Doron Adler
commited on
Commit
•
6e1c9c6
1
Parent(s):
9795464
* Updated model card
Browse files* Added sample model converters
- README.md +30 -72
- converters/convert2coreml.py +439 -0
- converters/convert2flax.py +24 -0
- converters/convert2onnx.py +31 -0
- converters/convert2tf.py +21 -0
README.md
CHANGED
@@ -3,9 +3,9 @@ language: he
|
|
3 |
|
4 |
thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg
|
5 |
widget:
|
6 |
-
- text: "
|
7 |
-
- text: "
|
8 |
-
- text: "
|
9 |
- text: "החתול שלך מאוד חמוד ו"
|
10 |
|
11 |
license: mit
|
@@ -13,18 +13,28 @@ license: mit
|
|
13 |
|
14 |
# hebrew-distilgpt2
|
15 |
|
16 |
-
A tiny GPT2 based Hebrew text generation model trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program.
|
17 |
|
18 |
## Dataset
|
19 |
|
20 |
-
oscar
|
21 |
|
22 |
The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture.
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
## Training
|
25 |
|
26 |
* Done on a TPUv3-8 VM using [Huggingface's clm-flax example script](https://github.com/huggingface/transformers/blob/master/examples/flax/language-modeling/run_clm_flax.py) <BR>
|
27 |
* I have made a list of items which might make it easier for other to use this script. The list was posted to [This discussion forum](https://discuss.huggingface.co/t/ideas-for-beginner-friendlier-tpu-vm-clm-training/8351)
|
|
|
28 |
|
29 |
## Usage
|
30 |
|
@@ -33,77 +43,25 @@ The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtai
|
|
33 |
|
34 |
```python
|
35 |
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
#pip install tokenizers==0.10.3 transformers==4.8.0
|
40 |
-
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained("Norod78/distilgpt2-base-pretrained-he")
|
42 |
-
model = AutoModelForCausalLM.from_pretrained("Norod78/distilgpt2-base-pretrained-he", pad_token_id=tokenizer.eos_token_id)
|
43 |
-
|
44 |
-
prompt_text = "הנבחרת האולימפית של ישראל זכתה השנה"
|
45 |
-
max_len = 50
|
46 |
-
sample_output_num = 3
|
47 |
-
seed = 1000
|
48 |
-
|
49 |
-
import numpy as np
|
50 |
-
import torch
|
51 |
-
|
52 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
53 |
-
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
|
54 |
-
|
55 |
-
print(f"device: {device}, n_gpu: {n_gpu}")
|
56 |
-
|
57 |
-
np.random.seed(seed)
|
58 |
-
torch.manual_seed(seed)
|
59 |
-
if n_gpu > 0:
|
60 |
-
torch.cuda.manual_seed_all(seed)
|
61 |
-
|
62 |
-
model.to(device)
|
63 |
-
|
64 |
-
encoded_prompt = tokenizer.encode(
|
65 |
-
prompt_text, add_special_tokens=False, return_tensors="pt")
|
66 |
-
|
67 |
-
encoded_prompt = encoded_prompt.to(device)
|
68 |
-
|
69 |
-
if encoded_prompt.size()[-1] == 0:
|
70 |
-
input_ids = None
|
71 |
-
else:
|
72 |
-
input_ids = encoded_prompt
|
73 |
-
|
74 |
-
print("input_ids = " + str(input_ids))
|
75 |
-
|
76 |
-
if input_ids != None:
|
77 |
-
max_len += len(encoded_prompt[0])
|
78 |
-
if max_len > 1024:
|
79 |
-
max_len = 1024
|
80 |
-
|
81 |
-
print("Updated max_len = " + str(max_len))
|
82 |
-
|
83 |
-
stop_token = "<|endoftext|>"
|
84 |
-
new_lines = "\n\n\n"
|
85 |
-
|
86 |
-
sample_outputs = model.generate(
|
87 |
-
input_ids,
|
88 |
-
do_sample=True,
|
89 |
-
max_length=max_len,
|
90 |
-
top_k=50,
|
91 |
-
top_p=0.95,
|
92 |
-
num_return_sequences=sample_output_num
|
93 |
-
)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
print("\n" + 100 * '-')
|
108 |
|
|
|
|
|
109 |
```
|
|
|
3 |
|
4 |
thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg
|
5 |
widget:
|
6 |
+
- text: "האיש האחרון עלי אדמות ישב לבד בחדרו כשלפתע נשמעה נקישה"
|
7 |
+
- text: "שלום, קרואים לי"
|
8 |
+
- text: "הארי פוטר חייך חיוך נבוך"
|
9 |
- text: "החתול שלך מאוד חמוד ו"
|
10 |
|
11 |
license: mit
|
|
|
13 |
|
14 |
# hebrew-distilgpt2
|
15 |
|
16 |
+
A tiny GPT2 based Hebrew text generation model initially trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program. Then was further fine-tuned on GPU.
|
17 |
|
18 |
## Dataset
|
19 |
|
20 |
+
### oscar (unshuffled deduplicated he) - [Homepage](https://oscar-corpus.com) | [Dataset Permalink](https://huggingface.co/datasets/viewer/?dataset=oscar&config=unshuffled_deduplicated_he)
|
21 |
|
22 |
The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture.
|
23 |
|
24 |
+
### CC-100 (he) - [HomePage](https://data.statmt.org/cc-100/)
|
25 |
+
|
26 |
+
This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages. This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository.
|
27 |
+
|
28 |
+
### Misc
|
29 |
+
* Hebrew Twitter
|
30 |
+
* Wikipedia
|
31 |
+
* Various other sources
|
32 |
+
|
33 |
## Training
|
34 |
|
35 |
* Done on a TPUv3-8 VM using [Huggingface's clm-flax example script](https://github.com/huggingface/transformers/blob/master/examples/flax/language-modeling/run_clm_flax.py) <BR>
|
36 |
* I have made a list of items which might make it easier for other to use this script. The list was posted to [This discussion forum](https://discuss.huggingface.co/t/ideas-for-beginner-friendlier-tpu-vm-clm-training/8351)
|
37 |
+
* Further training was performed on GPU
|
38 |
|
39 |
## Usage
|
40 |
|
|
|
43 |
|
44 |
```python
|
45 |
|
46 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
47 |
|
48 |
+
def main():
|
49 |
+
model_name="Norod78/distilgpt2-base-pretrained-he"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
prompt_text = "שלום, קוראים לי"
|
52 |
+
generated_max_length = 192
|
53 |
|
54 |
+
print("Loading model...")
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
56 |
+
print('Loading Tokenizer...')
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
58 |
+
text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
|
59 |
|
60 |
+
print("Generating text...")
|
61 |
+
result = text_generator(prompt_text, num_return_sequences=1, batch_size=1, do_sample=True, top_k=40, top_p=0.92, temperature = 1, repetition_penalty=5.0, max_length = generated_max_length)
|
62 |
|
63 |
+
print("result = " + str(result))
|
|
|
64 |
|
65 |
+
if __name__ == '__main__':
|
66 |
+
main()
|
67 |
```
|
converters/convert2coreml.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Recreate the Core ML model from scratch using
|
3 |
+
coremltools' neural_network.NeuralNetworkBuilder
|
4 |
+
"""
|
5 |
+
import coremltools
|
6 |
+
import coremltools.models.datatypes as datatypes
|
7 |
+
from coremltools.models import neural_network as neural_network
|
8 |
+
from coremltools.models.utils import save_spec
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# get weights
|
12 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
13 |
+
|
14 |
+
model_name = "./distilgpt2-base-pretrained-he"
|
15 |
+
save_directory = "tmp/coreml/"
|
16 |
+
#!mkdir -p $save_directory
|
17 |
+
file_name = "model.mlmodel"
|
18 |
+
|
19 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
20 |
+
lm_head_model = GPT2LMHeadModel.from_pretrained(model_name).eval()
|
21 |
+
model = lm_head_model.transformer
|
22 |
+
|
23 |
+
wte = model.wte.weight.data.numpy().transpose() # shape (768, 50257) /!\ i hate this
|
24 |
+
wpe = model.wpe.weight.data.numpy().transpose() # shape (768, 1024)
|
25 |
+
|
26 |
+
sequence_length = 64
|
27 |
+
steps = 6
|
28 |
+
|
29 |
+
# build model
|
30 |
+
input_features = [
|
31 |
+
('input_ids', datatypes.Array(sequence_length)),
|
32 |
+
('position_ids', datatypes.Array(sequence_length)),
|
33 |
+
]
|
34 |
+
output_features = [('output_logits', None)]
|
35 |
+
|
36 |
+
builder = neural_network.NeuralNetworkBuilder(
|
37 |
+
input_features,
|
38 |
+
output_features,
|
39 |
+
mode=None,
|
40 |
+
disable_rank5_shape_mapping=True,
|
41 |
+
)
|
42 |
+
builder.add_expand_dims(
|
43 |
+
name='input_ids_expanded_to_rank5',
|
44 |
+
input_name='input_ids',
|
45 |
+
output_name='input_ids_expanded_to_rank5',
|
46 |
+
axes=(1, 2, 3, 4)
|
47 |
+
)
|
48 |
+
builder.add_expand_dims(
|
49 |
+
name='position_ids_expanded_to_rank5',
|
50 |
+
input_name='position_ids',
|
51 |
+
output_name='position_ids_expanded_to_rank5',
|
52 |
+
axes=(1, 2, 3, 4)
|
53 |
+
)
|
54 |
+
builder.add_embedding(
|
55 |
+
name='token_embeddings',
|
56 |
+
input_name='input_ids_expanded_to_rank5',
|
57 |
+
output_name='token_embeddings',
|
58 |
+
W=wte,
|
59 |
+
b=None,
|
60 |
+
input_dim=50257,
|
61 |
+
output_channels=768,
|
62 |
+
has_bias=False,
|
63 |
+
)
|
64 |
+
builder.add_embedding(
|
65 |
+
name='positional_embeddings',
|
66 |
+
input_name='position_ids_expanded_to_rank5',
|
67 |
+
output_name='positional_embeddings',
|
68 |
+
W=wpe,
|
69 |
+
b=None,
|
70 |
+
input_dim=1024,
|
71 |
+
output_channels=768,
|
72 |
+
has_bias=False,
|
73 |
+
)
|
74 |
+
|
75 |
+
# Input:, Output: (seq, 1, 768, 1, 1)
|
76 |
+
builder.add_add_broadcastable(
|
77 |
+
name='embeddings_addition',
|
78 |
+
input_names=['token_embeddings', 'positional_embeddings'],
|
79 |
+
output_name=f'{0}_previous_block'
|
80 |
+
)
|
81 |
+
|
82 |
+
for i in range(steps):
|
83 |
+
print(i)
|
84 |
+
ln_weight = model.h[i].ln_1.weight.data.numpy().reshape((1, 1, 768, 1, 1))
|
85 |
+
ln_bias = model.h[i].ln_1.bias.data.numpy().reshape((1, 1, 768, 1, 1))
|
86 |
+
ln_epsilon = model.h[i].ln_1.eps
|
87 |
+
|
88 |
+
builder.add_mvn(
|
89 |
+
name=f"{i}_block_ln_1",
|
90 |
+
input_name=f"{i}_previous_block",
|
91 |
+
# output_name=f"{i}_block_ln_1_output",
|
92 |
+
output_name=f"{i}_block_ln_1",
|
93 |
+
across_channels=True,
|
94 |
+
normalize_variance=True,
|
95 |
+
epsilon=ln_epsilon
|
96 |
+
)
|
97 |
+
|
98 |
+
builder.add_scale(
|
99 |
+
name=f"{i}_block_ln_1_scaled",
|
100 |
+
input_name=f"{i}_block_ln_1",
|
101 |
+
output_name=f"{i}_block_ln_1_scaled",
|
102 |
+
W=ln_weight,
|
103 |
+
b=ln_bias,
|
104 |
+
has_bias=True,
|
105 |
+
shape_scale=[768],
|
106 |
+
shape_bias=[768]
|
107 |
+
)
|
108 |
+
|
109 |
+
builder.add_transpose(
|
110 |
+
name=f"{i}_block_ln_1_reshape",
|
111 |
+
input_name=f"{i}_block_ln_1_scaled",
|
112 |
+
output_name=f"{i}_block_ln_1_scaled_transposed",
|
113 |
+
axes=(1, 0, 2, 3, 4)
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
conv_1D_bias = model.h[i].attn.c_attn.bias.data.numpy().reshape((1, 1, 2304, 1, 1))
|
118 |
+
conv_1D_weights = model.h[i].attn.c_attn.weight.data.numpy().transpose().reshape((1, 768, 2304, 1, 1))
|
119 |
+
|
120 |
+
builder.add_inner_product(
|
121 |
+
name=f"{i}_block_attn_conv",
|
122 |
+
input_name=f"{i}_block_ln_1_scaled_transposed",
|
123 |
+
output_name=f"{i}_block_attn_conv",
|
124 |
+
input_channels=768,
|
125 |
+
output_channels=2304,
|
126 |
+
W=conv_1D_weights,
|
127 |
+
b=conv_1D_bias,
|
128 |
+
has_bias=True
|
129 |
+
)
|
130 |
+
|
131 |
+
builder.add_split(
|
132 |
+
name=f"{i}_block_attn_qkv_split",
|
133 |
+
input_name=f"{i}_block_attn_conv",
|
134 |
+
output_names=[f"{i}_block_attn_q", f"{i}_block_attn_k", f"{i}_block_attn_v"]
|
135 |
+
)
|
136 |
+
|
137 |
+
builder.add_rank_preserving_reshape(
|
138 |
+
name=f"{i}_block_attn_q_reshape",
|
139 |
+
input_name=f"{i}_block_attn_q",
|
140 |
+
output_name=f"{i}_block_attn_q_reshape",
|
141 |
+
output_shape=(1, 1, sequence_length, 12, 64)
|
142 |
+
)
|
143 |
+
|
144 |
+
builder.add_transpose(
|
145 |
+
name=f"{i}_block_attn_q_reshape_permuted",
|
146 |
+
input_name=f"{i}_block_attn_q_reshape",
|
147 |
+
output_name=f"{i}_block_attn_q_reshape_permuted",
|
148 |
+
axes=(0, 1, 3, 2, 4)
|
149 |
+
)
|
150 |
+
|
151 |
+
builder.add_rank_preserving_reshape(
|
152 |
+
name=f"{i}_block_attn_k_reshape",
|
153 |
+
input_name=f"{i}_block_attn_k",
|
154 |
+
output_name=f"{i}_block_attn_k_reshape",
|
155 |
+
output_shape=(1, 1, sequence_length, 12, 64)
|
156 |
+
)
|
157 |
+
|
158 |
+
builder.add_transpose(
|
159 |
+
name=f"{i}_block_attn_k_reshape_permuted",
|
160 |
+
input_name=f"{i}_block_attn_k_reshape",
|
161 |
+
output_name=f"{i}_block_attn_k_reshape_permuted",
|
162 |
+
axes=(0, 1, 3, 4, 2)
|
163 |
+
)
|
164 |
+
|
165 |
+
builder.add_rank_preserving_reshape(
|
166 |
+
name=f"{i}_block_attn_v_reshape",
|
167 |
+
input_name=f"{i}_block_attn_v",
|
168 |
+
output_name=f"{i}_block_attn_v_reshape",
|
169 |
+
output_shape=(1, 1, sequence_length, 12, 64)
|
170 |
+
)
|
171 |
+
|
172 |
+
builder.add_transpose(
|
173 |
+
name=f"{i}_block_attn_v_reshape_permuted",
|
174 |
+
input_name=f"{i}_block_attn_v_reshape",
|
175 |
+
output_name=f"{i}_block_attn_v_reshape_permuted",
|
176 |
+
axes=(0, 1, 3, 2, 4)
|
177 |
+
)
|
178 |
+
|
179 |
+
builder.add_batched_mat_mul(
|
180 |
+
name=f"{i}_block_attn_qv_matmul",
|
181 |
+
input_names=[f"{i}_block_attn_q_reshape_permuted", f"{i}_block_attn_k_reshape_permuted"],
|
182 |
+
output_name=f"{i}_block_attn_qv_matmul"
|
183 |
+
)
|
184 |
+
|
185 |
+
builder.add_scale(
|
186 |
+
name=f"{i}_block_attn_qv_matmul_scaled",
|
187 |
+
input_name=f"{i}_block_attn_qv_matmul",
|
188 |
+
output_name=f"{i}_block_attn_qv_matmul_scaled",
|
189 |
+
W=np.array(1/8),
|
190 |
+
b=0,
|
191 |
+
has_bias=False
|
192 |
+
)
|
193 |
+
|
194 |
+
bias_0 = model.h[i].attn.bias
|
195 |
+
nd = ns = sequence_length
|
196 |
+
b = (model.h[i].attn.bias[:, :, ns-nd:ns, :ns]).unsqueeze(0)
|
197 |
+
|
198 |
+
builder.add_scale(
|
199 |
+
name=f"{i}_block_attn_bias",
|
200 |
+
input_name=f"{i}_block_attn_qv_matmul_scaled",
|
201 |
+
output_name=f"{i}_block_attn_bias",
|
202 |
+
W=b,
|
203 |
+
b=None,
|
204 |
+
has_bias=False,
|
205 |
+
shape_scale=[1, sequence_length, sequence_length]
|
206 |
+
)
|
207 |
+
|
208 |
+
bias_constant_0 = - 1e4 * (1 - b)
|
209 |
+
|
210 |
+
builder.add_bias(
|
211 |
+
name=f"{i}_block_attn_afterbias",
|
212 |
+
input_name=f"{i}_block_attn_bias",
|
213 |
+
output_name=f"{i}_block_attn_afterbias",
|
214 |
+
# output_name=f"output_logits",
|
215 |
+
b=bias_constant_0,
|
216 |
+
shape_bias=[1, sequence_length, sequence_length],
|
217 |
+
)
|
218 |
+
|
219 |
+
builder.add_squeeze(
|
220 |
+
name=f"{i}_squeezit",
|
221 |
+
input_name=f"{i}_block_attn_afterbias",
|
222 |
+
output_name=f"{i}_squeezit",
|
223 |
+
axes=[0, 1]
|
224 |
+
)
|
225 |
+
|
226 |
+
builder.add_softmax(
|
227 |
+
name=f"{i}_block_attn_softmax",
|
228 |
+
input_name=f"{i}_squeezit",
|
229 |
+
output_name=f"{i}_block_attn_softmax",
|
230 |
+
)
|
231 |
+
|
232 |
+
builder.add_expand_dims(
|
233 |
+
name=f"{i}_expandit",
|
234 |
+
input_name=f"{i}_block_attn_softmax",
|
235 |
+
output_name=f"{i}_expandit",
|
236 |
+
axes=[0, 1]
|
237 |
+
)
|
238 |
+
|
239 |
+
builder.add_batched_mat_mul(
|
240 |
+
name=f"{i}_block_full_attention",
|
241 |
+
input_names=[f"{i}_expandit", f"{i}_block_attn_v_reshape_permuted"],
|
242 |
+
output_name=f"{i}_block_full_attention"
|
243 |
+
)
|
244 |
+
|
245 |
+
builder.add_transpose(
|
246 |
+
name=f"{i}_block_full_attention_merged_t",
|
247 |
+
input_name=f"{i}_block_full_attention",
|
248 |
+
output_name=f"{i}_block_full_attention_merged_t",
|
249 |
+
axes=[0, 1, 3, 2, 4]
|
250 |
+
)
|
251 |
+
|
252 |
+
builder.add_rank_preserving_reshape(
|
253 |
+
name=f"{i}_block_full_attention_merged",
|
254 |
+
input_name=f"{i}_block_full_attention_merged_t",
|
255 |
+
output_name=f"{i}_block_full_attention_merged",
|
256 |
+
output_shape=[1, 1, 1, sequence_length, 768]
|
257 |
+
)
|
258 |
+
|
259 |
+
builder.add_transpose(
|
260 |
+
name=f"{i}_block_attn_conv_proj_t",
|
261 |
+
input_name=f"{i}_block_full_attention_merged",
|
262 |
+
output_name=f"{i}_block_attn_conv_proj_t",
|
263 |
+
axes=[0, 3, 4, 1, 2]
|
264 |
+
)
|
265 |
+
|
266 |
+
conv_1D_proj_bias = model.h[i].attn.c_proj.bias.data.numpy().reshape((1, 1, 768, 1, 1))
|
267 |
+
conv_1D_proj_weights = model.h[i].attn.c_proj.weight.data.numpy().transpose().reshape((1, 768, 768, 1, 1))
|
268 |
+
|
269 |
+
# Input:, Output: (1, 3, 768, 1, 1)
|
270 |
+
builder.add_inner_product(
|
271 |
+
name=f"{i}_block_attn_conv_proj",
|
272 |
+
input_name=f"{i}_block_attn_conv_proj_t",
|
273 |
+
output_name=f"{i}_block_attn_conv_proj",
|
274 |
+
input_channels=768,
|
275 |
+
output_channels=768,
|
276 |
+
W=conv_1D_proj_weights,
|
277 |
+
b=conv_1D_proj_bias,
|
278 |
+
has_bias=True
|
279 |
+
)
|
280 |
+
|
281 |
+
# Input: (seq, 1, 768, 1, 1), Output: (1, seq, 768, 1, 1)
|
282 |
+
builder.add_transpose(
|
283 |
+
name=f"{i}_previous_block_t",
|
284 |
+
input_name=f'{i}_previous_block',
|
285 |
+
output_name=f"{i}_previous_block_t",
|
286 |
+
axes=[1, 0, 2, 3, 4]
|
287 |
+
)
|
288 |
+
|
289 |
+
# Input: [(1, seq, 768, 1, 1), (1, seq, 768, 1, 1)], Output: (1, seq, 768, 1, 1)
|
290 |
+
builder.add_add_broadcastable(
|
291 |
+
name=f"{i}_block_xa_sum",
|
292 |
+
input_names=[f"{i}_previous_block_t", f"{i}_block_attn_conv_proj"],
|
293 |
+
output_name=f"{i}_block_xa_sum",
|
294 |
+
# output_name=f"output_logits"
|
295 |
+
)
|
296 |
+
|
297 |
+
ln_2_weight = model.h[i].ln_2.weight.data.numpy().reshape((1, 1, 768, 1, 1))
|
298 |
+
ln_2_bias = model.h[i].ln_2.bias.data.numpy().reshape((1, 1, 768, 1, 1))
|
299 |
+
ln_2_epsilon = model.h[i].ln_2.eps
|
300 |
+
|
301 |
+
# Input: (1, seq, 768, 1, 1), Output:
|
302 |
+
builder.add_mvn(
|
303 |
+
name=f"{i}_block_ln_2",
|
304 |
+
input_name=f"{i}_block_xa_sum",
|
305 |
+
output_name=f"{i}_block_ln_2",
|
306 |
+
across_channels=True,
|
307 |
+
normalize_variance=True,
|
308 |
+
epsilon=ln_2_epsilon
|
309 |
+
)
|
310 |
+
|
311 |
+
builder.add_scale(
|
312 |
+
name=f"{i}_block_ln_2_scaled",
|
313 |
+
input_name=f"{i}_block_ln_2",
|
314 |
+
# output_name=f"output_logits",
|
315 |
+
output_name=f"{i}_block_ln_2_scaled",
|
316 |
+
W=ln_2_weight,
|
317 |
+
b=ln_2_bias,
|
318 |
+
has_bias=True,
|
319 |
+
shape_scale=[768],
|
320 |
+
shape_bias=[768]
|
321 |
+
)
|
322 |
+
|
323 |
+
mlp_conv_1D_fc_bias = model.h[i].mlp.c_fc.bias.data.numpy().reshape((1, 1, 3072, 1, 1))
|
324 |
+
mlp_conv_1D_fc_weights = model.h[i].mlp.c_fc.weight.data.numpy().transpose().reshape((1, 768, 3072, 1, 1))
|
325 |
+
|
326 |
+
# Input:, Output: (1, 3, 3072, 1, 1)
|
327 |
+
builder.add_inner_product(
|
328 |
+
name=f"{i}_block_mlp_conv_fc",
|
329 |
+
input_name=f"{i}_block_ln_2_scaled",
|
330 |
+
output_name=f"{i}_block_mlp_conv_fc",
|
331 |
+
# output_name=f"output_logits",
|
332 |
+
input_channels=768,
|
333 |
+
output_channels=3072,
|
334 |
+
W=mlp_conv_1D_fc_weights,
|
335 |
+
b=mlp_conv_1D_fc_bias,
|
336 |
+
has_bias=True
|
337 |
+
)
|
338 |
+
|
339 |
+
builder.add_gelu(
|
340 |
+
name=f"{i}_block_mlp_gelu",
|
341 |
+
input_name=f"{i}_block_mlp_conv_fc",
|
342 |
+
output_name=f"{i}_block_mlp_gelu",
|
343 |
+
# output_name=f"output_logits",
|
344 |
+
mode='TANH_APPROXIMATION'
|
345 |
+
)
|
346 |
+
|
347 |
+
mlp_conv_1D_proj_bias = model.h[i].mlp.c_proj.bias.data.numpy().reshape((1, 1, 768, 1, 1))
|
348 |
+
mlp_conv_1D_proj_weights = model.h[i].mlp.c_proj.weight.data.numpy().transpose().reshape((1, 3072, 768, 1, 1))
|
349 |
+
|
350 |
+
# Input:, Output: (1, 3, 3072, 1, 1)
|
351 |
+
builder.add_inner_product(
|
352 |
+
name=f"{i}_block_mlp_conv_proj",
|
353 |
+
input_name=f"{i}_block_mlp_gelu",
|
354 |
+
output_name=f"{i}_block_mlp_conv_proj",
|
355 |
+
# output_name=f"output_logits",
|
356 |
+
input_channels=3072,
|
357 |
+
output_channels=768,
|
358 |
+
W=mlp_conv_1D_proj_weights,
|
359 |
+
b=mlp_conv_1D_proj_bias,
|
360 |
+
has_bias=True
|
361 |
+
)
|
362 |
+
|
363 |
+
builder.add_add_broadcastable(
|
364 |
+
name=f"{i}_block_xm_sum",
|
365 |
+
input_names=[f"{i}_block_xa_sum", f"{i}_block_mlp_conv_proj"],
|
366 |
+
# output_name=f"output_logits"
|
367 |
+
output_name=f"{i + 1}_previous_block_final"
|
368 |
+
)
|
369 |
+
|
370 |
+
builder.add_transpose(
|
371 |
+
name=f"{i}_block_xm_sum_t",
|
372 |
+
input_name=f"{i + 1}_previous_block_final",
|
373 |
+
output_name=f"{i + 1}_previous_block",
|
374 |
+
axes=[1, 0, 2, 3, 4]
|
375 |
+
)
|
376 |
+
|
377 |
+
|
378 |
+
ln_f_weight = model.ln_f.weight.data.numpy().reshape((1, 1, 768, 1, 1))
|
379 |
+
ln_f_bias = model.ln_f.bias.data.numpy().reshape((1, 1, 768, 1, 1))
|
380 |
+
ln_f_epsilon = model.ln_f.eps
|
381 |
+
|
382 |
+
# Input: (1, seq, 768, 1, 1), Output:
|
383 |
+
builder.add_mvn(
|
384 |
+
name=f"ln_f",
|
385 |
+
input_name=f"{steps}_previous_block_final",
|
386 |
+
output_name=f"ln_f",
|
387 |
+
# output_name=f"output_logits",
|
388 |
+
across_channels=True,
|
389 |
+
normalize_variance=True,
|
390 |
+
epsilon=ln_f_epsilon
|
391 |
+
)
|
392 |
+
|
393 |
+
builder.add_scale(
|
394 |
+
name=f"ln_f_scaled",
|
395 |
+
input_name=f"ln_f",
|
396 |
+
output_name=f"ln_f_scaled",
|
397 |
+
# output_name=f"output_logits",
|
398 |
+
W=ln_f_weight,
|
399 |
+
b=ln_f_bias,
|
400 |
+
has_bias=True,
|
401 |
+
shape_scale=[768],
|
402 |
+
shape_bias=[768]
|
403 |
+
)
|
404 |
+
|
405 |
+
lm_head_weights = lm_head_model.lm_head.weight.data.numpy().reshape((1, 50257, 768, 1, 1))
|
406 |
+
|
407 |
+
builder.add_inner_product(
|
408 |
+
name="lm_head",
|
409 |
+
input_name="ln_f_scaled",
|
410 |
+
output_name="output_logits",
|
411 |
+
input_channels=768,
|
412 |
+
output_channels=50257,
|
413 |
+
W=lm_head_weights,
|
414 |
+
b=None,
|
415 |
+
has_bias=False
|
416 |
+
)
|
417 |
+
|
418 |
+
# compile spec to model
|
419 |
+
mlmodel = coremltools.models.MLModel(builder.spec)
|
420 |
+
|
421 |
+
#save_spec(builder.spec, f'./{model_name}-{sequence_length}-{steps}.mlmodel')
|
422 |
+
save_spec(builder.spec, f'./{save_directory}{file_name}')
|
423 |
+
# model = coremltools.models.MLModel('gpt2.mlmodel')
|
424 |
+
|
425 |
+
# input_ids = np.zeros(sequence_length)
|
426 |
+
# position_ids = np.arange(sequence_length).astype(np.float)
|
427 |
+
|
428 |
+
# input_data = {
|
429 |
+
# 'input_ids': input_ids,
|
430 |
+
# 'position_ids': position_ids,
|
431 |
+
# }
|
432 |
+
|
433 |
+
# predictions = mlmodel.predict(input_data)["output_logits"]
|
434 |
+
# equal = np.amax(predictions - mlp_conv_proj.detach().numpy())
|
435 |
+
|
436 |
+
# print(predictions)
|
437 |
+
|
438 |
+
|
439 |
+
# save_spec(builder.spec, 'gpt2.mlmodel')
|
converters/convert2flax.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
from transformers import AutoConfig, FlaxAutoModelForCausalLM
|
8 |
+
|
9 |
+
logging.basicConfig(
|
10 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
11 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
12 |
+
level=logging.INFO,
|
13 |
+
)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
model_path = "./distilgpt2-base-pretrained-he"
|
17 |
+
save_directory = "./tmp/flax/"
|
18 |
+
|
19 |
+
config_path = os.path.join(model_path, 'config.json')
|
20 |
+
|
21 |
+
# Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
|
22 |
+
config = AutoConfig.from_pretrained(config_path)
|
23 |
+
model = FlaxAutoModelForCausalLM.from_pretrained(model_path, from_pt=True, config=config)
|
24 |
+
model.save_pretrained(save_directory)
|
converters/convert2onnx.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import transformers
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel, AutoConfig
|
6 |
+
from transformers.onnx import FeaturesManager, convert, export
|
7 |
+
from pathlib import Path
|
8 |
+
import os
|
9 |
+
|
10 |
+
model_id = "./distilgpt2-base-pretrained-he"
|
11 |
+
export_folder = "tmp/onnx/"
|
12 |
+
file_name = "model.onnx"
|
13 |
+
|
14 |
+
print('Loading tokenizer...')
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
16 |
+
print('Saving tokenizer to ', export_folder)
|
17 |
+
tokenizer.save_pretrained(export_folder)
|
18 |
+
print('Loading model...')
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
20 |
+
|
21 |
+
feature= "causal-lm"
|
22 |
+
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(model, feature=feature)
|
23 |
+
onnx_config = model_onnx_config(model.config)
|
24 |
+
|
25 |
+
print("model_kind = {0}\nonx_config = {1}\n".format(model_kind, onnx_config))
|
26 |
+
|
27 |
+
onnx_path = Path(export_folder+file_name)
|
28 |
+
|
29 |
+
print('Exporting model to ', onnx_path)
|
30 |
+
onnx_inputs, onnx_outputs = export(tokenizer, model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
|
31 |
+
print('Done')
|
converters/convert2tf.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Requires transformers >= 4.21.0;
|
2 |
+
# Sampling outputs may differ, depending on your hardware.
|
3 |
+
from transformers import AutoTokenizer, TFAutoModelForCausalLM
|
4 |
+
|
5 |
+
model_checkpoint = "./distilgpt2-base-pretrained-he"
|
6 |
+
save_directory = "tmp/tf/"
|
7 |
+
file_name = "tf_model.h5"
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
10 |
+
model = TFAutoModelForCausalLM.from_pretrained(model_checkpoint, from_pt=True)
|
11 |
+
model.config.pad_token_id = model.config.eos_token_id
|
12 |
+
inputs = tokenizer(["צחוקים ושיגועים"], return_tensors="tf")
|
13 |
+
|
14 |
+
generated = model.generate(**inputs, do_sample=True, seed=(42, 0))
|
15 |
+
print("Sampling output: ", tokenizer.decode(generated[0]))
|
16 |
+
|
17 |
+
model.save_pretrained(save_directory, file_name=file_name)
|
18 |
+
tokenizer.save_pretrained(save_directory)
|
19 |
+
|
20 |
+
# > Sampling output: TensorFlow is a great learning platform for learning about
|
21 |
+
# data structure and structure in data science..
|