Update stats.md
Browse files
stats.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- 'no'
|
4 |
+
license: apache-2.0
|
5 |
+
base_model: NbAiLab/nb-whisper-base-v0.8-vad3
|
6 |
+
tags:
|
7 |
+
- audio
|
8 |
+
- asr
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- hf-asr-leaderboard
|
11 |
+
model-index:
|
12 |
+
- name: nb-whisper-base-v0.8-vad3-verbatim
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
17 |
+
probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# nb-whisper-base-v0.8-vad3-verbatim
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [NbAiLab/nb-whisper-base-v0.8-vad3](https://huggingface.co/NbAiLab/nb-whisper-base-v0.8-vad3) on the NbAiLab/NPSC dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- step: 249
|
24 |
+
- validation_loss: 0.5419
|
25 |
+
- train_loss: 0.4718
|
26 |
+
- validation_wer: 11.3249
|
27 |
+
- validation_cer: 3.9000
|
28 |
+
- validation_exact_wer: 11.5693
|
29 |
+
- validation_exact_cer: 3.9375
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0001
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- per_device_train_batch_size: 32
|
51 |
+
- total_train_batch_size_per_node: 128
|
52 |
+
- total_train_batch_size: 1024
|
53 |
+
- total_optimization_steps: 250
|
54 |
+
- starting_optimization_step: None
|
55 |
+
- finishing_optimization_step: 250
|
56 |
+
- num_train_dataset_workers: 32
|
57 |
+
- num_hosts: 8
|
58 |
+
- total_num_training_examples: 256,000
|
59 |
+
- steps_per_epoch: 45
|
60 |
+
- num_beams: None
|
61 |
+
- weight_decay: 0.01
|
62 |
+
- adam_beta1: 0.9
|
63 |
+
- adam_beta2: 0.98
|
64 |
+
- adam_epsilon: 1e-06
|
65 |
+
- dropout: True
|
66 |
+
- bpe_dropout_probability: 0.2
|
67 |
+
- activation_dropout_probability: 0.1
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| step | validation_loss | train_loss | validation_wer | validation_cer | validation_exact_wer | validation_exact_cer |
|
72 |
+
|:----:|:---------------:|:----------:|:--------------:|:--------------:|:--------------------:|:--------------------:|
|
73 |
+
| 0 | 1.2371 | 1.2082 | 21.0503 | 11.5619 | 35.6160 | 14.7314 |
|
74 |
+
| 40 | 0.5799 | 0.5877 | 13.1592 | 4.4751 | 13.4138 | 4.5352 |
|
75 |
+
| 80 | 0.5521 | 0.5398 | 11.8506 | 4.0542 | 12.0939 | 4.0935 |
|
76 |
+
| 120 | 0.5469 | 0.4995 | 11.6884 | 3.9923 | 11.9641 | 4.0345 |
|
77 |
+
| 160 | 0.5441 | 0.4875 | 11.3864 | 3.9305 | 11.6257 | 3.9651 |
|
78 |
+
| 200 | 0.5422 | 0.4770 | 11.3808 | 3.9209 | 11.6370 | 3.9631 |
|
79 |
+
| 240 | 0.5417 | 0.4789 | 11.2913 | 3.8886 | 11.5241 | 3.9251 |
|
80 |
+
| 249 | 0.5419 | 0.4718 | 11.3249 | 3.9000 | 11.5693 | 3.9375 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.34.1
|
86 |
+
- Datasets 2.16.1
|
87 |
+
- Tokenizers 0.14.1
|