--- license: cc-by-nc-4.0 language: - ro base_model: - OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09 datasets: - OpenLLM-Ro/ro_dpo_helpsteer model-index: - name: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09 results: - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: Score type: Score value: 6.77 - task: type: text-generation dataset: name: RoCulturaBench type: RoCulturaBench metrics: - name: Score type: Score value: 4.83 - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 59.08 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 54.10 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 63.41 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 70.02 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 59.35 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 57.24 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 50.39 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 97.74 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 67.40 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 27.32 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 15.96 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 32.42 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 58.68 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 80.82 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 81.50 - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: First turn type: Score value: 7.24 - name: Second turn type: Score value: 6.30 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 51.59 - name: 1-shot type: accuracy value: 50.99 - name: 3-shot type: accuracy value: 53.47 - name: 5-shot type: accuracy value: 54.84 - name: 10-shot type: accuracy value: 58.10 - name: 25-shot type: accuracy value: 55.61 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 62.15 - name: 1-shot type: accuracy value: 62.78 - name: 3-shot type: accuracy value: 64.27 - name: 5-shot type: accuracy value: 64.43 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 66.69 - name: 1-shot type: accuracy value: 68.82 - name: 3-shot type: accuracy value: 71.82 - name: 5-shot type: accuracy value: 72.77 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 56.98 - name: 1-shot type: accuracy value: 57.73 - name: 3-shot type: accuracy value: 59.29 - name: 5-shot type: accuracy value: 60.70 - name: 10-shot type: accuracy value: 62.03 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 46.78 - name: 3-shot type: accuracy value: 59.97 - name: 5-shot type: accuracy value: 64.97 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 97.30 - name: 1-shot type: macro-f1 value: 97.50 - name: 3-shot type: macro-f1 value: 97.83 - name: 5-shot type: macro-f1 value: 98.33 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 59.30 - name: 1-shot type: macro-f1 value: 65.52 - name: 3-shot type: macro-f1 value: 70.94 - name: 5-shot type: macro-f1 value: 73.85 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 17.49 - name: 1-shot type: bleu value: 30.33 - name: 3-shot type: bleu value: 30.58 - name: 5-shot type: bleu value: 30.88 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 2.17 - name: 1-shot type: bleu value: 10.69 - name: 3-shot type: bleu value: 21.68 - name: 5-shot type: bleu value: 29.28 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 23.28 - name: 1-shot type: exact_match value: 33.45 - name: 3-shot type: exact_match value: 34.37 - name: 5-shot type: exact_match value: 38.57 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 47.16 - name: 1-shot type: f1 value: 60.28 - name: 3-shot type: f1 value: 62.09 - name: 5-shot type: f1 value: 65.20 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: 75.34 - name: 3-shot type: spearman value: 82.71 - name: 5-shot type: spearman value: 84.41 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: 77.97 - name: 3-shot type: pearson value: 82.49 - name: 5-shot type: pearson value: 84.05 --- # Model Card for Model ID This model points/is identical to [RoGemma2-9b-Instruct-DPO-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09). RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 9B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [RoGemma2-9b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer) ### Model Sources - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks
Model | |||||||
gemma-2-9b-it | |||||||
RoGemma2-9b-Instruct-2024-10-09 | |||||||
RoGemma2-9b-Instruct-DPO-2024-10-09 |
Model | (Macro F1) |
(Macro F1) |
(Macro F1) |
(Macro F1) |
(Bleu) |
(Bleu) |
(Bleu) |
(Bleu) |
gemma-2-9b-it | ||||||||
RoGemma2-9b-Instruct-2024-10-09 | ||||||||
RoGemma2-9b-Instruct-DPO-2024-10-09 |
Model | ||||||||
gemma-2-9b-it | ||||||||
RoGemma2-9b-Instruct-2024-10-09 | ||||||||
RoGemma2-9b-Instruct-DPO-2024-10-09 |
Model | ||||
gemma-2-9b-it | ||||
RoGemma2-9b-Instruct-2024-10-09 | ||||
RoGemma2-9b-Instruct-DPO-2024-10-09 |
Model | ||
gemma-2-9b-it | ||
RoGemma2-9b-Instruct-2024-10-09 | ||
RoGemma2-9b-Instruct-DPO-2024-10-09 |