--- base_model: Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT-1.0 library_name: transformers pipeline_tag: text-generation datasets: - meta-math/MetaMathQA --- DALL-E-2024-08-08-05-52-48-Craft-an-epic-and-historic-image-for-a-model-card-blending-elements-of-an # Model Card for Na0s/Llama-3.1-8B-Pruned-4-Layers_LoRA-PEFT-2.0 ## Model Details ### Model Description - **Finetuned from model:[Na0s/Llama-3.1-8b-Pruned-4-Layers-1.0]** ## Training Details model = FastLanguageModel.get_peft_model( model, r = 4, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 4, lora_dropout = 0.05, bias = "none", use_gradient_checkpointing = "unsloth", random_state = 3407, use_rslora = False, loftq_config = None, ) from trl import SFTTrainer from transformers import TrainingArguments from unsloth import is_bfloat16_supported trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field = "completion", max_seq_length = max_seq_length, dataset_num_proc = 2, packing = False, args = TrainingArguments( per_device_train_batch_size = 10, gradient_accumulation_steps = 4, warmup_steps = 5, max_steps=5000, learning_rate = 2e-4, fp16 = not is_bfloat16_supported(), bf16 = is_bfloat16_supported(), logging_steps = 1, optim = "adamw_8bit", weight_decay = 0.01, lr_scheduler_type = "cosine", seed = 3407, output_dir = "outputs_4", push_to_hub=True, hub_always_push=True, ), ) ### Training Data [meta-math/MetaMathQA] ## Evaluation MMLU Pro 0-shot: 0.2872 #### Evaluation Data [TIGER-AI-Lab/MMLU-Pro] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).