Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
unsloth๋ฅผ ์ฌ์ฉํ์ฌ meta-llama/Meta-Llama-3.1-8B-Instruct ๋ชจ๋ธ์ LORA ํ์ธํ๋์ ์๋ฃํ์ต๋๋ค.
MarkrAI/KOpen-HQ-Hermes-2.5-60k ๋ฐ์ดํฐ๋ฅผ ํ์ต์์ผฐ์ต๋๋ค.
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4")
model = AutoModelForCausalLM.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4")
Chatbot
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
tokenizer = AutoTokenizer.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4")
model = AutoModelForCausalLM.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4")
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
device=0,
)
def answering(question):
messages = [
{"role": "system", "content": "๋น์ ์ ํญ์ ์น์ ํ๊ฒ ๋๋ตํ๋ ์๋ด์์
๋๋ค."},
{"role": "user", "content": question},
]
outputs = pipeline(
messages,
max_new_tokens=1024,
pad_token_id = pipeline.tokenizer.eos_token_id
)
return outputs[0]["generated_text"][2]['content']
while True:
question = input("์ง๋ฌธ์ ์
๋ ฅํ์ธ์ : ")
if question == "์ข
๋ฃ":
print("ํ๋ก๊ทธ๋จ ์ข
๋ฃ")
break
answer = answering(question)
print(f"AI์ ๋ต๋ณ: {answer}")
Contact : [email protected]
- Downloads last month
- 0
Inference API (serverless) does not yet support adapter-transformers models for this pipeline type.