "use_cache": kwargs.get("use_cache"),
930
+ "attention_mask": attention_mask,
931
+ })
932
+ return model_inputs
933
+
934
+ @staticmethod
935
+ def _reorder_cache(past_key_values, beam_idx):
936
+ reordered_past = ()
937
+ for layer_past in past_key_values:
938
+ reordered_past += (tuple(
939
+ past_state.index_select(0, beam_idx)
940
+ for past_state in layer_past), )
941
+ return reordered_past
942
+
943
+
944
+ @add_start_docstrings(
945
+ """
946
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
947
+
948
+ [`TransnormerForSequenceClassification`] uses the last token in order to do the classification, as other causal models
949
+ (e.g. GPT-2) do.
950
+
951
+ Since it does classification on the last token, it requires to know the position of the last token. If a
952
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
953
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
954
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
955
+ each row of the batch).
956
+ """,
957
+ TRANSNORMER_START_DOCSTRING,
958
+ )
959
+ class TransnormerForSequenceClassification(TransnormerPreTrainedModel):
960
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
961
+
962
+ def __init__(self, config):
963
+ super().__init__(config)
964
+ self.num_labels = config.num_labels
965
+ self.model = TransnormerModel(config)
966
+ self.score = nn.Linear(config.decoder_embed_dim,
967
+ self.num_labels,
968
+ bias=False)
969
+
970
+ # Initialize weights and apply final processing
971
+ self.post_init()
972
+
973
+ def get_input_embeddings(self):
974
+ return self.model.embed_tokens
975
+
976
+ def set_input_embeddings(self, value):
977
+ self.model.embed_tokens = value
978
+
979
+ @add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
980
+ def forward(
981
+ self,
982
+ input_ids: torch.LongTensor = None,
983
+ attn_mask: Optional[torch.Tensor] = None,
984
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
985
+ inputs_embeds: Optional[torch.FloatTensor] = None,
986
+ labels: Optional[torch.LongTensor] = None,
987
+ use_cache: Optional[bool] = None,
988
+ output_attentions: Optional[bool] = None,
989
+ output_hidden_states: Optional[bool] = None,
990
+ return_dict: Optional[bool] = None,
991
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
992
+ r"""
993
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
994
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
995
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
996
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
997
+ """
998
+ return_dict = (return_dict if return_dict is not None else
999
+ self.config.use_return_dict)
1000
+
1001
+ transformer_outputs = self.model(
1002
+ input_ids,
1003
+ attn_padding_mask=attn_mask,
1004
+ past_key_values=past_key_values,
1005
+ inputs_embeds=inputs_embeds,
1006
+ use_cache=use_cache,
1007
+ output_attentions=output_attentions,
1008
+ output_hidden_states=output_hidden_states,
1009
+ return_dict=return_dict,
1010
+ )
1011
+ hidden_states = transformer_outputs[0]
1012
+
1013
+ logits = self.score(hidden_states)
1014
+
1015
+ if input_ids is not None:
1016
+ batch_size = input_ids.shape[0]
1017
+ else:
1018
+ batch_size = inputs_embeds.shape[0]
1019
+
1020
+ if self.config.pad_token_id is None and batch_size != 1:
1021
+ raise ValueError(
1022
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1023
+ )
1024
+ if self.config.pad_token_id is None:
1025
+ sequence_lengths = -1
1026
+ else:
1027
+ if input_ids is not None:
1028
+ sequence_lengths = (
1029
+ torch.ne(input_ids, self.config.pad_token_id).sum(-1) -
1030
+ 1).to(logits.device)
1031
+ else:
1032
+ sequence_lengths = -1
1033
+
1034
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device),
1035
+ sequence_lengths]
1036
+
1037
+ loss = None
1038
+ if labels is not None:
1039
+ labels = labels.to(logits.device)
1040
+ if self.config.problem_type is None:
1041
+ if self.num_labels == 1:
1042
+ self.config.problem_type = "regression"
1043
+ elif self.num_labels > 1 and (labels.dtype == torch.long
1044
+ or labels.dtype == torch.int):
1045
+ self.config.problem_type = "single_label_classification"
1046
+ else:
1047
+ self.config.problem_type = "multi_label_classification"
1048
+
1049
+ if self.config.problem_type == "regression":
1050
+ loss_fct = MSELoss()
1051
+ if self.num_labels == 1:
1052
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1053
+ else:
1054
+ loss = loss_fct(pooled_logits, labels)
1055
+ elif self.config.problem_type == "single_label_classification":
1056
+ loss_fct = CrossEntropyLoss()
1057
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels),
1058
+ labels.view(-1))
1059
+ elif self.config.problem_type == "multi_label_classification":
1060
+ loss_fct = BCEWithLogitsLoss()
1061
+ loss = loss_fct(pooled_logits, labels)
1062
+ if not return_dict:
1063
+ output = (pooled_logits, ) + transformer_outputs[1:]
1064
+ return ((loss, ) + output) if loss is not None else output
1065
+
1066
+ return SequenceClassifierOutputWithPast(
1067
+ loss=loss,
1068
+ logits=pooled_logits,
1069
+ past_key_values=transformer_outputs.past_key_values,
1070
+ hidden_states=transformer_outputs.hidden_states,
1071
+ attentions=transformer_outputs.attentions,
1072
+ )
norm.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 OpenNLPLab
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import logging
16
+ import os
17
+ import sys
18
+
19
+ import torch
20
+ from torch import nn
21
+
22
+ logging.basicConfig(
23
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
24
+ datefmt="%Y-%m-%d %H:%M:%S",
25
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
26
+ stream=sys.stdout,
27
+ )
28
+ logger = logging.getLogger("srmsnorm")
29
+
30
+
31
+ class SimpleRMSNorm(nn.Module):
32
+
33
+ def __init__(self, dim: int, eps: float = 1e-6):
34
+ super().__init__()
35
+ self.eps = eps
36
+
37
+ def _norm(self, x):
38
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
39
+
40
+ def forward(self, x):
41
+ output = self._norm(x.float()).type_as(x)
42
+
43
+ return output
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
srmsnorm_triton.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CREDITS: This comes almost as-is from the Triton layer norm tutorial
2
+ # https://github.com/openai/triton/blob/master/python/tutorials/05-layer-norm.py
3
+ # Copyright 2023 OpenNLPLab
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ import torch
18
+ import torch.nn.functional as F
19
+ import triton
20
+ import triton.language as tl
21
+
22
+
23
+ # fmt: off
24
+ @triton.jit
25
+ def srms_norm_fw(X, Y, V, stride, N, eps, BLOCK_SIZE_N: tl.constexpr):
26
+ # fmt: on
27
+ row = tl.program_id(0)
28
+ cols = tl.arange(0, BLOCK_SIZE_N)
29
+ mask = cols < N
30
+
31
+ # Move to this row
32
+ x_ptrs = X + row * stride + cols
33
+ x = tl.load(x_ptrs, mask=mask, other=0.0).to(tl.float32)
34
+
35
+ x_zm = tl.where(mask, x, 0.0)
36
+
37
+ x_var = tl.sum(x_zm * x_zm, axis=0) / N
38
+ rstd = 1.0 / tl.sqrt(x_var + eps)
39
+
40
+ # Normalize, optionally affine
41
+ y = x_zm * rstd
42
+ tl.store(V + row, rstd)
43
+
44
+ y_ptrs = Y + row * stride + cols
45
+ tl.store(y_ptrs, y, mask=mask)
46
+
47
+
48
+ # Backward pass (DX + partial DW + partial DB)
49
+ # fmt: off
50
+ @triton.jit
51
+ def srms_norm_bwd_dx_fused(
52
+ DX, DY,
53
+ X, V,
54
+ stride, N,
55
+ # META-parameters
56
+ BLOCK_SIZE_N: tl.constexpr,
57
+ ):
58
+ # fmt: on
59
+
60
+ # position of elements processed by this program
61
+ row = tl.program_id(0)
62
+ cols = tl.arange(0, BLOCK_SIZE_N)
63
+ mask = cols < N
64
+
65
+ # offset data pointers to start at the row of interest
66
+ x_ptrs = X + row * stride + cols
67
+ dy_ptrs = DY + row * stride + cols
68
+
69
+ # load data to SRAM
70
+ x = tl.load(x_ptrs, mask=mask, other=0)
71
+ dy = tl.load(dy_ptrs, mask=mask, other=0)
72
+ rstd = tl.load(V + row)
73
+
74
+ # compute dx
75
+ xhat = x * rstd
76
+ wdy = dy
77
+
78
+ xhat = tl.where(mask, xhat, 0.)
79
+ wdy = tl.where(mask, wdy, 0.)
80
+ mean1 = tl.sum(xhat * wdy, axis=0) / N
81
+ dx = (wdy - (xhat * mean1)) * rstd
82
+
83
+ # write-back dx
84
+ mask = cols < N # re-materialize the mask to save registers
85
+ dx_ptrs = DX + row * stride + cols
86
+ tl.store(dx_ptrs, dx, mask=mask)
87
+
88
+
89
+ class _SrmsNorm(torch.autograd.Function):
90
+
91
+ @staticmethod
92
+ def forward(ctx, x, eps):
93
+ # catch eps being too small if the tensors are fp16
94
+ if x.dtype == torch.float16:
95
+ eps = max(eps, 1.6e-5)
96
+
97
+ # allocate output
98
+ y = torch.empty_like(x)
99
+
100
+ # reshape input data into 2D tensor
101
+ x_arg = x.reshape(-1, x.shape[-1])
102
+ M, N = x_arg.shape
103
+
104
+ # allocate mean and std, they'll be used in the backward pass
105
+ rstd = torch.empty((M, ), dtype=torch.float32, device=x.device)
106
+
107
+ # Less than 64KB per feature: enqueue fused kernel
108
+ MAX_FUSED_SIZE = 65536 // x.element_size()
109
+ BLOCK_SIZE_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
110
+ if N > BLOCK_SIZE_N:
111
+ raise RuntimeError(
112
+ "This layer norm doesn't support feature dim >= 64KB.")
113
+
114
+ if not x_arg.is_contiguous() or not y.is_contiguous():
115
+ x_arg = x_arg.contiguous()
116
+ y = y.contiguous()
117
+
118
+ # heuristics for number of warps.
119
+ num_warps = min(max(BLOCK_SIZE_N // 256, 1), 16)
120
+
121
+ # enqueue kernel
122
+ # fmt: off
123
+ srms_norm_fw[(M,)](
124
+ x_arg, y, rstd,
125
+ x_arg.stride(0),
126
+ N,
127
+ eps,
128
+ num_warps=num_warps,
129
+ BLOCK_SIZE_N=BLOCK_SIZE_N,
130
+ )
131
+ # fmt: on
132
+
133
+ ctx.save_for_backward(x, rstd)
134
+ ctx.BLOCK_SIZE_N = BLOCK_SIZE_N
135
+ ctx.num_warps = num_warps
136
+
137
+ return y.reshape_as(x)
138
+
139
+ @staticmethod
140
+ def backward(
141
+ ctx, dy
142
+ ): # pragma: no cover # this is covered, but called directly from C++
143
+ x, rstd = ctx.saved_tensors
144
+
145
+ # flatten the batch dimension, if any.
146
+ # We're interested in 'samples' x norm_dimension
147
+ x = x.reshape(-1, x.size(-1))
148
+ M, N = x.size()
149
+
150
+ # heuristics for amount of parallel reduction stream for DG/DB
151
+ GROUP_SIZE_M = 32
152
+ if N <= 8192:
153
+ GROUP_SIZE_M = 64
154
+ if N <= 4096:
155
+ GROUP_SIZE_M = 96
156
+ if N <= 2048:
157
+ GROUP_SIZE_M = 128
158
+ if N <= 1024:
159
+ GROUP_SIZE_M = 256
160
+
161
+ if dy.dtype == torch.float32:
162
+ GROUP_SIZE_M = GROUP_SIZE_M // 2
163
+
164
+ # allocate output
165
+ dy = dy.contiguous()
166
+ dx = torch.empty_like(dy)
167
+
168
+ # Check the tensor shapes and layouts
169
+ # we suppose in the kernel that they have the same size and are contiguous
170
+ assert (
171
+ dy.numel() == x.numel()
172
+ ), "Something is wrong in the backward graph, possibly because of an inplace operation after the layernorm"
173
+
174
+ # enqueue kernel using forward pass heuristics
175
+ # also compute partial sums for DW and DB
176
+ num_warps = min(max(ctx.BLOCK_SIZE_N // 256, 1), 16)
177
+
178
+ # fmt: off
179
+ srms_norm_bwd_dx_fused[(M,)](
180
+ dx, dy, x,
181
+ rstd,
182
+ x.stride(0),
183
+ N,
184
+ BLOCK_SIZE_N=ctx.BLOCK_SIZE_N,
185
+ num_warps=num_warps
186
+ )
187
+ # fmt: on
188
+
189
+ dx = dx.reshape_as(dy)
190
+ return dx, None, None
191
+
192
+
193
+ class SimpleRMSNorm(torch.nn.Module):
194
+
195
+ def __init__(self, dim: int, eps: float = 1e-6):
196
+ super().__init__()
197
+ self.eps = eps
198
+ self.dim = dim
199
+
200
+ def forward(self, x):
201
+ return _SrmsNorm.apply(x, self.eps)
tokenization_baichuan.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ import os
22
+ from shutil import copyfile
23
+ from typing import Any, Dict, List, Optional, Tuple
24
+
25
+ import sentencepiece as spm
26
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
27
+ from transformers.utils import logging
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
32
+
33
+ PRETRAINED_VOCAB_FILES_MAP = {
34
+ "vocab_file": {},
35
+ "tokenizer_file": {},
36
+ }
37
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
38
+
39
+
40
+ class BaiChuanTokenizer(PreTrainedTokenizer):
41
+ """
42
+ Construct a BaiChuan tokenizer. Based on byte-level Byte-Pair-Encoding.
43
+
44
+ Args:
45
+ vocab_file (`str`):
46
+ Path to the vocabulary file.
47
+ """
48
+
49
+ vocab_files_names = VOCAB_FILES_NAMES
50
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
51
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
52
+ model_input_names = ["input_ids", "attention_mask"]
53
+
54
+ def __init__(
55
+ self,
56
+ vocab_file,
57
+ unk_token="<unk>",
58
+ bos_token="<s>",
59
+ eos_token="</s>",
60
+ pad_token=None,
61
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
62
+ add_bos_token=True,
63
+ add_eos_token=False,
64
+ clean_up_tokenization_spaces=False,
65
+ **kwargs,
66
+ ):
67
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
68
+ bos_token = (AddedToken(bos_token, lstrip=False, rstrip=False)
69
+ if isinstance(bos_token, str) else bos_token)
70
+ eos_token = (AddedToken(eos_token, lstrip=False, rstrip=False)
71
+ if isinstance(eos_token, str) else eos_token)
72
+ unk_token = (AddedToken(unk_token, lstrip=False, rstrip=False)
73
+ if isinstance(unk_token, str) else unk_token)
74
+ pad_token = (AddedToken(pad_token, lstrip=False, rstrip=False)
75
+ if isinstance(pad_token, str) else pad_token)
76
+ super().__init__(
77
+ bos_token=bos_token,
78
+ eos_token=eos_token,
79
+ unk_token=unk_token,
80
+ pad_token=pad_token,
81
+ add_bos_token=add_bos_token,
82
+ add_eos_token=add_eos_token,
83
+ sp_model_kwargs=self.sp_model_kwargs,
84
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
85
+ **kwargs,
86
+ )
87
+ self.vocab_file = vocab_file
88
+ self.add_bos_token = add_bos_token
89
+ self.add_eos_token = add_eos_token
90
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
91
+ self.sp_model.Load(vocab_file)
92
+
93
+ def __getstate__(self):
94
+ state = self.__dict__.copy()
95
+ state["sp_model"] = None
96
+ return state
97
+
98
+ def __setstate__(self, d):
99
+ self.__dict__ = d
100
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
101
+ self.sp_model.Load(self.vocab_file)
102
+
103
+ @property
104
+ def vocab_size(self):
105
+ """Returns vocab size"""
106
+ return self.sp_model.get_piece_size()
107
+
108
+ def get_vocab(self):
109
+ """Returns vocab as a dict"""
110
+ vocab = {
111
+ self.convert_ids_to_tokens(i): i
112
+ for i in range(self.vocab_size)
113
+ }
114
+ vocab.update(self.added_tokens_encoder)
115
+ return vocab
116
+
117
+ def _tokenize(self, text):
118
+ """Returns a tokenized string."""
119
+ return self.sp_model.encode(text, out_type=str)
120
+
121
+ def _convert_token_to_id(self, token):
122
+ """Converts a token (str) in an id using the vocab."""
123
+ return self.sp_model.piece_to_id(token)
124
+
125
+ def _convert_id_to_token(self, index):
126
+ """Converts an index (integer) in a token (str) using the vocab."""
127
+ token = self.sp_model.IdToPiece(index)
128
+ return token
129
+
130
+ def convert_tokens_to_string(self, tokens):
131
+ """Converts a sequence of tokens (string) in a single string."""
132
+ current_sub_tokens = []
133
+ out_string = ""
134
+ prev_is_special = False
135
+ for i, token in enumerate(tokens):
136
+ # make sure that special tokens are not decoded using sentencepiece model
137
+ if token in self.all_special_tokens:
138
+ if not prev_is_special and i != 0:
139
+ out_string += " "
140
+ out_string += self.sp_model.decode(current_sub_tokens) + token
141
+ prev_is_special = True
142
+ current_sub_tokens = []
143
+ else:
144
+ current_sub_tokens.append(token)
145
+ prev_is_special = False
146
+ out_string += self.sp_model.decode(current_sub_tokens)
147
+ return out_string
148
+
149
+ def save_vocabulary(self,
150
+ save_directory,
151
+ filename_prefix: Optional[str] = None) -> Tuple[str]:
152
+ """
153
+ Save the vocabulary and special tokens file to a directory.
154
+
155
+ Args:
156
+ save_directory (`str`):
157
+ The directory in which to save the vocabulary.
158
+
159
+ Returns:
160
+ `Tuple(str)`: Paths to the files saved.
161
+ """
162
+ if not os.path.isdir(save_directory):
163
+ logger.error(
164
+ f"Vocabulary path ({save_directory}) should be a directory")
165
+ return
166
+ out_vocab_file = os.path.join(
167
+ save_directory,
168
+ (filename_prefix + "-" if filename_prefix else "") +
169
+ VOCAB_FILES_NAMES["vocab_file"],
170
+ )
171
+
172
+ if os.path.abspath(self.vocab_file) != os.path.abspath(
173
+ out_vocab_file) and os.path.isfile(self.vocab_file):
174
+ copyfile(self.vocab_file, out_vocab_file)
175
+ elif not os.path.isfile(self.vocab_file):
176
+ with open(out_vocab_file, "wb") as fi:
177
+ content_spiece_model = self.sp_model.serialized_model_proto()
178
+ fi.write(content_spiece_model)
179
+
180
+ return (out_vocab_file, )
181
+
182
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
183
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
184
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
185
+
186
+ output = bos_token_id + token_ids_0 + eos_token_id
187
+
188
+ if token_ids_1 is not None:
189
+ output = output + bos_token_id + token_ids_1 + eos_token_id
190
+
191
+ return output
192
+
193
+ def get_special_tokens_mask(
194
+ self,
195
+ token_ids_0: List[int],
196
+ token_ids_1: Optional[List[int]] = None,
197
+ already_has_special_tokens: bool = False,
198
+ ) -> List[int]:
199
+ """
200
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
201
+ special tokens using the tokenizer `prepare_for_model` method.
202
+
203
+ Args:
204
+ token_ids_0 (`List[int]`):
205
+ List of IDs.
206
+ token_ids_1 (`List[int]`, *optional*):
207
+ Optional second list of IDs for sequence pairs.
208
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
209
+ Whether or not the token list is already formatted with special tokens for the model.
210
+
211
+ Returns:
212
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
213
+ """
214
+ if already_has_special_tokens:
215
+ return super().get_special_tokens_mask(
216
+ token_ids_0=token_ids_0,
217
+ token_ids_1=token_ids_1,
218
+ already_has_special_tokens=True,
219
+ )
220
+
221
+ bos_token_id = [1] if self.add_bos_token else []
222
+ eos_token_id = [1] if self.add_eos_token else []
223
+
224
+ if token_ids_1 is None:
225
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
226
+ return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
227
+ bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)
228
+
229
+ def create_token_type_ids_from_sequences(
230
+ self,
231
+ token_ids_0: List[int],
232
+ token_ids_1: Optional[List[int]] = None) -> List[int]:
233
+ """
234
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
235
+ sequence pair mask has the following format:
236
+
237
+ ```
238
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
239
+ | first sequence | second sequence |
240
+ ```
241
+
242
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
243
+
244
+ Args:
245
+ token_ids_0 (`List[int]`):
246
+ List of ids.
247
+ token_ids_1 (`List[int]`, *optional*):
248
+ Optional second list of IDs for sequence pairs.
249
+
250
+ Returns:
251
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
252
+ """
253
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
254
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
255
+
256
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
257
+
258
+ if token_ids_1 is not None:
259
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
260
+
261
+ return output
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4be54af290d93c113bcbf421115ae9eed9d6340408f564898f1e966dc738ef01
3
+ size 1136699
tokenizer_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_baichuan.BaiChuanTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "add_bos_token": false,
9
+ "add_eos_token": false,
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "model_max_length": 1000000000000000019884624838656,
28
+ "sp_model_kwargs": {},
29
+ "tokenizer_class": "BaiChuanTokenizer",
30
+ "unk_token": {
31
+ "__type": "AddedToken",
32
+ "content": "<unk>",
33
+ "lstrip": false,
34
+ "normalized": true,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ }
utils.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import sys
4
+
5
+ import torch
6
+ from torch import nn
7
+ import torch.distributed as dist
8
+ import torch.nn.functional as F
9
+
10
+ from .norm import SimpleRMSNorm as SimpleRMSNormTorch
11
+ from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNormTriton
12
+
13
+ use_triton = eval(os.environ.get("use_triton", default="True"))
14
+ debug = eval(os.environ.get("debug", default="False"))
15
+
16
+ if use_triton:
17
+ SimpleRMSNorm = SimpleRMSNormTriton
18
+ else:
19
+ SimpleRMSNorm = SimpleRMSNormTorch
20
+
21
+ logging.basicConfig(
22
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
23
+ datefmt="%Y-%m-%d %H:%M:%S",
24
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
25
+ stream=sys.stdout,
26
+ )
27
+ logger = logging.getLogger("print_config")
28
+
29
+ BASE_DIM = 256
30
+
31
+
32
+ def is_dist_avail_and_initialized():
33
+ if not dist.is_available():
34
+ return False
35
+ if not dist.is_initialized():
36
+ return False
37
+ return True
38
+
39
+
40
+ def get_world_size():
41
+ if not is_dist_avail_and_initialized():
42
+ return 1
43
+ return dist.get_world_size()
44
+
45
+
46
+ def get_rank():
47
+ if not is_dist_avail_and_initialized():
48
+ return 0
49
+ return dist.get_rank()
50
+
51
+
52
+ def is_main_process():
53
+ return get_rank() == 0
54
+
55
+
56
+ def logging_info(string):
57
+ if is_main_process():
58
+ logger.info(string)
59
+
60
+
61
+ def print_params(**kwargs):
62
+ if is_main_process():
63
+ logger.info(f"start print config of {kwargs['__class__']}")
64
+ for key in kwargs:
65
+ if key in ["__class__", "self"]:
66
+ continue
67
+ logger.info(f"{key}: {kwargs[key]}")
68
+ logger.info(f"end print config of {kwargs['__class__']}")
69
+
70
+
71
+ def print_config(config):
72
+ if is_main_process():
73
+ logger.info(f"start print config of {config['__class__']}")
74
+ for key in config:
75
+ if key in ["__class__", "self"]:
76
+ continue
77
+ logger.info(f"{key}: {config[key]}")
78
+ logger.info(f"end print config of {config['__class__']}")
79
+
80
+
81
+ def print_module(module):
82
+ named_modules = set()
83
+ for p in module.named_modules():
84
+ named_modules.update([p[0]])
85
+ named_modules = list(named_modules)
86
+
87
+ string_repr = ""
88
+ for p in module.named_parameters():
89
+ name = p[0].split(".")[0]
90
+ if name not in named_modules:
91
+ string_repr = (string_repr + "(" + name + "): " + "Tensor(" +
92
+ str(tuple(p[1].shape)) + ", requires_grad=" +
93
+ str(p[1].requires_grad) + ")\n")
94
+
95
+ return string_repr.rstrip("\n")
96
+
97
+
98
+ def get_activation_fn(activation):
99
+ if debug:
100
+ logger.info(f"activation: {activation}")
101
+ if activation == "gelu":
102
+ return F.gelu
103
+ elif activation == "relu":
104
+ return F.relu
105
+ elif activation == "elu":
106
+ return F.elu
107
+ elif activation == "sigmoid":
108
+ return F.sigmoid
109
+ elif activation == "exp":
110
+
111
+ def f(x):
112
+ with torch.no_grad():
113
+ x_max = torch.max(x, dim=-1, keepdims=True).values
114
+ y = torch.exp(x - x_max)
115
+
116
+ return y
117
+
118
+ return f
119
+ elif activation == "leak":
120
+ return F.leaky_relu
121
+ elif activation == "1+elu":
122
+
123
+ def f(x):
124
+ return 1 + F.elu(x)
125
+
126
+ return f
127
+ elif activation == "2+elu":
128
+
129
+ def f(x):
130
+ return 2 + F.elu(x)
131
+
132
+ return f
133
+ elif activation == "silu" or activation == "swish":
134
+ return F.silu
135
+ elif activation == "sine":
136
+ return torch.sin
137
+ else:
138
+ logger.info(
139
+ f"activation: does not support {activation}, use Identity!!!")
140
+ return lambda x: x
141
+
142
+
143
+ def get_norm_fn(norm_type):
144
+ if norm_type == "simplermsnorm":
145
+ return SimpleRMSNorm
146
+ else:
147
+ return nn.LayerNorm
148
+
149
+
150
+ def convert_to_multiple_of_base(x):
151
+ return BASE_DIM * ((x + BASE_DIM - 1) // BASE_DIM)