--- pipeline_tag: text-generation inference: true widget: - text: 'def factorial(n):' example_title: Factorial group: Python - text: 'def recur_fibo(n):' example_title: Recursive Fibonacci group: Python license: llama2 library_name: transformers tags: - text-generation - code language: - en --- # lemur-70b-v1

Lemur

📄Paper: https://arxiv.org/abs/2310.06830 👩‍💻Code: https://github.com/OpenLemur/Lemur ## Use ### Setup First, we have to install all the libraries listed in `requirements.txt` in [GitHub](https://github.com/OpenLemur/lemur-v1): ```bash pip install -r requirements.txt ``` ### Intended use Since it is not trained on instruction following corpus, it won't respond well to questions like "What is the Python code to do quick sort?". ### Generation ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLemur/lemur-70b-v1") model = AutoModelForCausalLM.from_pretrained("OpenLemur/lemur-70b-v1", device_map="auto", load_in_8bit=True) # Text Generation Example prompt = "The world is " input = tokenizer(prompt, return_tensors="pt") output = model.generate(**input, max_length=50, num_return_sequences=1) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) # Code Generation Example prompt = """ def factorial(n): if n == 0: return 1 """ input = tokenizer(prompt, return_tensors="pt") output = model.generate(**input, max_length=200, num_return_sequences=1) generated_code = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_code) ``` # License The model is licensed under the Llama-2 community license agreement. # Acknowledgements The Lemur project is an open collaborative research effort between [XLang Lab](https://www.xlang.ai/) and Salesforce Research. We thank Salesforce, Google Research and Amazon AWS for their gift support.