remain ckpt
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- aniportrait/.DS_Store +0 -0
- aniportrait/audio2ldmk.py +0 -310
- aniportrait/configs/config.yaml +0 -12
- aniportrait/configs/inference_audio.yaml +0 -17
- aniportrait/configs/inference_v2.yaml +0 -35
- aniportrait/src/.DS_Store +0 -0
- aniportrait/src/audio_models/mish.py +0 -51
- aniportrait/src/audio_models/model.py +0 -71
- aniportrait/src/audio_models/pose_model.py +0 -125
- aniportrait/src/audio_models/torch_utils.py +0 -25
- aniportrait/src/audio_models/wav2vec2.py +0 -125
- aniportrait/src/utils/audio_util.py +0 -30
- aniportrait/src/utils/draw_util.py +0 -149
- aniportrait/src/utils/face_landmark.py +0 -3305
- aniportrait/src/utils/frame_interpolation.py +0 -69
- aniportrait/src/utils/mp_models/blaze_face_short_range.tflite +0 -3
- aniportrait/src/utils/mp_models/face_landmarker_v2_with_blendshapes.task +0 -3
- aniportrait/src/utils/mp_models/pose_landmarker_heavy.task +0 -3
- aniportrait/src/utils/mp_utils.py +0 -95
- aniportrait/src/utils/pose_util.py +0 -89
- aniportrait/src/utils/util.py +0 -181
- ckpt_tree.md +0 -108
- expression.mat +0 -3
- models/.DS_Store +0 -0
- models/cmp/.DS_Store +0 -0
- models/cmp/experiments/.DS_Store +0 -0
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/config.yaml +0 -59
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/resume.sh +0 -8
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/resume_slurm.sh +0 -9
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/train.sh +0 -6
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/train_slurm.sh +0 -7
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/validate.sh +0 -6
- models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/validate_slurm.sh +0 -8
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/config.yaml +0 -58
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/resume.sh +0 -8
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/resume_slurm.sh +0 -9
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/train.sh +0 -6
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/train_slurm.sh +0 -7
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/validate.sh +0 -6
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/validate_slurm.sh +0 -8
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/config.yaml +0 -58
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/resume.sh +0 -6
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/resume_slurm.sh +0 -9
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/train.sh +0 -4
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/train_slurm.sh +0 -7
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/validate.sh +0 -6
- models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/validate_slurm.sh +0 -8
- models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/config.yaml +0 -61
- models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/resume.sh +0 -8
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
aniportrait/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
aniportrait/audio2ldmk.py
DELETED
@@ -1,310 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
# import ffmpeg
|
4 |
-
import random
|
5 |
-
import numpy as np
|
6 |
-
import cv2
|
7 |
-
import torch
|
8 |
-
import torchvision
|
9 |
-
from omegaconf import OmegaConf
|
10 |
-
from PIL import Image
|
11 |
-
|
12 |
-
from src.audio_models.model import Audio2MeshModel
|
13 |
-
from src.audio_models.pose_model import Audio2PoseModel
|
14 |
-
from src.utils.audio_util import prepare_audio_feature
|
15 |
-
from src.utils.mp_utils import LMKExtractor
|
16 |
-
from src.utils.pose_util import project_points, smooth_pose_seq
|
17 |
-
|
18 |
-
|
19 |
-
PARTS = [
|
20 |
-
('FACE', [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], (10, 200, 10)),
|
21 |
-
('LEFT_EYE', [43, 44, 45, 46, 47, 48, 43], (180, 200, 10)),
|
22 |
-
('LEFT_EYEBROW', [23, 24, 25, 26, 27], (180, 220, 10)),
|
23 |
-
('RIGHT_EYE', [37, 38, 39, 40, 41, 42, 37], (10, 200, 180)),
|
24 |
-
('RIGHT_EYEBROW', [18, 19, 20, 21, 22], (10, 220, 180)),
|
25 |
-
('NOSE_UP', [28, 29, 30, 31], (10, 200, 250)),
|
26 |
-
('NOSE_DOWN', [32, 33, 34, 35, 36], (250, 200, 10)),
|
27 |
-
('LIPS_OUTER_BOTTOM_LEFT', [55, 56, 57, 58], (10, 180, 20)),
|
28 |
-
('LIPS_OUTER_BOTTOM_RIGHT', [49, 60, 59, 58], (20, 10, 180)),
|
29 |
-
('LIPS_INNER_BOTTOM_LEFT', [65, 66, 67], (100, 100, 30)),
|
30 |
-
('LIPS_INNER_BOTTOM_RIGHT', [61, 68, 67], (100, 150, 50)),
|
31 |
-
('LIPS_OUTER_TOP_LEFT', [52, 53, 54, 55], (20, 80, 100)),
|
32 |
-
('LIPS_OUTER_TOP_RIGHT', [52, 51, 50, 49], (80, 100, 20)),
|
33 |
-
('LIPS_INNER_TOP_LEFT', [63, 64, 65], (120, 100, 200)),
|
34 |
-
('LIPS_INNER_TOP_RIGHT', [63, 62, 61], (150, 120, 100)),
|
35 |
-
]
|
36 |
-
|
37 |
-
|
38 |
-
def draw_landmarks(keypoints, h, w):
|
39 |
-
|
40 |
-
image = np.zeros((h, w, 3))
|
41 |
-
|
42 |
-
for name, indices, color in PARTS:
|
43 |
-
# 选择当前部分的关键点
|
44 |
-
indices = np.array(indices) - 1
|
45 |
-
current_part_keypoints = keypoints[indices]
|
46 |
-
|
47 |
-
# 绘制关键点
|
48 |
-
# for point in current_part_keypoints:
|
49 |
-
# x, y = point
|
50 |
-
# image[y, x, :] = color
|
51 |
-
|
52 |
-
# 绘制连接线
|
53 |
-
for i in range(len(indices) - 1):
|
54 |
-
x1, y1 = current_part_keypoints[i]
|
55 |
-
x2, y2 = current_part_keypoints[i + 1]
|
56 |
-
cv2.line(image, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness=2)
|
57 |
-
|
58 |
-
return image
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
def convert_ldmk_to_68(mediapipe_ldmk):
|
63 |
-
return np.stack([
|
64 |
-
# face coutour
|
65 |
-
mediapipe_ldmk[:, 234],
|
66 |
-
mediapipe_ldmk[:, 93],
|
67 |
-
mediapipe_ldmk[:, 132],
|
68 |
-
mediapipe_ldmk[:, 58],
|
69 |
-
mediapipe_ldmk[:, 172],
|
70 |
-
mediapipe_ldmk[:, 136],
|
71 |
-
mediapipe_ldmk[:, 150],
|
72 |
-
mediapipe_ldmk[:, 176],
|
73 |
-
mediapipe_ldmk[:, 152],
|
74 |
-
mediapipe_ldmk[:, 400],
|
75 |
-
mediapipe_ldmk[:, 379],
|
76 |
-
mediapipe_ldmk[:, 365],
|
77 |
-
mediapipe_ldmk[:, 397],
|
78 |
-
mediapipe_ldmk[:, 288],
|
79 |
-
mediapipe_ldmk[:, 361],
|
80 |
-
mediapipe_ldmk[:, 323],
|
81 |
-
mediapipe_ldmk[:, 454],
|
82 |
-
# right eyebrow
|
83 |
-
mediapipe_ldmk[:, 70],
|
84 |
-
mediapipe_ldmk[:, 63],
|
85 |
-
mediapipe_ldmk[:, 105],
|
86 |
-
mediapipe_ldmk[:, 66],
|
87 |
-
mediapipe_ldmk[:, 107],
|
88 |
-
# left eyebrow
|
89 |
-
mediapipe_ldmk[:, 336],
|
90 |
-
mediapipe_ldmk[:, 296],
|
91 |
-
mediapipe_ldmk[:, 334],
|
92 |
-
mediapipe_ldmk[:, 293],
|
93 |
-
mediapipe_ldmk[:, 300],
|
94 |
-
# nose
|
95 |
-
mediapipe_ldmk[:, 168],
|
96 |
-
mediapipe_ldmk[:, 6],
|
97 |
-
mediapipe_ldmk[:, 195],
|
98 |
-
mediapipe_ldmk[:, 4],
|
99 |
-
# nose down
|
100 |
-
mediapipe_ldmk[:, 239],
|
101 |
-
mediapipe_ldmk[:, 241],
|
102 |
-
mediapipe_ldmk[:, 19],
|
103 |
-
mediapipe_ldmk[:, 461],
|
104 |
-
mediapipe_ldmk[:, 459],
|
105 |
-
# right eye
|
106 |
-
mediapipe_ldmk[:, 33],
|
107 |
-
mediapipe_ldmk[:, 160],
|
108 |
-
mediapipe_ldmk[:, 158],
|
109 |
-
mediapipe_ldmk[:, 133],
|
110 |
-
mediapipe_ldmk[:, 153],
|
111 |
-
mediapipe_ldmk[:, 144],
|
112 |
-
# left eye
|
113 |
-
mediapipe_ldmk[:, 362],
|
114 |
-
mediapipe_ldmk[:, 385],
|
115 |
-
mediapipe_ldmk[:, 387],
|
116 |
-
mediapipe_ldmk[:, 263],
|
117 |
-
mediapipe_ldmk[:, 373],
|
118 |
-
mediapipe_ldmk[:, 380],
|
119 |
-
# outer lips
|
120 |
-
mediapipe_ldmk[:, 61],
|
121 |
-
mediapipe_ldmk[:, 40],
|
122 |
-
mediapipe_ldmk[:, 37],
|
123 |
-
mediapipe_ldmk[:, 0],
|
124 |
-
mediapipe_ldmk[:, 267],
|
125 |
-
mediapipe_ldmk[:, 270],
|
126 |
-
mediapipe_ldmk[:, 291],
|
127 |
-
mediapipe_ldmk[:, 321],
|
128 |
-
mediapipe_ldmk[:, 314],
|
129 |
-
mediapipe_ldmk[:, 17],
|
130 |
-
mediapipe_ldmk[:, 84],
|
131 |
-
mediapipe_ldmk[:, 91],
|
132 |
-
# inner lips
|
133 |
-
mediapipe_ldmk[:, 78],
|
134 |
-
mediapipe_ldmk[:, 81],
|
135 |
-
mediapipe_ldmk[:, 13],
|
136 |
-
mediapipe_ldmk[:, 311],
|
137 |
-
mediapipe_ldmk[:, 308],
|
138 |
-
mediapipe_ldmk[:, 402],
|
139 |
-
mediapipe_ldmk[:, 14],
|
140 |
-
mediapipe_ldmk[:, 178],
|
141 |
-
], axis=1)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
# def parse_args():
|
146 |
-
# parser = argparse.ArgumentParser()
|
147 |
-
# parser.add_argument("--config", type=str, default='./configs/prompts/animation_audio.yaml')
|
148 |
-
# parser.add_argument("-W", type=int, default=512)
|
149 |
-
# parser.add_argument("-H", type=int, default=512)
|
150 |
-
# parser.add_argument("-L", type=int)
|
151 |
-
# parser.add_argument("--seed", type=int, default=42)
|
152 |
-
# parser.add_argument("--cfg", type=float, default=3.5)
|
153 |
-
# parser.add_argument("--steps", type=int, default=25)
|
154 |
-
# parser.add_argument("--fps", type=int, default=30)
|
155 |
-
# parser.add_argument("-acc", "--accelerate", action='store_true')
|
156 |
-
# parser.add_argument("--fi_step", type=int, default=3)
|
157 |
-
# args = parser.parse_args()
|
158 |
-
|
159 |
-
# return args
|
160 |
-
|
161 |
-
|
162 |
-
def parse_args():
|
163 |
-
parser = argparse.ArgumentParser()
|
164 |
-
parser.add_argument("--ref_image_path", type=str, required=True)
|
165 |
-
parser.add_argument("--audio_path", type=str, required=True)
|
166 |
-
parser.add_argument("--save_dir", type=str, required=True)
|
167 |
-
parser.add_argument("--fps", type=int, default=25)
|
168 |
-
parser.add_argument("--sr", type=int, default=16000)
|
169 |
-
args = parser.parse_args()
|
170 |
-
|
171 |
-
return args
|
172 |
-
|
173 |
-
|
174 |
-
def set_seed(seed):
|
175 |
-
random.seed(seed)
|
176 |
-
np.random.seed(seed)
|
177 |
-
torch.manual_seed(seed)
|
178 |
-
if torch.cuda.is_available():
|
179 |
-
torch.cuda.manual_seed(seed)
|
180 |
-
torch.cuda.manual_seed_all(seed)
|
181 |
-
torch.backends.cudnn.deterministic = True
|
182 |
-
|
183 |
-
|
184 |
-
def main():
|
185 |
-
args = parse_args()
|
186 |
-
|
187 |
-
config = OmegaConf.load('aniportrait/configs/config.yaml')
|
188 |
-
|
189 |
-
set_seed(42)
|
190 |
-
|
191 |
-
# if config.weight_dtype == "fp16":
|
192 |
-
# weight_dtype = torch.float16
|
193 |
-
# else:
|
194 |
-
# weight_dtype = torch.float32
|
195 |
-
|
196 |
-
audio_infer_config = OmegaConf.load(config.audio_inference_config)
|
197 |
-
# prepare model
|
198 |
-
a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
|
199 |
-
a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt']), strict=False)
|
200 |
-
a2m_model.cuda().eval()
|
201 |
-
|
202 |
-
a2p_model = Audio2PoseModel(audio_infer_config['a2p_model'])
|
203 |
-
a2p_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2p_ckpt']), strict=False)
|
204 |
-
a2p_model.cuda().eval()
|
205 |
-
|
206 |
-
lmk_extractor = LMKExtractor()
|
207 |
-
|
208 |
-
ref_image_path = args.ref_image_path
|
209 |
-
audio_path = args.audio_path
|
210 |
-
save_dir = args.save_dir
|
211 |
-
|
212 |
-
ref_image_pil = Image.open(ref_image_path).convert("RGB")
|
213 |
-
ref_image_np = cv2.cvtColor(np.array(ref_image_pil), cv2.COLOR_RGB2BGR)
|
214 |
-
height, width, _ = ref_image_np.shape
|
215 |
-
|
216 |
-
face_result = lmk_extractor(ref_image_np)
|
217 |
-
assert face_result is not None, "No face detected."
|
218 |
-
lmks = face_result['lmks'].astype(np.float32)
|
219 |
-
lmks[:, 0] *= width
|
220 |
-
lmks[:, 1] *= height
|
221 |
-
|
222 |
-
# print(lmks.shape)
|
223 |
-
|
224 |
-
# assert False
|
225 |
-
|
226 |
-
sample = prepare_audio_feature(audio_path, fps=args.fps, wav2vec_model_path=audio_infer_config['a2m_model']['model_path'])
|
227 |
-
sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().cuda()
|
228 |
-
sample['audio_feature'] = sample['audio_feature'].unsqueeze(0)
|
229 |
-
|
230 |
-
# print(sample['audio_feature'].shape)
|
231 |
-
|
232 |
-
# inference
|
233 |
-
pred = a2m_model.infer(sample['audio_feature'], sample['seq_len'])
|
234 |
-
pred = pred.squeeze().detach().cpu().numpy()
|
235 |
-
pred = pred.reshape(pred.shape[0], -1, 3)
|
236 |
-
|
237 |
-
pred = pred + face_result['lmks3d']
|
238 |
-
|
239 |
-
# print(pred.shape)
|
240 |
-
|
241 |
-
# assert False
|
242 |
-
|
243 |
-
id_seed = 42
|
244 |
-
id_seed = torch.LongTensor([id_seed]).cuda()
|
245 |
-
|
246 |
-
# Currently, only inference up to a maximum length of 10 seconds is supported.
|
247 |
-
chunk_duration = 5 # 5 seconds
|
248 |
-
chunk_size = args.sr * chunk_duration
|
249 |
-
|
250 |
-
|
251 |
-
audio_chunks = list(sample['audio_feature'].split(chunk_size, dim=1))
|
252 |
-
seq_len_list = [chunk_duration*args.fps] * (len(audio_chunks) - 1) + [sample['seq_len'] % (chunk_duration*args.fps)]
|
253 |
-
audio_chunks[-2] = torch.cat((audio_chunks[-2], audio_chunks[-1]), dim=1)
|
254 |
-
seq_len_list[-2] = seq_len_list[-2] + seq_len_list[-1]
|
255 |
-
del audio_chunks[-1]
|
256 |
-
del seq_len_list[-1]
|
257 |
-
|
258 |
-
# assert False
|
259 |
-
|
260 |
-
pose_seq = []
|
261 |
-
for audio, seq_len in zip(audio_chunks, seq_len_list):
|
262 |
-
pose_seq_chunk = a2p_model.infer(audio, seq_len, id_seed)
|
263 |
-
pose_seq_chunk = pose_seq_chunk.squeeze().detach().cpu().numpy()
|
264 |
-
pose_seq_chunk[:, :3] *= 0.5
|
265 |
-
pose_seq.append(pose_seq_chunk)
|
266 |
-
|
267 |
-
pose_seq = np.concatenate(pose_seq, 0)
|
268 |
-
pose_seq = smooth_pose_seq(pose_seq, 7)
|
269 |
-
|
270 |
-
# project 3D mesh to 2D landmark
|
271 |
-
projected_vertices = project_points(pred, face_result['trans_mat'], pose_seq, [height, width])
|
272 |
-
projected_vertices = np.concatenate([lmks[:468, :2][None, :], projected_vertices], axis=0)
|
273 |
-
projected_vertices = convert_ldmk_to_68(projected_vertices)
|
274 |
-
|
275 |
-
# print(projected_vertices.shape)
|
276 |
-
|
277 |
-
pose_images = []
|
278 |
-
for i in range(projected_vertices.shape[0]):
|
279 |
-
pose_img = draw_landmarks(projected_vertices[i], height, width)
|
280 |
-
pose_images.append(pose_img)
|
281 |
-
pose_images = np.array(pose_images)
|
282 |
-
|
283 |
-
# print(pose_images.shape)
|
284 |
-
|
285 |
-
ref_image_np = cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB)
|
286 |
-
ref_imgs = np.stack([ref_image_np]*(pose_images.shape[0]), axis=0)
|
287 |
-
|
288 |
-
all_np = np.concatenate([ref_imgs, pose_images], axis=2)
|
289 |
-
|
290 |
-
# print(projected_vertices.shape)
|
291 |
-
|
292 |
-
os.makedirs(save_dir, exist_ok=True)
|
293 |
-
|
294 |
-
np.save(os.path.join(save_dir, 'landmarks.npy'), projected_vertices)
|
295 |
-
|
296 |
-
torchvision.io.write_video(os.path.join(save_dir, 'landmarks.mp4'), all_np, fps=args.fps, video_codec='h264', options={'crf': '10'})
|
297 |
-
|
298 |
-
# stream = ffmpeg.input(os.path.join(save_dir, 'landmarks.mp4'))
|
299 |
-
# audio = ffmpeg.input(args.audio_path)
|
300 |
-
# ffmpeg.output(stream.video, audio.audio, os.path.join(save_dir, 'landmarks_audio.mp4'), vcodec='copy', acodec='aac').run()
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
if __name__ == "__main__":
|
309 |
-
main()
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/configs/config.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
pretrained_base_model_path: 'ckpts/aniportrait/stable-diffusion-v1-5'
|
2 |
-
pretrained_vae_path: 'ckpts/aniportrait/sd-vae-ft-mse'
|
3 |
-
image_encoder_path: 'ckpts/aniportrait/image_encoder'
|
4 |
-
|
5 |
-
denoising_unet_path: "ckpts/aniportrait/denoising_unet.pth"
|
6 |
-
reference_unet_path: "ckpts/aniportrait/reference_unet.pth"
|
7 |
-
pose_guider_path: "ckpts/aniportrait/pose_guider.pth"
|
8 |
-
motion_module_path: "ckpts/aniportrait/motion_module.pth"
|
9 |
-
|
10 |
-
audio_inference_config: "aniportrait/configs/inference_audio.yaml"
|
11 |
-
inference_config: "aniportrait/configs/inference_v2.yaml"
|
12 |
-
weight_dtype: 'fp16'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/configs/inference_audio.yaml
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
a2m_model:
|
2 |
-
out_dim: 1404
|
3 |
-
latent_dim: 512
|
4 |
-
model_path: ckpts/aniportrait/wav2vec2-base-960h
|
5 |
-
only_last_fetures: True
|
6 |
-
from_pretrained: True
|
7 |
-
|
8 |
-
a2p_model:
|
9 |
-
out_dim: 6
|
10 |
-
latent_dim: 512
|
11 |
-
model_path: ckpts/aniportrait/wav2vec2-base-960h
|
12 |
-
only_last_fetures: True
|
13 |
-
from_pretrained: True
|
14 |
-
|
15 |
-
pretrained_model:
|
16 |
-
a2m_ckpt: ckpts/aniportrait/audio2mesh.pt
|
17 |
-
a2p_ckpt: ckpts/aniportrait/audio2pose.pt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/configs/inference_v2.yaml
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
unet_additional_kwargs:
|
2 |
-
use_inflated_groupnorm: true
|
3 |
-
unet_use_cross_frame_attention: false
|
4 |
-
unet_use_temporal_attention: false
|
5 |
-
use_motion_module: true
|
6 |
-
motion_module_resolutions:
|
7 |
-
- 1
|
8 |
-
- 2
|
9 |
-
- 4
|
10 |
-
- 8
|
11 |
-
motion_module_mid_block: true
|
12 |
-
motion_module_decoder_only: false
|
13 |
-
motion_module_type: Vanilla
|
14 |
-
motion_module_kwargs:
|
15 |
-
num_attention_heads: 8
|
16 |
-
num_transformer_block: 1
|
17 |
-
attention_block_types:
|
18 |
-
- Temporal_Self
|
19 |
-
- Temporal_Self
|
20 |
-
temporal_position_encoding: true
|
21 |
-
temporal_position_encoding_max_len: 32
|
22 |
-
temporal_attention_dim_div: 1
|
23 |
-
|
24 |
-
noise_scheduler_kwargs:
|
25 |
-
beta_start: 0.00085
|
26 |
-
beta_end: 0.012
|
27 |
-
beta_schedule: "linear"
|
28 |
-
clip_sample: false
|
29 |
-
steps_offset: 1
|
30 |
-
### Zero-SNR params
|
31 |
-
prediction_type: "v_prediction"
|
32 |
-
rescale_betas_zero_snr: True
|
33 |
-
timestep_spacing: "trailing"
|
34 |
-
|
35 |
-
sampler: DDIM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
aniportrait/src/audio_models/mish.py
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Applies the mish function element-wise:
|
3 |
-
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x)))
|
4 |
-
"""
|
5 |
-
|
6 |
-
# import pytorch
|
7 |
-
import torch
|
8 |
-
import torch.nn.functional as F
|
9 |
-
from torch import nn
|
10 |
-
|
11 |
-
@torch.jit.script
|
12 |
-
def mish(input):
|
13 |
-
"""
|
14 |
-
Applies the mish function element-wise:
|
15 |
-
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x)))
|
16 |
-
See additional documentation for mish class.
|
17 |
-
"""
|
18 |
-
return input * torch.tanh(F.softplus(input))
|
19 |
-
|
20 |
-
class Mish(nn.Module):
|
21 |
-
"""
|
22 |
-
Applies the mish function element-wise:
|
23 |
-
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x)))
|
24 |
-
|
25 |
-
Shape:
|
26 |
-
- Input: (N, *) where * means, any number of additional
|
27 |
-
dimensions
|
28 |
-
- Output: (N, *), same shape as the input
|
29 |
-
|
30 |
-
Examples:
|
31 |
-
>>> m = Mish()
|
32 |
-
>>> input = torch.randn(2)
|
33 |
-
>>> output = m(input)
|
34 |
-
|
35 |
-
Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html
|
36 |
-
"""
|
37 |
-
|
38 |
-
def __init__(self):
|
39 |
-
"""
|
40 |
-
Init method.
|
41 |
-
"""
|
42 |
-
super().__init__()
|
43 |
-
|
44 |
-
def forward(self, input):
|
45 |
-
"""
|
46 |
-
Forward pass of the function.
|
47 |
-
"""
|
48 |
-
if torch.__version__ >= "1.9":
|
49 |
-
return F.mish(input)
|
50 |
-
else:
|
51 |
-
return mish(input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/audio_models/model.py
DELETED
@@ -1,71 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
from transformers import Wav2Vec2Config
|
6 |
-
|
7 |
-
from .torch_utils import get_mask_from_lengths
|
8 |
-
from .wav2vec2 import Wav2Vec2Model
|
9 |
-
|
10 |
-
|
11 |
-
class Audio2MeshModel(nn.Module):
|
12 |
-
def __init__(
|
13 |
-
self,
|
14 |
-
config
|
15 |
-
):
|
16 |
-
super().__init__()
|
17 |
-
out_dim = config['out_dim']
|
18 |
-
latent_dim = config['latent_dim']
|
19 |
-
model_path = config['model_path']
|
20 |
-
only_last_fetures = config['only_last_fetures']
|
21 |
-
from_pretrained = config['from_pretrained']
|
22 |
-
|
23 |
-
self._only_last_features = only_last_fetures
|
24 |
-
|
25 |
-
self.audio_encoder_config = Wav2Vec2Config.from_pretrained(model_path, local_files_only=True)
|
26 |
-
if from_pretrained:
|
27 |
-
self.audio_encoder = Wav2Vec2Model.from_pretrained(model_path, local_files_only=True)
|
28 |
-
else:
|
29 |
-
self.audio_encoder = Wav2Vec2Model(self.audio_encoder_config)
|
30 |
-
self.audio_encoder.feature_extractor._freeze_parameters()
|
31 |
-
|
32 |
-
hidden_size = self.audio_encoder_config.hidden_size
|
33 |
-
|
34 |
-
self.in_fn = nn.Linear(hidden_size, latent_dim)
|
35 |
-
|
36 |
-
self.out_fn = nn.Linear(latent_dim, out_dim)
|
37 |
-
nn.init.constant_(self.out_fn.weight, 0)
|
38 |
-
nn.init.constant_(self.out_fn.bias, 0)
|
39 |
-
|
40 |
-
def forward(self, audio, label, audio_len=None):
|
41 |
-
attention_mask = ~get_mask_from_lengths(audio_len) if audio_len else None
|
42 |
-
|
43 |
-
seq_len = label.shape[1]
|
44 |
-
|
45 |
-
embeddings = self.audio_encoder(audio, seq_len=seq_len, output_hidden_states=True,
|
46 |
-
attention_mask=attention_mask)
|
47 |
-
|
48 |
-
if self._only_last_features:
|
49 |
-
hidden_states = embeddings.last_hidden_state
|
50 |
-
else:
|
51 |
-
hidden_states = sum(embeddings.hidden_states) / len(embeddings.hidden_states)
|
52 |
-
|
53 |
-
layer_in = self.in_fn(hidden_states)
|
54 |
-
out = self.out_fn(layer_in)
|
55 |
-
|
56 |
-
return out, None
|
57 |
-
|
58 |
-
def infer(self, input_value, seq_len):
|
59 |
-
embeddings = self.audio_encoder(input_value, seq_len=seq_len, output_hidden_states=True)
|
60 |
-
|
61 |
-
if self._only_last_features:
|
62 |
-
hidden_states = embeddings.last_hidden_state
|
63 |
-
else:
|
64 |
-
hidden_states = sum(embeddings.hidden_states) / len(embeddings.hidden_states)
|
65 |
-
|
66 |
-
layer_in = self.in_fn(hidden_states)
|
67 |
-
out = self.out_fn(layer_in)
|
68 |
-
|
69 |
-
return out
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/audio_models/pose_model.py
DELETED
@@ -1,125 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import math
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
from transformers import Wav2Vec2Config
|
6 |
-
|
7 |
-
from .torch_utils import get_mask_from_lengths
|
8 |
-
from .wav2vec2 import Wav2Vec2Model
|
9 |
-
|
10 |
-
|
11 |
-
def init_biased_mask(n_head, max_seq_len, period):
|
12 |
-
def get_slopes(n):
|
13 |
-
def get_slopes_power_of_2(n):
|
14 |
-
start = (2**(-2**-(math.log2(n)-3)))
|
15 |
-
ratio = start
|
16 |
-
return [start*ratio**i for i in range(n)]
|
17 |
-
if math.log2(n).is_integer():
|
18 |
-
return get_slopes_power_of_2(n)
|
19 |
-
else:
|
20 |
-
closest_power_of_2 = 2**math.floor(math.log2(n))
|
21 |
-
return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2]
|
22 |
-
slopes = torch.Tensor(get_slopes(n_head))
|
23 |
-
bias = torch.arange(start=0, end=max_seq_len, step=period).unsqueeze(1).repeat(1,period).view(-1)//(period)
|
24 |
-
bias = - torch.flip(bias,dims=[0])
|
25 |
-
alibi = torch.zeros(max_seq_len, max_seq_len)
|
26 |
-
for i in range(max_seq_len):
|
27 |
-
alibi[i, :i+1] = bias[-(i+1):]
|
28 |
-
alibi = slopes.unsqueeze(1).unsqueeze(1) * alibi.unsqueeze(0)
|
29 |
-
mask = (torch.triu(torch.ones(max_seq_len, max_seq_len)) == 1).transpose(0, 1)
|
30 |
-
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
31 |
-
mask = mask.unsqueeze(0) + alibi
|
32 |
-
return mask
|
33 |
-
|
34 |
-
|
35 |
-
def enc_dec_mask(device, T, S):
|
36 |
-
mask = torch.ones(T, S)
|
37 |
-
for i in range(T):
|
38 |
-
mask[i, i] = 0
|
39 |
-
return (mask==1).to(device=device)
|
40 |
-
|
41 |
-
|
42 |
-
class PositionalEncoding(nn.Module):
|
43 |
-
def __init__(self, d_model, max_len=600):
|
44 |
-
super(PositionalEncoding, self).__init__()
|
45 |
-
pe = torch.zeros(max_len, d_model)
|
46 |
-
position = torch.arange(0, max_len).unsqueeze(1).float()
|
47 |
-
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
|
48 |
-
pe[:, 0::2] = torch.sin(position * div_term)
|
49 |
-
pe[:, 1::2] = torch.cos(position * div_term)
|
50 |
-
pe = pe.unsqueeze(0)
|
51 |
-
self.register_buffer('pe', pe)
|
52 |
-
|
53 |
-
def forward(self, x):
|
54 |
-
x = x + self.pe[:, :x.size(1)]
|
55 |
-
return x
|
56 |
-
|
57 |
-
|
58 |
-
class Audio2PoseModel(nn.Module):
|
59 |
-
def __init__(
|
60 |
-
self,
|
61 |
-
config
|
62 |
-
):
|
63 |
-
|
64 |
-
super().__init__()
|
65 |
-
|
66 |
-
latent_dim = config['latent_dim']
|
67 |
-
model_path = config['model_path']
|
68 |
-
only_last_fetures = config['only_last_fetures']
|
69 |
-
from_pretrained = config['from_pretrained']
|
70 |
-
out_dim = config['out_dim']
|
71 |
-
|
72 |
-
self.out_dim = out_dim
|
73 |
-
|
74 |
-
self._only_last_features = only_last_fetures
|
75 |
-
|
76 |
-
self.audio_encoder_config = Wav2Vec2Config.from_pretrained(model_path, local_files_only=True)
|
77 |
-
if from_pretrained:
|
78 |
-
self.audio_encoder = Wav2Vec2Model.from_pretrained(model_path, local_files_only=True)
|
79 |
-
else:
|
80 |
-
self.audio_encoder = Wav2Vec2Model(self.audio_encoder_config)
|
81 |
-
self.audio_encoder.feature_extractor._freeze_parameters()
|
82 |
-
|
83 |
-
hidden_size = self.audio_encoder_config.hidden_size
|
84 |
-
|
85 |
-
self.pose_map = nn.Linear(out_dim, latent_dim)
|
86 |
-
self.in_fn = nn.Linear(hidden_size, latent_dim)
|
87 |
-
|
88 |
-
self.PPE = PositionalEncoding(latent_dim)
|
89 |
-
self.biased_mask = init_biased_mask(n_head = 8, max_seq_len = 600, period=1)
|
90 |
-
decoder_layer = nn.TransformerDecoderLayer(d_model=latent_dim, nhead=8, dim_feedforward=2*latent_dim, batch_first=True)
|
91 |
-
self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=8)
|
92 |
-
self.pose_map_r = nn.Linear(latent_dim, out_dim)
|
93 |
-
|
94 |
-
self.id_embed = nn.Embedding(100, latent_dim) # 100 ids
|
95 |
-
|
96 |
-
|
97 |
-
def infer(self, input_value, seq_len, id_seed=None):
|
98 |
-
embeddings = self.audio_encoder(input_value, seq_len=seq_len, output_hidden_states=True)
|
99 |
-
|
100 |
-
if self._only_last_features:
|
101 |
-
hidden_states = embeddings.last_hidden_state
|
102 |
-
else:
|
103 |
-
hidden_states = sum(embeddings.hidden_states) / len(embeddings.hidden_states)
|
104 |
-
|
105 |
-
hidden_states = self.in_fn(hidden_states)
|
106 |
-
|
107 |
-
id_embedding = self.id_embed(id_seed).unsqueeze(1)
|
108 |
-
|
109 |
-
init_pose = torch.zeros([hidden_states.shape[0], 1, self.out_dim]).to(hidden_states.device)
|
110 |
-
for i in range(seq_len):
|
111 |
-
if i==0:
|
112 |
-
pose_emb = self.pose_map(init_pose)
|
113 |
-
pose_input = self.PPE(pose_emb)
|
114 |
-
else:
|
115 |
-
pose_input = self.PPE(pose_emb)
|
116 |
-
|
117 |
-
pose_input = pose_input + id_embedding
|
118 |
-
tgt_mask = self.biased_mask[:, :pose_input.shape[1], :pose_input.shape[1]].clone().detach().to(hidden_states.device)
|
119 |
-
memory_mask = enc_dec_mask(hidden_states.device, pose_input.shape[1], hidden_states.shape[1])
|
120 |
-
pose_out = self.transformer_decoder(pose_input, hidden_states, tgt_mask=tgt_mask, memory_mask=memory_mask)
|
121 |
-
pose_out = self.pose_map_r(pose_out)
|
122 |
-
new_output = self.pose_map(pose_out[:,-1,:]).unsqueeze(1)
|
123 |
-
pose_emb = torch.cat((pose_emb, new_output), 1)
|
124 |
-
return pose_out
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/audio_models/torch_utils.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
|
4 |
-
|
5 |
-
def get_mask_from_lengths(lengths, max_len=None):
|
6 |
-
lengths = lengths.to(torch.long)
|
7 |
-
if max_len is None:
|
8 |
-
max_len = torch.max(lengths).item()
|
9 |
-
|
10 |
-
ids = torch.arange(0, max_len).unsqueeze(0).expand(lengths.shape[0], -1).to(lengths.device)
|
11 |
-
mask = ids < lengths.unsqueeze(1).expand(-1, max_len)
|
12 |
-
|
13 |
-
return mask
|
14 |
-
|
15 |
-
|
16 |
-
def linear_interpolation(features, seq_len):
|
17 |
-
features = features.transpose(1, 2)
|
18 |
-
output_features = F.interpolate(features, size=seq_len, align_corners=True, mode='linear')
|
19 |
-
return output_features.transpose(1, 2)
|
20 |
-
|
21 |
-
|
22 |
-
if __name__ == "__main__":
|
23 |
-
import numpy as np
|
24 |
-
mask = ~get_mask_from_lengths(torch.from_numpy(np.array([4,6])))
|
25 |
-
import pdb; pdb.set_trace()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/audio_models/wav2vec2.py
DELETED
@@ -1,125 +0,0 @@
|
|
1 |
-
from transformers import Wav2Vec2Config, Wav2Vec2Model
|
2 |
-
from transformers.modeling_outputs import BaseModelOutput
|
3 |
-
|
4 |
-
from .torch_utils import linear_interpolation
|
5 |
-
|
6 |
-
# the implementation of Wav2Vec2Model is borrowed from
|
7 |
-
# https://github.com/huggingface/transformers/blob/HEAD/src/transformers/models/wav2vec2/modeling_wav2vec2.py
|
8 |
-
# initialize our encoder with the pre-trained wav2vec 2.0 weights.
|
9 |
-
class Wav2Vec2Model(Wav2Vec2Model):
|
10 |
-
def __init__(self, config: Wav2Vec2Config):
|
11 |
-
super().__init__(config)
|
12 |
-
|
13 |
-
def forward(
|
14 |
-
self,
|
15 |
-
input_values,
|
16 |
-
seq_len,
|
17 |
-
attention_mask=None,
|
18 |
-
mask_time_indices=None,
|
19 |
-
output_attentions=None,
|
20 |
-
output_hidden_states=None,
|
21 |
-
return_dict=None,
|
22 |
-
):
|
23 |
-
self.config.output_attentions = True
|
24 |
-
|
25 |
-
output_hidden_states = (
|
26 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
27 |
-
)
|
28 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
29 |
-
|
30 |
-
extract_features = self.feature_extractor(input_values)
|
31 |
-
extract_features = extract_features.transpose(1, 2)
|
32 |
-
extract_features = linear_interpolation(extract_features, seq_len=seq_len)
|
33 |
-
|
34 |
-
if attention_mask is not None:
|
35 |
-
# compute reduced attention_mask corresponding to feature vectors
|
36 |
-
attention_mask = self._get_feature_vector_attention_mask(
|
37 |
-
extract_features.shape[1], attention_mask, add_adapter=False
|
38 |
-
)
|
39 |
-
|
40 |
-
hidden_states, extract_features = self.feature_projection(extract_features)
|
41 |
-
hidden_states = self._mask_hidden_states(
|
42 |
-
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
43 |
-
)
|
44 |
-
|
45 |
-
encoder_outputs = self.encoder(
|
46 |
-
hidden_states,
|
47 |
-
attention_mask=attention_mask,
|
48 |
-
output_attentions=output_attentions,
|
49 |
-
output_hidden_states=output_hidden_states,
|
50 |
-
return_dict=return_dict,
|
51 |
-
)
|
52 |
-
|
53 |
-
hidden_states = encoder_outputs[0]
|
54 |
-
|
55 |
-
if self.adapter is not None:
|
56 |
-
hidden_states = self.adapter(hidden_states)
|
57 |
-
|
58 |
-
if not return_dict:
|
59 |
-
return (hidden_states, ) + encoder_outputs[1:]
|
60 |
-
return BaseModelOutput(
|
61 |
-
last_hidden_state=hidden_states,
|
62 |
-
hidden_states=encoder_outputs.hidden_states,
|
63 |
-
attentions=encoder_outputs.attentions,
|
64 |
-
)
|
65 |
-
|
66 |
-
|
67 |
-
def feature_extract(
|
68 |
-
self,
|
69 |
-
input_values,
|
70 |
-
seq_len,
|
71 |
-
):
|
72 |
-
extract_features = self.feature_extractor(input_values)
|
73 |
-
extract_features = extract_features.transpose(1, 2)
|
74 |
-
extract_features = linear_interpolation(extract_features, seq_len=seq_len)
|
75 |
-
|
76 |
-
return extract_features
|
77 |
-
|
78 |
-
def encode(
|
79 |
-
self,
|
80 |
-
extract_features,
|
81 |
-
attention_mask=None,
|
82 |
-
mask_time_indices=None,
|
83 |
-
output_attentions=None,
|
84 |
-
output_hidden_states=None,
|
85 |
-
return_dict=None,
|
86 |
-
):
|
87 |
-
self.config.output_attentions = True
|
88 |
-
|
89 |
-
output_hidden_states = (
|
90 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
91 |
-
)
|
92 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
93 |
-
|
94 |
-
if attention_mask is not None:
|
95 |
-
# compute reduced attention_mask corresponding to feature vectors
|
96 |
-
attention_mask = self._get_feature_vector_attention_mask(
|
97 |
-
extract_features.shape[1], attention_mask, add_adapter=False
|
98 |
-
)
|
99 |
-
|
100 |
-
|
101 |
-
hidden_states, extract_features = self.feature_projection(extract_features)
|
102 |
-
hidden_states = self._mask_hidden_states(
|
103 |
-
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
104 |
-
)
|
105 |
-
|
106 |
-
encoder_outputs = self.encoder(
|
107 |
-
hidden_states,
|
108 |
-
attention_mask=attention_mask,
|
109 |
-
output_attentions=output_attentions,
|
110 |
-
output_hidden_states=output_hidden_states,
|
111 |
-
return_dict=return_dict,
|
112 |
-
)
|
113 |
-
|
114 |
-
hidden_states = encoder_outputs[0]
|
115 |
-
|
116 |
-
if self.adapter is not None:
|
117 |
-
hidden_states = self.adapter(hidden_states)
|
118 |
-
|
119 |
-
if not return_dict:
|
120 |
-
return (hidden_states, ) + encoder_outputs[1:]
|
121 |
-
return BaseModelOutput(
|
122 |
-
last_hidden_state=hidden_states,
|
123 |
-
hidden_states=encoder_outputs.hidden_states,
|
124 |
-
attentions=encoder_outputs.attentions,
|
125 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/utils/audio_util.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import math
|
3 |
-
|
4 |
-
import librosa
|
5 |
-
import numpy as np
|
6 |
-
from transformers import Wav2Vec2FeatureExtractor
|
7 |
-
|
8 |
-
|
9 |
-
class DataProcessor:
|
10 |
-
def __init__(self, sampling_rate, wav2vec_model_path):
|
11 |
-
self._processor = Wav2Vec2FeatureExtractor.from_pretrained(wav2vec_model_path, local_files_only=True)
|
12 |
-
self._sampling_rate = sampling_rate
|
13 |
-
|
14 |
-
def extract_feature(self, audio_path):
|
15 |
-
speech_array, sampling_rate = librosa.load(audio_path, sr=self._sampling_rate)
|
16 |
-
input_value = np.squeeze(self._processor(speech_array, sampling_rate=sampling_rate).input_values)
|
17 |
-
return input_value
|
18 |
-
|
19 |
-
|
20 |
-
def prepare_audio_feature(wav_file, fps=25, sampling_rate=16000, wav2vec_model_path=None):
|
21 |
-
data_preprocessor = DataProcessor(sampling_rate, wav2vec_model_path)
|
22 |
-
|
23 |
-
input_value = data_preprocessor.extract_feature(wav_file)
|
24 |
-
seq_len = math.ceil(len(input_value)/sampling_rate*fps)
|
25 |
-
return {
|
26 |
-
"audio_feature": input_value,
|
27 |
-
"seq_len": seq_len
|
28 |
-
}
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/utils/draw_util.py
DELETED
@@ -1,149 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import mediapipe as mp
|
3 |
-
import numpy as np
|
4 |
-
from mediapipe.framework.formats import landmark_pb2
|
5 |
-
|
6 |
-
class FaceMeshVisualizer:
|
7 |
-
def __init__(self, forehead_edge=False):
|
8 |
-
self.mp_drawing = mp.solutions.drawing_utils
|
9 |
-
mp_face_mesh = mp.solutions.face_mesh
|
10 |
-
self.mp_face_mesh = mp_face_mesh
|
11 |
-
self.forehead_edge = forehead_edge
|
12 |
-
|
13 |
-
DrawingSpec = mp.solutions.drawing_styles.DrawingSpec
|
14 |
-
f_thick = 2
|
15 |
-
f_rad = 1
|
16 |
-
right_iris_draw = DrawingSpec(color=(10, 200, 250), thickness=f_thick, circle_radius=f_rad)
|
17 |
-
right_eye_draw = DrawingSpec(color=(10, 200, 180), thickness=f_thick, circle_radius=f_rad)
|
18 |
-
right_eyebrow_draw = DrawingSpec(color=(10, 220, 180), thickness=f_thick, circle_radius=f_rad)
|
19 |
-
left_iris_draw = DrawingSpec(color=(250, 200, 10), thickness=f_thick, circle_radius=f_rad)
|
20 |
-
left_eye_draw = DrawingSpec(color=(180, 200, 10), thickness=f_thick, circle_radius=f_rad)
|
21 |
-
left_eyebrow_draw = DrawingSpec(color=(180, 220, 10), thickness=f_thick, circle_radius=f_rad)
|
22 |
-
head_draw = DrawingSpec(color=(10, 200, 10), thickness=f_thick, circle_radius=f_rad)
|
23 |
-
|
24 |
-
mouth_draw_obl = DrawingSpec(color=(10, 180, 20), thickness=f_thick, circle_radius=f_rad)
|
25 |
-
mouth_draw_obr = DrawingSpec(color=(20, 10, 180), thickness=f_thick, circle_radius=f_rad)
|
26 |
-
|
27 |
-
mouth_draw_ibl = DrawingSpec(color=(100, 100, 30), thickness=f_thick, circle_radius=f_rad)
|
28 |
-
mouth_draw_ibr = DrawingSpec(color=(100, 150, 50), thickness=f_thick, circle_radius=f_rad)
|
29 |
-
|
30 |
-
mouth_draw_otl = DrawingSpec(color=(20, 80, 100), thickness=f_thick, circle_radius=f_rad)
|
31 |
-
mouth_draw_otr = DrawingSpec(color=(80, 100, 20), thickness=f_thick, circle_radius=f_rad)
|
32 |
-
|
33 |
-
mouth_draw_itl = DrawingSpec(color=(120, 100, 200), thickness=f_thick, circle_radius=f_rad)
|
34 |
-
mouth_draw_itr = DrawingSpec(color=(150 ,120, 100), thickness=f_thick, circle_radius=f_rad)
|
35 |
-
|
36 |
-
FACEMESH_LIPS_OUTER_BOTTOM_LEFT = [(61,146),(146,91),(91,181),(181,84),(84,17)]
|
37 |
-
FACEMESH_LIPS_OUTER_BOTTOM_RIGHT = [(17,314),(314,405),(405,321),(321,375),(375,291)]
|
38 |
-
|
39 |
-
FACEMESH_LIPS_INNER_BOTTOM_LEFT = [(78,95),(95,88),(88,178),(178,87),(87,14)]
|
40 |
-
FACEMESH_LIPS_INNER_BOTTOM_RIGHT = [(14,317),(317,402),(402,318),(318,324),(324,308)]
|
41 |
-
|
42 |
-
FACEMESH_LIPS_OUTER_TOP_LEFT = [(61,185),(185,40),(40,39),(39,37),(37,0)]
|
43 |
-
FACEMESH_LIPS_OUTER_TOP_RIGHT = [(0,267),(267,269),(269,270),(270,409),(409,291)]
|
44 |
-
|
45 |
-
FACEMESH_LIPS_INNER_TOP_LEFT = [(78,191),(191,80),(80,81),(81,82),(82,13)]
|
46 |
-
FACEMESH_LIPS_INNER_TOP_RIGHT = [(13,312),(312,311),(311,310),(310,415),(415,308)]
|
47 |
-
|
48 |
-
FACEMESH_CUSTOM_FACE_OVAL = [(176, 149), (150, 136), (356, 454), (58, 132), (152, 148), (361, 288), (251, 389), (132, 93), (389, 356), (400, 377), (136, 172), (377, 152), (323, 361), (172, 58), (454, 323), (365, 379), (379, 378), (148, 176), (93, 234), (397, 365), (149, 150), (288, 397), (234, 127), (378, 400), (127, 162), (162, 21)]
|
49 |
-
|
50 |
-
# mp_face_mesh.FACEMESH_CONTOURS has all the items we care about.
|
51 |
-
face_connection_spec = {}
|
52 |
-
if self.forehead_edge:
|
53 |
-
for edge in mp_face_mesh.FACEMESH_FACE_OVAL:
|
54 |
-
face_connection_spec[edge] = head_draw
|
55 |
-
else:
|
56 |
-
for edge in FACEMESH_CUSTOM_FACE_OVAL:
|
57 |
-
face_connection_spec[edge] = head_draw
|
58 |
-
for edge in mp_face_mesh.FACEMESH_LEFT_EYE:
|
59 |
-
face_connection_spec[edge] = left_eye_draw
|
60 |
-
for edge in mp_face_mesh.FACEMESH_LEFT_EYEBROW:
|
61 |
-
face_connection_spec[edge] = left_eyebrow_draw
|
62 |
-
# for edge in mp_face_mesh.FACEMESH_LEFT_IRIS:
|
63 |
-
# face_connection_spec[edge] = left_iris_draw
|
64 |
-
for edge in mp_face_mesh.FACEMESH_RIGHT_EYE:
|
65 |
-
face_connection_spec[edge] = right_eye_draw
|
66 |
-
for edge in mp_face_mesh.FACEMESH_RIGHT_EYEBROW:
|
67 |
-
face_connection_spec[edge] = right_eyebrow_draw
|
68 |
-
# for edge in mp_face_mesh.FACEMESH_RIGHT_IRIS:
|
69 |
-
# face_connection_spec[edge] = right_iris_draw
|
70 |
-
# for edge in mp_face_mesh.FACEMESH_LIPS:
|
71 |
-
# face_connection_spec[edge] = mouth_draw
|
72 |
-
|
73 |
-
for edge in FACEMESH_LIPS_OUTER_BOTTOM_LEFT:
|
74 |
-
face_connection_spec[edge] = mouth_draw_obl
|
75 |
-
for edge in FACEMESH_LIPS_OUTER_BOTTOM_RIGHT:
|
76 |
-
face_connection_spec[edge] = mouth_draw_obr
|
77 |
-
for edge in FACEMESH_LIPS_INNER_BOTTOM_LEFT:
|
78 |
-
face_connection_spec[edge] = mouth_draw_ibl
|
79 |
-
for edge in FACEMESH_LIPS_INNER_BOTTOM_RIGHT:
|
80 |
-
face_connection_spec[edge] = mouth_draw_ibr
|
81 |
-
for edge in FACEMESH_LIPS_OUTER_TOP_LEFT:
|
82 |
-
face_connection_spec[edge] = mouth_draw_otl
|
83 |
-
for edge in FACEMESH_LIPS_OUTER_TOP_RIGHT:
|
84 |
-
face_connection_spec[edge] = mouth_draw_otr
|
85 |
-
for edge in FACEMESH_LIPS_INNER_TOP_LEFT:
|
86 |
-
face_connection_spec[edge] = mouth_draw_itl
|
87 |
-
for edge in FACEMESH_LIPS_INNER_TOP_RIGHT:
|
88 |
-
face_connection_spec[edge] = mouth_draw_itr
|
89 |
-
|
90 |
-
|
91 |
-
iris_landmark_spec = {468: right_iris_draw, 473: left_iris_draw}
|
92 |
-
|
93 |
-
self.face_connection_spec = face_connection_spec
|
94 |
-
def draw_pupils(self, image, landmark_list, drawing_spec, halfwidth: int = 2):
|
95 |
-
"""We have a custom function to draw the pupils because the mp.draw_landmarks method requires a parameter for all
|
96 |
-
landmarks. Until our PR is merged into mediapipe, we need this separate method."""
|
97 |
-
if len(image.shape) != 3:
|
98 |
-
raise ValueError("Input image must be H,W,C.")
|
99 |
-
image_rows, image_cols, image_channels = image.shape
|
100 |
-
if image_channels != 3: # BGR channels
|
101 |
-
raise ValueError('Input image must contain three channel bgr data.')
|
102 |
-
for idx, landmark in enumerate(landmark_list.landmark):
|
103 |
-
if (
|
104 |
-
(landmark.HasField('visibility') and landmark.visibility < 0.9) or
|
105 |
-
(landmark.HasField('presence') and landmark.presence < 0.5)
|
106 |
-
):
|
107 |
-
continue
|
108 |
-
if landmark.x >= 1.0 or landmark.x < 0 or landmark.y >= 1.0 or landmark.y < 0:
|
109 |
-
continue
|
110 |
-
image_x = int(image_cols*landmark.x)
|
111 |
-
image_y = int(image_rows*landmark.y)
|
112 |
-
draw_color = None
|
113 |
-
if isinstance(drawing_spec, Mapping):
|
114 |
-
if drawing_spec.get(idx) is None:
|
115 |
-
continue
|
116 |
-
else:
|
117 |
-
draw_color = drawing_spec[idx].color
|
118 |
-
elif isinstance(drawing_spec, DrawingSpec):
|
119 |
-
draw_color = drawing_spec.color
|
120 |
-
image[image_y-halfwidth:image_y+halfwidth, image_x-halfwidth:image_x+halfwidth, :] = draw_color
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
def draw_landmarks(self, image_size, keypoints, normed=False):
|
125 |
-
ini_size = [512, 512]
|
126 |
-
image = np.zeros([ini_size[1], ini_size[0], 3], dtype=np.uint8)
|
127 |
-
new_landmarks = landmark_pb2.NormalizedLandmarkList()
|
128 |
-
for i in range(keypoints.shape[0]):
|
129 |
-
landmark = new_landmarks.landmark.add()
|
130 |
-
if normed:
|
131 |
-
landmark.x = keypoints[i, 0]
|
132 |
-
landmark.y = keypoints[i, 1]
|
133 |
-
else:
|
134 |
-
landmark.x = keypoints[i, 0] / image_size[0]
|
135 |
-
landmark.y = keypoints[i, 1] / image_size[1]
|
136 |
-
landmark.z = 1.0
|
137 |
-
|
138 |
-
self.mp_drawing.draw_landmarks(
|
139 |
-
image=image,
|
140 |
-
landmark_list=new_landmarks,
|
141 |
-
connections=self.face_connection_spec.keys(),
|
142 |
-
landmark_drawing_spec=None,
|
143 |
-
connection_drawing_spec=self.face_connection_spec
|
144 |
-
)
|
145 |
-
# draw_pupils(image, face_landmarks, iris_landmark_spec, 2)
|
146 |
-
image = cv2.resize(image, (image_size[0], image_size[1]))
|
147 |
-
|
148 |
-
return image
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/utils/face_landmark.py
DELETED
@@ -1,3305 +0,0 @@
|
|
1 |
-
# Copyright 2023 The MediaPipe Authors.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""MediaPipe face landmarker task."""
|
15 |
-
|
16 |
-
import dataclasses
|
17 |
-
import enum
|
18 |
-
from typing import Callable, Mapping, Optional, List
|
19 |
-
|
20 |
-
import numpy as np
|
21 |
-
|
22 |
-
from mediapipe.framework.formats import classification_pb2
|
23 |
-
from mediapipe.framework.formats import landmark_pb2
|
24 |
-
from mediapipe.framework.formats import matrix_data_pb2
|
25 |
-
from mediapipe.python import packet_creator
|
26 |
-
from mediapipe.python import packet_getter
|
27 |
-
from mediapipe.python._framework_bindings import image as image_module
|
28 |
-
from mediapipe.python._framework_bindings import packet as packet_module
|
29 |
-
# pylint: disable=unused-import
|
30 |
-
from mediapipe.tasks.cc.vision.face_geometry.proto import face_geometry_pb2
|
31 |
-
# pylint: enable=unused-import
|
32 |
-
from mediapipe.tasks.cc.vision.face_landmarker.proto import face_landmarker_graph_options_pb2
|
33 |
-
from mediapipe.tasks.python.components.containers import category as category_module
|
34 |
-
from mediapipe.tasks.python.components.containers import landmark as landmark_module
|
35 |
-
from mediapipe.tasks.python.core import base_options as base_options_module
|
36 |
-
from mediapipe.tasks.python.core import task_info as task_info_module
|
37 |
-
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
38 |
-
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
39 |
-
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
40 |
-
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
|
41 |
-
|
42 |
-
_BaseOptions = base_options_module.BaseOptions
|
43 |
-
_FaceLandmarkerGraphOptionsProto = (
|
44 |
-
face_landmarker_graph_options_pb2.FaceLandmarkerGraphOptions
|
45 |
-
)
|
46 |
-
_LayoutEnum = matrix_data_pb2.MatrixData.Layout
|
47 |
-
_RunningMode = running_mode_module.VisionTaskRunningMode
|
48 |
-
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
49 |
-
_TaskInfo = task_info_module.TaskInfo
|
50 |
-
|
51 |
-
_IMAGE_IN_STREAM_NAME = 'image_in'
|
52 |
-
_IMAGE_OUT_STREAM_NAME = 'image_out'
|
53 |
-
_IMAGE_TAG = 'IMAGE'
|
54 |
-
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
|
55 |
-
_NORM_RECT_TAG = 'NORM_RECT'
|
56 |
-
_NORM_LANDMARKS_STREAM_NAME = 'norm_landmarks'
|
57 |
-
_NORM_LANDMARKS_TAG = 'NORM_LANDMARKS'
|
58 |
-
_BLENDSHAPES_STREAM_NAME = 'blendshapes'
|
59 |
-
_BLENDSHAPES_TAG = 'BLENDSHAPES'
|
60 |
-
_FACE_GEOMETRY_STREAM_NAME = 'face_geometry'
|
61 |
-
_FACE_GEOMETRY_TAG = 'FACE_GEOMETRY'
|
62 |
-
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.face_landmarker.FaceLandmarkerGraph'
|
63 |
-
_MICRO_SECONDS_PER_MILLISECOND = 1000
|
64 |
-
|
65 |
-
|
66 |
-
class Blendshapes(enum.IntEnum):
|
67 |
-
"""The 52 blendshape coefficients."""
|
68 |
-
|
69 |
-
NEUTRAL = 0
|
70 |
-
BROW_DOWN_LEFT = 1
|
71 |
-
BROW_DOWN_RIGHT = 2
|
72 |
-
BROW_INNER_UP = 3
|
73 |
-
BROW_OUTER_UP_LEFT = 4
|
74 |
-
BROW_OUTER_UP_RIGHT = 5
|
75 |
-
CHEEK_PUFF = 6
|
76 |
-
CHEEK_SQUINT_LEFT = 7
|
77 |
-
CHEEK_SQUINT_RIGHT = 8
|
78 |
-
EYE_BLINK_LEFT = 9
|
79 |
-
EYE_BLINK_RIGHT = 10
|
80 |
-
EYE_LOOK_DOWN_LEFT = 11
|
81 |
-
EYE_LOOK_DOWN_RIGHT = 12
|
82 |
-
EYE_LOOK_IN_LEFT = 13
|
83 |
-
EYE_LOOK_IN_RIGHT = 14
|
84 |
-
EYE_LOOK_OUT_LEFT = 15
|
85 |
-
EYE_LOOK_OUT_RIGHT = 16
|
86 |
-
EYE_LOOK_UP_LEFT = 17
|
87 |
-
EYE_LOOK_UP_RIGHT = 18
|
88 |
-
EYE_SQUINT_LEFT = 19
|
89 |
-
EYE_SQUINT_RIGHT = 20
|
90 |
-
EYE_WIDE_LEFT = 21
|
91 |
-
EYE_WIDE_RIGHT = 22
|
92 |
-
JAW_FORWARD = 23
|
93 |
-
JAW_LEFT = 24
|
94 |
-
JAW_OPEN = 25
|
95 |
-
JAW_RIGHT = 26
|
96 |
-
MOUTH_CLOSE = 27
|
97 |
-
MOUTH_DIMPLE_LEFT = 28
|
98 |
-
MOUTH_DIMPLE_RIGHT = 29
|
99 |
-
MOUTH_FROWN_LEFT = 30
|
100 |
-
MOUTH_FROWN_RIGHT = 31
|
101 |
-
MOUTH_FUNNEL = 32
|
102 |
-
MOUTH_LEFT = 33
|
103 |
-
MOUTH_LOWER_DOWN_LEFT = 34
|
104 |
-
MOUTH_LOWER_DOWN_RIGHT = 35
|
105 |
-
MOUTH_PRESS_LEFT = 36
|
106 |
-
MOUTH_PRESS_RIGHT = 37
|
107 |
-
MOUTH_PUCKER = 38
|
108 |
-
MOUTH_RIGHT = 39
|
109 |
-
MOUTH_ROLL_LOWER = 40
|
110 |
-
MOUTH_ROLL_UPPER = 41
|
111 |
-
MOUTH_SHRUG_LOWER = 42
|
112 |
-
MOUTH_SHRUG_UPPER = 43
|
113 |
-
MOUTH_SMILE_LEFT = 44
|
114 |
-
MOUTH_SMILE_RIGHT = 45
|
115 |
-
MOUTH_STRETCH_LEFT = 46
|
116 |
-
MOUTH_STRETCH_RIGHT = 47
|
117 |
-
MOUTH_UPPER_UP_LEFT = 48
|
118 |
-
MOUTH_UPPER_UP_RIGHT = 49
|
119 |
-
NOSE_SNEER_LEFT = 50
|
120 |
-
NOSE_SNEER_RIGHT = 51
|
121 |
-
|
122 |
-
|
123 |
-
class FaceLandmarksConnections:
|
124 |
-
"""The connections between face landmarks."""
|
125 |
-
|
126 |
-
@dataclasses.dataclass
|
127 |
-
class Connection:
|
128 |
-
"""The connection class for face landmarks."""
|
129 |
-
|
130 |
-
start: int
|
131 |
-
end: int
|
132 |
-
|
133 |
-
FACE_LANDMARKS_LIPS: List[Connection] = [
|
134 |
-
Connection(61, 146),
|
135 |
-
Connection(146, 91),
|
136 |
-
Connection(91, 181),
|
137 |
-
Connection(181, 84),
|
138 |
-
Connection(84, 17),
|
139 |
-
Connection(17, 314),
|
140 |
-
Connection(314, 405),
|
141 |
-
Connection(405, 321),
|
142 |
-
Connection(321, 375),
|
143 |
-
Connection(375, 291),
|
144 |
-
Connection(61, 185),
|
145 |
-
Connection(185, 40),
|
146 |
-
Connection(40, 39),
|
147 |
-
Connection(39, 37),
|
148 |
-
Connection(37, 0),
|
149 |
-
Connection(0, 267),
|
150 |
-
Connection(267, 269),
|
151 |
-
Connection(269, 270),
|
152 |
-
Connection(270, 409),
|
153 |
-
Connection(409, 291),
|
154 |
-
Connection(78, 95),
|
155 |
-
Connection(95, 88),
|
156 |
-
Connection(88, 178),
|
157 |
-
Connection(178, 87),
|
158 |
-
Connection(87, 14),
|
159 |
-
Connection(14, 317),
|
160 |
-
Connection(317, 402),
|
161 |
-
Connection(402, 318),
|
162 |
-
Connection(318, 324),
|
163 |
-
Connection(324, 308),
|
164 |
-
Connection(78, 191),
|
165 |
-
Connection(191, 80),
|
166 |
-
Connection(80, 81),
|
167 |
-
Connection(81, 82),
|
168 |
-
Connection(82, 13),
|
169 |
-
Connection(13, 312),
|
170 |
-
Connection(312, 311),
|
171 |
-
Connection(311, 310),
|
172 |
-
Connection(310, 415),
|
173 |
-
Connection(415, 308),
|
174 |
-
]
|
175 |
-
|
176 |
-
FACE_LANDMARKS_LEFT_EYE: List[Connection] = [
|
177 |
-
Connection(263, 249),
|
178 |
-
Connection(249, 390),
|
179 |
-
Connection(390, 373),
|
180 |
-
Connection(373, 374),
|
181 |
-
Connection(374, 380),
|
182 |
-
Connection(380, 381),
|
183 |
-
Connection(381, 382),
|
184 |
-
Connection(382, 362),
|
185 |
-
Connection(263, 466),
|
186 |
-
Connection(466, 388),
|
187 |
-
Connection(388, 387),
|
188 |
-
Connection(387, 386),
|
189 |
-
Connection(386, 385),
|
190 |
-
Connection(385, 384),
|
191 |
-
Connection(384, 398),
|
192 |
-
Connection(398, 362),
|
193 |
-
]
|
194 |
-
|
195 |
-
FACE_LANDMARKS_LEFT_EYEBROW: List[Connection] = [
|
196 |
-
Connection(276, 283),
|
197 |
-
Connection(283, 282),
|
198 |
-
Connection(282, 295),
|
199 |
-
Connection(295, 285),
|
200 |
-
Connection(300, 293),
|
201 |
-
Connection(293, 334),
|
202 |
-
Connection(334, 296),
|
203 |
-
Connection(296, 336),
|
204 |
-
]
|
205 |
-
|
206 |
-
FACE_LANDMARKS_LEFT_IRIS: List[Connection] = [
|
207 |
-
Connection(474, 475),
|
208 |
-
Connection(475, 476),
|
209 |
-
Connection(476, 477),
|
210 |
-
Connection(477, 474),
|
211 |
-
]
|
212 |
-
|
213 |
-
FACE_LANDMARKS_RIGHT_EYE: List[Connection] = [
|
214 |
-
Connection(33, 7),
|
215 |
-
Connection(7, 163),
|
216 |
-
Connection(163, 144),
|
217 |
-
Connection(144, 145),
|
218 |
-
Connection(145, 153),
|
219 |
-
Connection(153, 154),
|
220 |
-
Connection(154, 155),
|
221 |
-
Connection(155, 133),
|
222 |
-
Connection(33, 246),
|
223 |
-
Connection(246, 161),
|
224 |
-
Connection(161, 160),
|
225 |
-
Connection(160, 159),
|
226 |
-
Connection(159, 158),
|
227 |
-
Connection(158, 157),
|
228 |
-
Connection(157, 173),
|
229 |
-
Connection(173, 133),
|
230 |
-
]
|
231 |
-
|
232 |
-
FACE_LANDMARKS_RIGHT_EYEBROW: List[Connection] = [
|
233 |
-
Connection(46, 53),
|
234 |
-
Connection(53, 52),
|
235 |
-
Connection(52, 65),
|
236 |
-
Connection(65, 55),
|
237 |
-
Connection(70, 63),
|
238 |
-
Connection(63, 105),
|
239 |
-
Connection(105, 66),
|
240 |
-
Connection(66, 107),
|
241 |
-
]
|
242 |
-
|
243 |
-
FACE_LANDMARKS_RIGHT_IRIS: List[Connection] = [
|
244 |
-
Connection(469, 470),
|
245 |
-
Connection(470, 471),
|
246 |
-
Connection(471, 472),
|
247 |
-
Connection(472, 469),
|
248 |
-
]
|
249 |
-
|
250 |
-
FACE_LANDMARKS_FACE_OVAL: List[Connection] = [
|
251 |
-
Connection(10, 338),
|
252 |
-
Connection(338, 297),
|
253 |
-
Connection(297, 332),
|
254 |
-
Connection(332, 284),
|
255 |
-
Connection(284, 251),
|
256 |
-
Connection(251, 389),
|
257 |
-
Connection(389, 356),
|
258 |
-
Connection(356, 454),
|
259 |
-
Connection(454, 323),
|
260 |
-
Connection(323, 361),
|
261 |
-
Connection(361, 288),
|
262 |
-
Connection(288, 397),
|
263 |
-
Connection(397, 365),
|
264 |
-
Connection(365, 379),
|
265 |
-
Connection(379, 378),
|
266 |
-
Connection(378, 400),
|
267 |
-
Connection(400, 377),
|
268 |
-
Connection(377, 152),
|
269 |
-
Connection(152, 148),
|
270 |
-
Connection(148, 176),
|
271 |
-
Connection(176, 149),
|
272 |
-
Connection(149, 150),
|
273 |
-
Connection(150, 136),
|
274 |
-
Connection(136, 172),
|
275 |
-
Connection(172, 58),
|
276 |
-
Connection(58, 132),
|
277 |
-
Connection(132, 93),
|
278 |
-
Connection(93, 234),
|
279 |
-
Connection(234, 127),
|
280 |
-
Connection(127, 162),
|
281 |
-
Connection(162, 21),
|
282 |
-
Connection(21, 54),
|
283 |
-
Connection(54, 103),
|
284 |
-
Connection(103, 67),
|
285 |
-
Connection(67, 109),
|
286 |
-
Connection(109, 10),
|
287 |
-
]
|
288 |
-
|
289 |
-
FACE_LANDMARKS_CONTOURS: List[Connection] = (
|
290 |
-
FACE_LANDMARKS_LIPS
|
291 |
-
+ FACE_LANDMARKS_LEFT_EYE
|
292 |
-
+ FACE_LANDMARKS_LEFT_EYEBROW
|
293 |
-
+ FACE_LANDMARKS_RIGHT_EYE
|
294 |
-
+ FACE_LANDMARKS_RIGHT_EYEBROW
|
295 |
-
+ FACE_LANDMARKS_FACE_OVAL
|
296 |
-
)
|
297 |
-
|
298 |
-
FACE_LANDMARKS_TESSELATION: List[Connection] = [
|
299 |
-
Connection(127, 34),
|
300 |
-
Connection(34, 139),
|
301 |
-
Connection(139, 127),
|
302 |
-
Connection(11, 0),
|
303 |
-
Connection(0, 37),
|
304 |
-
Connection(37, 11),
|
305 |
-
Connection(232, 231),
|
306 |
-
Connection(231, 120),
|
307 |
-
Connection(120, 232),
|
308 |
-
Connection(72, 37),
|
309 |
-
Connection(37, 39),
|
310 |
-
Connection(39, 72),
|
311 |
-
Connection(128, 121),
|
312 |
-
Connection(121, 47),
|
313 |
-
Connection(47, 128),
|
314 |
-
Connection(232, 121),
|
315 |
-
Connection(121, 128),
|
316 |
-
Connection(128, 232),
|
317 |
-
Connection(104, 69),
|
318 |
-
Connection(69, 67),
|
319 |
-
Connection(67, 104),
|
320 |
-
Connection(175, 171),
|
321 |
-
Connection(171, 148),
|
322 |
-
Connection(148, 175),
|
323 |
-
Connection(118, 50),
|
324 |
-
Connection(50, 101),
|
325 |
-
Connection(101, 118),
|
326 |
-
Connection(73, 39),
|
327 |
-
Connection(39, 40),
|
328 |
-
Connection(40, 73),
|
329 |
-
Connection(9, 151),
|
330 |
-
Connection(151, 108),
|
331 |
-
Connection(108, 9),
|
332 |
-
Connection(48, 115),
|
333 |
-
Connection(115, 131),
|
334 |
-
Connection(131, 48),
|
335 |
-
Connection(194, 204),
|
336 |
-
Connection(204, 211),
|
337 |
-
Connection(211, 194),
|
338 |
-
Connection(74, 40),
|
339 |
-
Connection(40, 185),
|
340 |
-
Connection(185, 74),
|
341 |
-
Connection(80, 42),
|
342 |
-
Connection(42, 183),
|
343 |
-
Connection(183, 80),
|
344 |
-
Connection(40, 92),
|
345 |
-
Connection(92, 186),
|
346 |
-
Connection(186, 40),
|
347 |
-
Connection(230, 229),
|
348 |
-
Connection(229, 118),
|
349 |
-
Connection(118, 230),
|
350 |
-
Connection(202, 212),
|
351 |
-
Connection(212, 214),
|
352 |
-
Connection(214, 202),
|
353 |
-
Connection(83, 18),
|
354 |
-
Connection(18, 17),
|
355 |
-
Connection(17, 83),
|
356 |
-
Connection(76, 61),
|
357 |
-
Connection(61, 146),
|
358 |
-
Connection(146, 76),
|
359 |
-
Connection(160, 29),
|
360 |
-
Connection(29, 30),
|
361 |
-
Connection(30, 160),
|
362 |
-
Connection(56, 157),
|
363 |
-
Connection(157, 173),
|
364 |
-
Connection(173, 56),
|
365 |
-
Connection(106, 204),
|
366 |
-
Connection(204, 194),
|
367 |
-
Connection(194, 106),
|
368 |
-
Connection(135, 214),
|
369 |
-
Connection(214, 192),
|
370 |
-
Connection(192, 135),
|
371 |
-
Connection(203, 165),
|
372 |
-
Connection(165, 98),
|
373 |
-
Connection(98, 203),
|
374 |
-
Connection(21, 71),
|
375 |
-
Connection(71, 68),
|
376 |
-
Connection(68, 21),
|
377 |
-
Connection(51, 45),
|
378 |
-
Connection(45, 4),
|
379 |
-
Connection(4, 51),
|
380 |
-
Connection(144, 24),
|
381 |
-
Connection(24, 23),
|
382 |
-
Connection(23, 144),
|
383 |
-
Connection(77, 146),
|
384 |
-
Connection(146, 91),
|
385 |
-
Connection(91, 77),
|
386 |
-
Connection(205, 50),
|
387 |
-
Connection(50, 187),
|
388 |
-
Connection(187, 205),
|
389 |
-
Connection(201, 200),
|
390 |
-
Connection(200, 18),
|
391 |
-
Connection(18, 201),
|
392 |
-
Connection(91, 106),
|
393 |
-
Connection(106, 182),
|
394 |
-
Connection(182, 91),
|
395 |
-
Connection(90, 91),
|
396 |
-
Connection(91, 181),
|
397 |
-
Connection(181, 90),
|
398 |
-
Connection(85, 84),
|
399 |
-
Connection(84, 17),
|
400 |
-
Connection(17, 85),
|
401 |
-
Connection(206, 203),
|
402 |
-
Connection(203, 36),
|
403 |
-
Connection(36, 206),
|
404 |
-
Connection(148, 171),
|
405 |
-
Connection(171, 140),
|
406 |
-
Connection(140, 148),
|
407 |
-
Connection(92, 40),
|
408 |
-
Connection(40, 39),
|
409 |
-
Connection(39, 92),
|
410 |
-
Connection(193, 189),
|
411 |
-
Connection(189, 244),
|
412 |
-
Connection(244, 193),
|
413 |
-
Connection(159, 158),
|
414 |
-
Connection(158, 28),
|
415 |
-
Connection(28, 159),
|
416 |
-
Connection(247, 246),
|
417 |
-
Connection(246, 161),
|
418 |
-
Connection(161, 247),
|
419 |
-
Connection(236, 3),
|
420 |
-
Connection(3, 196),
|
421 |
-
Connection(196, 236),
|
422 |
-
Connection(54, 68),
|
423 |
-
Connection(68, 104),
|
424 |
-
Connection(104, 54),
|
425 |
-
Connection(193, 168),
|
426 |
-
Connection(168, 8),
|
427 |
-
Connection(8, 193),
|
428 |
-
Connection(117, 228),
|
429 |
-
Connection(228, 31),
|
430 |
-
Connection(31, 117),
|
431 |
-
Connection(189, 193),
|
432 |
-
Connection(193, 55),
|
433 |
-
Connection(55, 189),
|
434 |
-
Connection(98, 97),
|
435 |
-
Connection(97, 99),
|
436 |
-
Connection(99, 98),
|
437 |
-
Connection(126, 47),
|
438 |
-
Connection(47, 100),
|
439 |
-
Connection(100, 126),
|
440 |
-
Connection(166, 79),
|
441 |
-
Connection(79, 218),
|
442 |
-
Connection(218, 166),
|
443 |
-
Connection(155, 154),
|
444 |
-
Connection(154, 26),
|
445 |
-
Connection(26, 155),
|
446 |
-
Connection(209, 49),
|
447 |
-
Connection(49, 131),
|
448 |
-
Connection(131, 209),
|
449 |
-
Connection(135, 136),
|
450 |
-
Connection(136, 150),
|
451 |
-
Connection(150, 135),
|
452 |
-
Connection(47, 126),
|
453 |
-
Connection(126, 217),
|
454 |
-
Connection(217, 47),
|
455 |
-
Connection(223, 52),
|
456 |
-
Connection(52, 53),
|
457 |
-
Connection(53, 223),
|
458 |
-
Connection(45, 51),
|
459 |
-
Connection(51, 134),
|
460 |
-
Connection(134, 45),
|
461 |
-
Connection(211, 170),
|
462 |
-
Connection(170, 140),
|
463 |
-
Connection(140, 211),
|
464 |
-
Connection(67, 69),
|
465 |
-
Connection(69, 108),
|
466 |
-
Connection(108, 67),
|
467 |
-
Connection(43, 106),
|
468 |
-
Connection(106, 91),
|
469 |
-
Connection(91, 43),
|
470 |
-
Connection(230, 119),
|
471 |
-
Connection(119, 120),
|
472 |
-
Connection(120, 230),
|
473 |
-
Connection(226, 130),
|
474 |
-
Connection(130, 247),
|
475 |
-
Connection(247, 226),
|
476 |
-
Connection(63, 53),
|
477 |
-
Connection(53, 52),
|
478 |
-
Connection(52, 63),
|
479 |
-
Connection(238, 20),
|
480 |
-
Connection(20, 242),
|
481 |
-
Connection(242, 238),
|
482 |
-
Connection(46, 70),
|
483 |
-
Connection(70, 156),
|
484 |
-
Connection(156, 46),
|
485 |
-
Connection(78, 62),
|
486 |
-
Connection(62, 96),
|
487 |
-
Connection(96, 78),
|
488 |
-
Connection(46, 53),
|
489 |
-
Connection(53, 63),
|
490 |
-
Connection(63, 46),
|
491 |
-
Connection(143, 34),
|
492 |
-
Connection(34, 227),
|
493 |
-
Connection(227, 143),
|
494 |
-
Connection(123, 117),
|
495 |
-
Connection(117, 111),
|
496 |
-
Connection(111, 123),
|
497 |
-
Connection(44, 125),
|
498 |
-
Connection(125, 19),
|
499 |
-
Connection(19, 44),
|
500 |
-
Connection(236, 134),
|
501 |
-
Connection(134, 51),
|
502 |
-
Connection(51, 236),
|
503 |
-
Connection(216, 206),
|
504 |
-
Connection(206, 205),
|
505 |
-
Connection(205, 216),
|
506 |
-
Connection(154, 153),
|
507 |
-
Connection(153, 22),
|
508 |
-
Connection(22, 154),
|
509 |
-
Connection(39, 37),
|
510 |
-
Connection(37, 167),
|
511 |
-
Connection(167, 39),
|
512 |
-
Connection(200, 201),
|
513 |
-
Connection(201, 208),
|
514 |
-
Connection(208, 200),
|
515 |
-
Connection(36, 142),
|
516 |
-
Connection(142, 100),
|
517 |
-
Connection(100, 36),
|
518 |
-
Connection(57, 212),
|
519 |
-
Connection(212, 202),
|
520 |
-
Connection(202, 57),
|
521 |
-
Connection(20, 60),
|
522 |
-
Connection(60, 99),
|
523 |
-
Connection(99, 20),
|
524 |
-
Connection(28, 158),
|
525 |
-
Connection(158, 157),
|
526 |
-
Connection(157, 28),
|
527 |
-
Connection(35, 226),
|
528 |
-
Connection(226, 113),
|
529 |
-
Connection(113, 35),
|
530 |
-
Connection(160, 159),
|
531 |
-
Connection(159, 27),
|
532 |
-
Connection(27, 160),
|
533 |
-
Connection(204, 202),
|
534 |
-
Connection(202, 210),
|
535 |
-
Connection(210, 204),
|
536 |
-
Connection(113, 225),
|
537 |
-
Connection(225, 46),
|
538 |
-
Connection(46, 113),
|
539 |
-
Connection(43, 202),
|
540 |
-
Connection(202, 204),
|
541 |
-
Connection(204, 43),
|
542 |
-
Connection(62, 76),
|
543 |
-
Connection(76, 77),
|
544 |
-
Connection(77, 62),
|
545 |
-
Connection(137, 123),
|
546 |
-
Connection(123, 116),
|
547 |
-
Connection(116, 137),
|
548 |
-
Connection(41, 38),
|
549 |
-
Connection(38, 72),
|
550 |
-
Connection(72, 41),
|
551 |
-
Connection(203, 129),
|
552 |
-
Connection(129, 142),
|
553 |
-
Connection(142, 203),
|
554 |
-
Connection(64, 98),
|
555 |
-
Connection(98, 240),
|
556 |
-
Connection(240, 64),
|
557 |
-
Connection(49, 102),
|
558 |
-
Connection(102, 64),
|
559 |
-
Connection(64, 49),
|
560 |
-
Connection(41, 73),
|
561 |
-
Connection(73, 74),
|
562 |
-
Connection(74, 41),
|
563 |
-
Connection(212, 216),
|
564 |
-
Connection(216, 207),
|
565 |
-
Connection(207, 212),
|
566 |
-
Connection(42, 74),
|
567 |
-
Connection(74, 184),
|
568 |
-
Connection(184, 42),
|
569 |
-
Connection(169, 170),
|
570 |
-
Connection(170, 211),
|
571 |
-
Connection(211, 169),
|
572 |
-
Connection(170, 149),
|
573 |
-
Connection(149, 176),
|
574 |
-
Connection(176, 170),
|
575 |
-
Connection(105, 66),
|
576 |
-
Connection(66, 69),
|
577 |
-
Connection(69, 105),
|
578 |
-
Connection(122, 6),
|
579 |
-
Connection(6, 168),
|
580 |
-
Connection(168, 122),
|
581 |
-
Connection(123, 147),
|
582 |
-
Connection(147, 187),
|
583 |
-
Connection(187, 123),
|
584 |
-
Connection(96, 77),
|
585 |
-
Connection(77, 90),
|
586 |
-
Connection(90, 96),
|
587 |
-
Connection(65, 55),
|
588 |
-
Connection(55, 107),
|
589 |
-
Connection(107, 65),
|
590 |
-
Connection(89, 90),
|
591 |
-
Connection(90, 180),
|
592 |
-
Connection(180, 89),
|
593 |
-
Connection(101, 100),
|
594 |
-
Connection(100, 120),
|
595 |
-
Connection(120, 101),
|
596 |
-
Connection(63, 105),
|
597 |
-
Connection(105, 104),
|
598 |
-
Connection(104, 63),
|
599 |
-
Connection(93, 137),
|
600 |
-
Connection(137, 227),
|
601 |
-
Connection(227, 93),
|
602 |
-
Connection(15, 86),
|
603 |
-
Connection(86, 85),
|
604 |
-
Connection(85, 15),
|
605 |
-
Connection(129, 102),
|
606 |
-
Connection(102, 49),
|
607 |
-
Connection(49, 129),
|
608 |
-
Connection(14, 87),
|
609 |
-
Connection(87, 86),
|
610 |
-
Connection(86, 14),
|
611 |
-
Connection(55, 8),
|
612 |
-
Connection(8, 9),
|
613 |
-
Connection(9, 55),
|
614 |
-
Connection(100, 47),
|
615 |
-
Connection(47, 121),
|
616 |
-
Connection(121, 100),
|
617 |
-
Connection(145, 23),
|
618 |
-
Connection(23, 22),
|
619 |
-
Connection(22, 145),
|
620 |
-
Connection(88, 89),
|
621 |
-
Connection(89, 179),
|
622 |
-
Connection(179, 88),
|
623 |
-
Connection(6, 122),
|
624 |
-
Connection(122, 196),
|
625 |
-
Connection(196, 6),
|
626 |
-
Connection(88, 95),
|
627 |
-
Connection(95, 96),
|
628 |
-
Connection(96, 88),
|
629 |
-
Connection(138, 172),
|
630 |
-
Connection(172, 136),
|
631 |
-
Connection(136, 138),
|
632 |
-
Connection(215, 58),
|
633 |
-
Connection(58, 172),
|
634 |
-
Connection(172, 215),
|
635 |
-
Connection(115, 48),
|
636 |
-
Connection(48, 219),
|
637 |
-
Connection(219, 115),
|
638 |
-
Connection(42, 80),
|
639 |
-
Connection(80, 81),
|
640 |
-
Connection(81, 42),
|
641 |
-
Connection(195, 3),
|
642 |
-
Connection(3, 51),
|
643 |
-
Connection(51, 195),
|
644 |
-
Connection(43, 146),
|
645 |
-
Connection(146, 61),
|
646 |
-
Connection(61, 43),
|
647 |
-
Connection(171, 175),
|
648 |
-
Connection(175, 199),
|
649 |
-
Connection(199, 171),
|
650 |
-
Connection(81, 82),
|
651 |
-
Connection(82, 38),
|
652 |
-
Connection(38, 81),
|
653 |
-
Connection(53, 46),
|
654 |
-
Connection(46, 225),
|
655 |
-
Connection(225, 53),
|
656 |
-
Connection(144, 163),
|
657 |
-
Connection(163, 110),
|
658 |
-
Connection(110, 144),
|
659 |
-
Connection(52, 65),
|
660 |
-
Connection(65, 66),
|
661 |
-
Connection(66, 52),
|
662 |
-
Connection(229, 228),
|
663 |
-
Connection(228, 117),
|
664 |
-
Connection(117, 229),
|
665 |
-
Connection(34, 127),
|
666 |
-
Connection(127, 234),
|
667 |
-
Connection(234, 34),
|
668 |
-
Connection(107, 108),
|
669 |
-
Connection(108, 69),
|
670 |
-
Connection(69, 107),
|
671 |
-
Connection(109, 108),
|
672 |
-
Connection(108, 151),
|
673 |
-
Connection(151, 109),
|
674 |
-
Connection(48, 64),
|
675 |
-
Connection(64, 235),
|
676 |
-
Connection(235, 48),
|
677 |
-
Connection(62, 78),
|
678 |
-
Connection(78, 191),
|
679 |
-
Connection(191, 62),
|
680 |
-
Connection(129, 209),
|
681 |
-
Connection(209, 126),
|
682 |
-
Connection(126, 129),
|
683 |
-
Connection(111, 35),
|
684 |
-
Connection(35, 143),
|
685 |
-
Connection(143, 111),
|
686 |
-
Connection(117, 123),
|
687 |
-
Connection(123, 50),
|
688 |
-
Connection(50, 117),
|
689 |
-
Connection(222, 65),
|
690 |
-
Connection(65, 52),
|
691 |
-
Connection(52, 222),
|
692 |
-
Connection(19, 125),
|
693 |
-
Connection(125, 141),
|
694 |
-
Connection(141, 19),
|
695 |
-
Connection(221, 55),
|
696 |
-
Connection(55, 65),
|
697 |
-
Connection(65, 221),
|
698 |
-
Connection(3, 195),
|
699 |
-
Connection(195, 197),
|
700 |
-
Connection(197, 3),
|
701 |
-
Connection(25, 7),
|
702 |
-
Connection(7, 33),
|
703 |
-
Connection(33, 25),
|
704 |
-
Connection(220, 237),
|
705 |
-
Connection(237, 44),
|
706 |
-
Connection(44, 220),
|
707 |
-
Connection(70, 71),
|
708 |
-
Connection(71, 139),
|
709 |
-
Connection(139, 70),
|
710 |
-
Connection(122, 193),
|
711 |
-
Connection(193, 245),
|
712 |
-
Connection(245, 122),
|
713 |
-
Connection(247, 130),
|
714 |
-
Connection(130, 33),
|
715 |
-
Connection(33, 247),
|
716 |
-
Connection(71, 21),
|
717 |
-
Connection(21, 162),
|
718 |
-
Connection(162, 71),
|
719 |
-
Connection(170, 169),
|
720 |
-
Connection(169, 150),
|
721 |
-
Connection(150, 170),
|
722 |
-
Connection(188, 174),
|
723 |
-
Connection(174, 196),
|
724 |
-
Connection(196, 188),
|
725 |
-
Connection(216, 186),
|
726 |
-
Connection(186, 92),
|
727 |
-
Connection(92, 216),
|
728 |
-
Connection(2, 97),
|
729 |
-
Connection(97, 167),
|
730 |
-
Connection(167, 2),
|
731 |
-
Connection(141, 125),
|
732 |
-
Connection(125, 241),
|
733 |
-
Connection(241, 141),
|
734 |
-
Connection(164, 167),
|
735 |
-
Connection(167, 37),
|
736 |
-
Connection(37, 164),
|
737 |
-
Connection(72, 38),
|
738 |
-
Connection(38, 12),
|
739 |
-
Connection(12, 72),
|
740 |
-
Connection(38, 82),
|
741 |
-
Connection(82, 13),
|
742 |
-
Connection(13, 38),
|
743 |
-
Connection(63, 68),
|
744 |
-
Connection(68, 71),
|
745 |
-
Connection(71, 63),
|
746 |
-
Connection(226, 35),
|
747 |
-
Connection(35, 111),
|
748 |
-
Connection(111, 226),
|
749 |
-
Connection(101, 50),
|
750 |
-
Connection(50, 205),
|
751 |
-
Connection(205, 101),
|
752 |
-
Connection(206, 92),
|
753 |
-
Connection(92, 165),
|
754 |
-
Connection(165, 206),
|
755 |
-
Connection(209, 198),
|
756 |
-
Connection(198, 217),
|
757 |
-
Connection(217, 209),
|
758 |
-
Connection(165, 167),
|
759 |
-
Connection(167, 97),
|
760 |
-
Connection(97, 165),
|
761 |
-
Connection(220, 115),
|
762 |
-
Connection(115, 218),
|
763 |
-
Connection(218, 220),
|
764 |
-
Connection(133, 112),
|
765 |
-
Connection(112, 243),
|
766 |
-
Connection(243, 133),
|
767 |
-
Connection(239, 238),
|
768 |
-
Connection(238, 241),
|
769 |
-
Connection(241, 239),
|
770 |
-
Connection(214, 135),
|
771 |
-
Connection(135, 169),
|
772 |
-
Connection(169, 214),
|
773 |
-
Connection(190, 173),
|
774 |
-
Connection(173, 133),
|
775 |
-
Connection(133, 190),
|
776 |
-
Connection(171, 208),
|
777 |
-
Connection(208, 32),
|
778 |
-
Connection(32, 171),
|
779 |
-
Connection(125, 44),
|
780 |
-
Connection(44, 237),
|
781 |
-
Connection(237, 125),
|
782 |
-
Connection(86, 87),
|
783 |
-
Connection(87, 178),
|
784 |
-
Connection(178, 86),
|
785 |
-
Connection(85, 86),
|
786 |
-
Connection(86, 179),
|
787 |
-
Connection(179, 85),
|
788 |
-
Connection(84, 85),
|
789 |
-
Connection(85, 180),
|
790 |
-
Connection(180, 84),
|
791 |
-
Connection(83, 84),
|
792 |
-
Connection(84, 181),
|
793 |
-
Connection(181, 83),
|
794 |
-
Connection(201, 83),
|
795 |
-
Connection(83, 182),
|
796 |
-
Connection(182, 201),
|
797 |
-
Connection(137, 93),
|
798 |
-
Connection(93, 132),
|
799 |
-
Connection(132, 137),
|
800 |
-
Connection(76, 62),
|
801 |
-
Connection(62, 183),
|
802 |
-
Connection(183, 76),
|
803 |
-
Connection(61, 76),
|
804 |
-
Connection(76, 184),
|
805 |
-
Connection(184, 61),
|
806 |
-
Connection(57, 61),
|
807 |
-
Connection(61, 185),
|
808 |
-
Connection(185, 57),
|
809 |
-
Connection(212, 57),
|
810 |
-
Connection(57, 186),
|
811 |
-
Connection(186, 212),
|
812 |
-
Connection(214, 207),
|
813 |
-
Connection(207, 187),
|
814 |
-
Connection(187, 214),
|
815 |
-
Connection(34, 143),
|
816 |
-
Connection(143, 156),
|
817 |
-
Connection(156, 34),
|
818 |
-
Connection(79, 239),
|
819 |
-
Connection(239, 237),
|
820 |
-
Connection(237, 79),
|
821 |
-
Connection(123, 137),
|
822 |
-
Connection(137, 177),
|
823 |
-
Connection(177, 123),
|
824 |
-
Connection(44, 1),
|
825 |
-
Connection(1, 4),
|
826 |
-
Connection(4, 44),
|
827 |
-
Connection(201, 194),
|
828 |
-
Connection(194, 32),
|
829 |
-
Connection(32, 201),
|
830 |
-
Connection(64, 102),
|
831 |
-
Connection(102, 129),
|
832 |
-
Connection(129, 64),
|
833 |
-
Connection(213, 215),
|
834 |
-
Connection(215, 138),
|
835 |
-
Connection(138, 213),
|
836 |
-
Connection(59, 166),
|
837 |
-
Connection(166, 219),
|
838 |
-
Connection(219, 59),
|
839 |
-
Connection(242, 99),
|
840 |
-
Connection(99, 97),
|
841 |
-
Connection(97, 242),
|
842 |
-
Connection(2, 94),
|
843 |
-
Connection(94, 141),
|
844 |
-
Connection(141, 2),
|
845 |
-
Connection(75, 59),
|
846 |
-
Connection(59, 235),
|
847 |
-
Connection(235, 75),
|
848 |
-
Connection(24, 110),
|
849 |
-
Connection(110, 228),
|
850 |
-
Connection(228, 24),
|
851 |
-
Connection(25, 130),
|
852 |
-
Connection(130, 226),
|
853 |
-
Connection(226, 25),
|
854 |
-
Connection(23, 24),
|
855 |
-
Connection(24, 229),
|
856 |
-
Connection(229, 23),
|
857 |
-
Connection(22, 23),
|
858 |
-
Connection(23, 230),
|
859 |
-
Connection(230, 22),
|
860 |
-
Connection(26, 22),
|
861 |
-
Connection(22, 231),
|
862 |
-
Connection(231, 26),
|
863 |
-
Connection(112, 26),
|
864 |
-
Connection(26, 232),
|
865 |
-
Connection(232, 112),
|
866 |
-
Connection(189, 190),
|
867 |
-
Connection(190, 243),
|
868 |
-
Connection(243, 189),
|
869 |
-
Connection(221, 56),
|
870 |
-
Connection(56, 190),
|
871 |
-
Connection(190, 221),
|
872 |
-
Connection(28, 56),
|
873 |
-
Connection(56, 221),
|
874 |
-
Connection(221, 28),
|
875 |
-
Connection(27, 28),
|
876 |
-
Connection(28, 222),
|
877 |
-
Connection(222, 27),
|
878 |
-
Connection(29, 27),
|
879 |
-
Connection(27, 223),
|
880 |
-
Connection(223, 29),
|
881 |
-
Connection(30, 29),
|
882 |
-
Connection(29, 224),
|
883 |
-
Connection(224, 30),
|
884 |
-
Connection(247, 30),
|
885 |
-
Connection(30, 225),
|
886 |
-
Connection(225, 247),
|
887 |
-
Connection(238, 79),
|
888 |
-
Connection(79, 20),
|
889 |
-
Connection(20, 238),
|
890 |
-
Connection(166, 59),
|
891 |
-
Connection(59, 75),
|
892 |
-
Connection(75, 166),
|
893 |
-
Connection(60, 75),
|
894 |
-
Connection(75, 240),
|
895 |
-
Connection(240, 60),
|
896 |
-
Connection(147, 177),
|
897 |
-
Connection(177, 215),
|
898 |
-
Connection(215, 147),
|
899 |
-
Connection(20, 79),
|
900 |
-
Connection(79, 166),
|
901 |
-
Connection(166, 20),
|
902 |
-
Connection(187, 147),
|
903 |
-
Connection(147, 213),
|
904 |
-
Connection(213, 187),
|
905 |
-
Connection(112, 233),
|
906 |
-
Connection(233, 244),
|
907 |
-
Connection(244, 112),
|
908 |
-
Connection(233, 128),
|
909 |
-
Connection(128, 245),
|
910 |
-
Connection(245, 233),
|
911 |
-
Connection(128, 114),
|
912 |
-
Connection(114, 188),
|
913 |
-
Connection(188, 128),
|
914 |
-
Connection(114, 217),
|
915 |
-
Connection(217, 174),
|
916 |
-
Connection(174, 114),
|
917 |
-
Connection(131, 115),
|
918 |
-
Connection(115, 220),
|
919 |
-
Connection(220, 131),
|
920 |
-
Connection(217, 198),
|
921 |
-
Connection(198, 236),
|
922 |
-
Connection(236, 217),
|
923 |
-
Connection(198, 131),
|
924 |
-
Connection(131, 134),
|
925 |
-
Connection(134, 198),
|
926 |
-
Connection(177, 132),
|
927 |
-
Connection(132, 58),
|
928 |
-
Connection(58, 177),
|
929 |
-
Connection(143, 35),
|
930 |
-
Connection(35, 124),
|
931 |
-
Connection(124, 143),
|
932 |
-
Connection(110, 163),
|
933 |
-
Connection(163, 7),
|
934 |
-
Connection(7, 110),
|
935 |
-
Connection(228, 110),
|
936 |
-
Connection(110, 25),
|
937 |
-
Connection(25, 228),
|
938 |
-
Connection(356, 389),
|
939 |
-
Connection(389, 368),
|
940 |
-
Connection(368, 356),
|
941 |
-
Connection(11, 302),
|
942 |
-
Connection(302, 267),
|
943 |
-
Connection(267, 11),
|
944 |
-
Connection(452, 350),
|
945 |
-
Connection(350, 349),
|
946 |
-
Connection(349, 452),
|
947 |
-
Connection(302, 303),
|
948 |
-
Connection(303, 269),
|
949 |
-
Connection(269, 302),
|
950 |
-
Connection(357, 343),
|
951 |
-
Connection(343, 277),
|
952 |
-
Connection(277, 357),
|
953 |
-
Connection(452, 453),
|
954 |
-
Connection(453, 357),
|
955 |
-
Connection(357, 452),
|
956 |
-
Connection(333, 332),
|
957 |
-
Connection(332, 297),
|
958 |
-
Connection(297, 333),
|
959 |
-
Connection(175, 152),
|
960 |
-
Connection(152, 377),
|
961 |
-
Connection(377, 175),
|
962 |
-
Connection(347, 348),
|
963 |
-
Connection(348, 330),
|
964 |
-
Connection(330, 347),
|
965 |
-
Connection(303, 304),
|
966 |
-
Connection(304, 270),
|
967 |
-
Connection(270, 303),
|
968 |
-
Connection(9, 336),
|
969 |
-
Connection(336, 337),
|
970 |
-
Connection(337, 9),
|
971 |
-
Connection(278, 279),
|
972 |
-
Connection(279, 360),
|
973 |
-
Connection(360, 278),
|
974 |
-
Connection(418, 262),
|
975 |
-
Connection(262, 431),
|
976 |
-
Connection(431, 418),
|
977 |
-
Connection(304, 408),
|
978 |
-
Connection(408, 409),
|
979 |
-
Connection(409, 304),
|
980 |
-
Connection(310, 415),
|
981 |
-
Connection(415, 407),
|
982 |
-
Connection(407, 310),
|
983 |
-
Connection(270, 409),
|
984 |
-
Connection(409, 410),
|
985 |
-
Connection(410, 270),
|
986 |
-
Connection(450, 348),
|
987 |
-
Connection(348, 347),
|
988 |
-
Connection(347, 450),
|
989 |
-
Connection(422, 430),
|
990 |
-
Connection(430, 434),
|
991 |
-
Connection(434, 422),
|
992 |
-
Connection(313, 314),
|
993 |
-
Connection(314, 17),
|
994 |
-
Connection(17, 313),
|
995 |
-
Connection(306, 307),
|
996 |
-
Connection(307, 375),
|
997 |
-
Connection(375, 306),
|
998 |
-
Connection(387, 388),
|
999 |
-
Connection(388, 260),
|
1000 |
-
Connection(260, 387),
|
1001 |
-
Connection(286, 414),
|
1002 |
-
Connection(414, 398),
|
1003 |
-
Connection(398, 286),
|
1004 |
-
Connection(335, 406),
|
1005 |
-
Connection(406, 418),
|
1006 |
-
Connection(418, 335),
|
1007 |
-
Connection(364, 367),
|
1008 |
-
Connection(367, 416),
|
1009 |
-
Connection(416, 364),
|
1010 |
-
Connection(423, 358),
|
1011 |
-
Connection(358, 327),
|
1012 |
-
Connection(327, 423),
|
1013 |
-
Connection(251, 284),
|
1014 |
-
Connection(284, 298),
|
1015 |
-
Connection(298, 251),
|
1016 |
-
Connection(281, 5),
|
1017 |
-
Connection(5, 4),
|
1018 |
-
Connection(4, 281),
|
1019 |
-
Connection(373, 374),
|
1020 |
-
Connection(374, 253),
|
1021 |
-
Connection(253, 373),
|
1022 |
-
Connection(307, 320),
|
1023 |
-
Connection(320, 321),
|
1024 |
-
Connection(321, 307),
|
1025 |
-
Connection(425, 427),
|
1026 |
-
Connection(427, 411),
|
1027 |
-
Connection(411, 425),
|
1028 |
-
Connection(421, 313),
|
1029 |
-
Connection(313, 18),
|
1030 |
-
Connection(18, 421),
|
1031 |
-
Connection(321, 405),
|
1032 |
-
Connection(405, 406),
|
1033 |
-
Connection(406, 321),
|
1034 |
-
Connection(320, 404),
|
1035 |
-
Connection(404, 405),
|
1036 |
-
Connection(405, 320),
|
1037 |
-
Connection(315, 16),
|
1038 |
-
Connection(16, 17),
|
1039 |
-
Connection(17, 315),
|
1040 |
-
Connection(426, 425),
|
1041 |
-
Connection(425, 266),
|
1042 |
-
Connection(266, 426),
|
1043 |
-
Connection(377, 400),
|
1044 |
-
Connection(400, 369),
|
1045 |
-
Connection(369, 377),
|
1046 |
-
Connection(322, 391),
|
1047 |
-
Connection(391, 269),
|
1048 |
-
Connection(269, 322),
|
1049 |
-
Connection(417, 465),
|
1050 |
-
Connection(465, 464),
|
1051 |
-
Connection(464, 417),
|
1052 |
-
Connection(386, 257),
|
1053 |
-
Connection(257, 258),
|
1054 |
-
Connection(258, 386),
|
1055 |
-
Connection(466, 260),
|
1056 |
-
Connection(260, 388),
|
1057 |
-
Connection(388, 466),
|
1058 |
-
Connection(456, 399),
|
1059 |
-
Connection(399, 419),
|
1060 |
-
Connection(419, 456),
|
1061 |
-
Connection(284, 332),
|
1062 |
-
Connection(332, 333),
|
1063 |
-
Connection(333, 284),
|
1064 |
-
Connection(417, 285),
|
1065 |
-
Connection(285, 8),
|
1066 |
-
Connection(8, 417),
|
1067 |
-
Connection(346, 340),
|
1068 |
-
Connection(340, 261),
|
1069 |
-
Connection(261, 346),
|
1070 |
-
Connection(413, 441),
|
1071 |
-
Connection(441, 285),
|
1072 |
-
Connection(285, 413),
|
1073 |
-
Connection(327, 460),
|
1074 |
-
Connection(460, 328),
|
1075 |
-
Connection(328, 327),
|
1076 |
-
Connection(355, 371),
|
1077 |
-
Connection(371, 329),
|
1078 |
-
Connection(329, 355),
|
1079 |
-
Connection(392, 439),
|
1080 |
-
Connection(439, 438),
|
1081 |
-
Connection(438, 392),
|
1082 |
-
Connection(382, 341),
|
1083 |
-
Connection(341, 256),
|
1084 |
-
Connection(256, 382),
|
1085 |
-
Connection(429, 420),
|
1086 |
-
Connection(420, 360),
|
1087 |
-
Connection(360, 429),
|
1088 |
-
Connection(364, 394),
|
1089 |
-
Connection(394, 379),
|
1090 |
-
Connection(379, 364),
|
1091 |
-
Connection(277, 343),
|
1092 |
-
Connection(343, 437),
|
1093 |
-
Connection(437, 277),
|
1094 |
-
Connection(443, 444),
|
1095 |
-
Connection(444, 283),
|
1096 |
-
Connection(283, 443),
|
1097 |
-
Connection(275, 440),
|
1098 |
-
Connection(440, 363),
|
1099 |
-
Connection(363, 275),
|
1100 |
-
Connection(431, 262),
|
1101 |
-
Connection(262, 369),
|
1102 |
-
Connection(369, 431),
|
1103 |
-
Connection(297, 338),
|
1104 |
-
Connection(338, 337),
|
1105 |
-
Connection(337, 297),
|
1106 |
-
Connection(273, 375),
|
1107 |
-
Connection(375, 321),
|
1108 |
-
Connection(321, 273),
|
1109 |
-
Connection(450, 451),
|
1110 |
-
Connection(451, 349),
|
1111 |
-
Connection(349, 450),
|
1112 |
-
Connection(446, 342),
|
1113 |
-
Connection(342, 467),
|
1114 |
-
Connection(467, 446),
|
1115 |
-
Connection(293, 334),
|
1116 |
-
Connection(334, 282),
|
1117 |
-
Connection(282, 293),
|
1118 |
-
Connection(458, 461),
|
1119 |
-
Connection(461, 462),
|
1120 |
-
Connection(462, 458),
|
1121 |
-
Connection(276, 353),
|
1122 |
-
Connection(353, 383),
|
1123 |
-
Connection(383, 276),
|
1124 |
-
Connection(308, 324),
|
1125 |
-
Connection(324, 325),
|
1126 |
-
Connection(325, 308),
|
1127 |
-
Connection(276, 300),
|
1128 |
-
Connection(300, 293),
|
1129 |
-
Connection(293, 276),
|
1130 |
-
Connection(372, 345),
|
1131 |
-
Connection(345, 447),
|
1132 |
-
Connection(447, 372),
|
1133 |
-
Connection(352, 345),
|
1134 |
-
Connection(345, 340),
|
1135 |
-
Connection(340, 352),
|
1136 |
-
Connection(274, 1),
|
1137 |
-
Connection(1, 19),
|
1138 |
-
Connection(19, 274),
|
1139 |
-
Connection(456, 248),
|
1140 |
-
Connection(248, 281),
|
1141 |
-
Connection(281, 456),
|
1142 |
-
Connection(436, 427),
|
1143 |
-
Connection(427, 425),
|
1144 |
-
Connection(425, 436),
|
1145 |
-
Connection(381, 256),
|
1146 |
-
Connection(256, 252),
|
1147 |
-
Connection(252, 381),
|
1148 |
-
Connection(269, 391),
|
1149 |
-
Connection(391, 393),
|
1150 |
-
Connection(393, 269),
|
1151 |
-
Connection(200, 199),
|
1152 |
-
Connection(199, 428),
|
1153 |
-
Connection(428, 200),
|
1154 |
-
Connection(266, 330),
|
1155 |
-
Connection(330, 329),
|
1156 |
-
Connection(329, 266),
|
1157 |
-
Connection(287, 273),
|
1158 |
-
Connection(273, 422),
|
1159 |
-
Connection(422, 287),
|
1160 |
-
Connection(250, 462),
|
1161 |
-
Connection(462, 328),
|
1162 |
-
Connection(328, 250),
|
1163 |
-
Connection(258, 286),
|
1164 |
-
Connection(286, 384),
|
1165 |
-
Connection(384, 258),
|
1166 |
-
Connection(265, 353),
|
1167 |
-
Connection(353, 342),
|
1168 |
-
Connection(342, 265),
|
1169 |
-
Connection(387, 259),
|
1170 |
-
Connection(259, 257),
|
1171 |
-
Connection(257, 387),
|
1172 |
-
Connection(424, 431),
|
1173 |
-
Connection(431, 430),
|
1174 |
-
Connection(430, 424),
|
1175 |
-
Connection(342, 353),
|
1176 |
-
Connection(353, 276),
|
1177 |
-
Connection(276, 342),
|
1178 |
-
Connection(273, 335),
|
1179 |
-
Connection(335, 424),
|
1180 |
-
Connection(424, 273),
|
1181 |
-
Connection(292, 325),
|
1182 |
-
Connection(325, 307),
|
1183 |
-
Connection(307, 292),
|
1184 |
-
Connection(366, 447),
|
1185 |
-
Connection(447, 345),
|
1186 |
-
Connection(345, 366),
|
1187 |
-
Connection(271, 303),
|
1188 |
-
Connection(303, 302),
|
1189 |
-
Connection(302, 271),
|
1190 |
-
Connection(423, 266),
|
1191 |
-
Connection(266, 371),
|
1192 |
-
Connection(371, 423),
|
1193 |
-
Connection(294, 455),
|
1194 |
-
Connection(455, 460),
|
1195 |
-
Connection(460, 294),
|
1196 |
-
Connection(279, 278),
|
1197 |
-
Connection(278, 294),
|
1198 |
-
Connection(294, 279),
|
1199 |
-
Connection(271, 272),
|
1200 |
-
Connection(272, 304),
|
1201 |
-
Connection(304, 271),
|
1202 |
-
Connection(432, 434),
|
1203 |
-
Connection(434, 427),
|
1204 |
-
Connection(427, 432),
|
1205 |
-
Connection(272, 407),
|
1206 |
-
Connection(407, 408),
|
1207 |
-
Connection(408, 272),
|
1208 |
-
Connection(394, 430),
|
1209 |
-
Connection(430, 431),
|
1210 |
-
Connection(431, 394),
|
1211 |
-
Connection(395, 369),
|
1212 |
-
Connection(369, 400),
|
1213 |
-
Connection(400, 395),
|
1214 |
-
Connection(334, 333),
|
1215 |
-
Connection(333, 299),
|
1216 |
-
Connection(299, 334),
|
1217 |
-
Connection(351, 417),
|
1218 |
-
Connection(417, 168),
|
1219 |
-
Connection(168, 351),
|
1220 |
-
Connection(352, 280),
|
1221 |
-
Connection(280, 411),
|
1222 |
-
Connection(411, 352),
|
1223 |
-
Connection(325, 319),
|
1224 |
-
Connection(319, 320),
|
1225 |
-
Connection(320, 325),
|
1226 |
-
Connection(295, 296),
|
1227 |
-
Connection(296, 336),
|
1228 |
-
Connection(336, 295),
|
1229 |
-
Connection(319, 403),
|
1230 |
-
Connection(403, 404),
|
1231 |
-
Connection(404, 319),
|
1232 |
-
Connection(330, 348),
|
1233 |
-
Connection(348, 349),
|
1234 |
-
Connection(349, 330),
|
1235 |
-
Connection(293, 298),
|
1236 |
-
Connection(298, 333),
|
1237 |
-
Connection(333, 293),
|
1238 |
-
Connection(323, 454),
|
1239 |
-
Connection(454, 447),
|
1240 |
-
Connection(447, 323),
|
1241 |
-
Connection(15, 16),
|
1242 |
-
Connection(16, 315),
|
1243 |
-
Connection(315, 15),
|
1244 |
-
Connection(358, 429),
|
1245 |
-
Connection(429, 279),
|
1246 |
-
Connection(279, 358),
|
1247 |
-
Connection(14, 15),
|
1248 |
-
Connection(15, 316),
|
1249 |
-
Connection(316, 14),
|
1250 |
-
Connection(285, 336),
|
1251 |
-
Connection(336, 9),
|
1252 |
-
Connection(9, 285),
|
1253 |
-
Connection(329, 349),
|
1254 |
-
Connection(349, 350),
|
1255 |
-
Connection(350, 329),
|
1256 |
-
Connection(374, 380),
|
1257 |
-
Connection(380, 252),
|
1258 |
-
Connection(252, 374),
|
1259 |
-
Connection(318, 402),
|
1260 |
-
Connection(402, 403),
|
1261 |
-
Connection(403, 318),
|
1262 |
-
Connection(6, 197),
|
1263 |
-
Connection(197, 419),
|
1264 |
-
Connection(419, 6),
|
1265 |
-
Connection(318, 319),
|
1266 |
-
Connection(319, 325),
|
1267 |
-
Connection(325, 318),
|
1268 |
-
Connection(367, 364),
|
1269 |
-
Connection(364, 365),
|
1270 |
-
Connection(365, 367),
|
1271 |
-
Connection(435, 367),
|
1272 |
-
Connection(367, 397),
|
1273 |
-
Connection(397, 435),
|
1274 |
-
Connection(344, 438),
|
1275 |
-
Connection(438, 439),
|
1276 |
-
Connection(439, 344),
|
1277 |
-
Connection(272, 271),
|
1278 |
-
Connection(271, 311),
|
1279 |
-
Connection(311, 272),
|
1280 |
-
Connection(195, 5),
|
1281 |
-
Connection(5, 281),
|
1282 |
-
Connection(281, 195),
|
1283 |
-
Connection(273, 287),
|
1284 |
-
Connection(287, 291),
|
1285 |
-
Connection(291, 273),
|
1286 |
-
Connection(396, 428),
|
1287 |
-
Connection(428, 199),
|
1288 |
-
Connection(199, 396),
|
1289 |
-
Connection(311, 271),
|
1290 |
-
Connection(271, 268),
|
1291 |
-
Connection(268, 311),
|
1292 |
-
Connection(283, 444),
|
1293 |
-
Connection(444, 445),
|
1294 |
-
Connection(445, 283),
|
1295 |
-
Connection(373, 254),
|
1296 |
-
Connection(254, 339),
|
1297 |
-
Connection(339, 373),
|
1298 |
-
Connection(282, 334),
|
1299 |
-
Connection(334, 296),
|
1300 |
-
Connection(296, 282),
|
1301 |
-
Connection(449, 347),
|
1302 |
-
Connection(347, 346),
|
1303 |
-
Connection(346, 449),
|
1304 |
-
Connection(264, 447),
|
1305 |
-
Connection(447, 454),
|
1306 |
-
Connection(454, 264),
|
1307 |
-
Connection(336, 296),
|
1308 |
-
Connection(296, 299),
|
1309 |
-
Connection(299, 336),
|
1310 |
-
Connection(338, 10),
|
1311 |
-
Connection(10, 151),
|
1312 |
-
Connection(151, 338),
|
1313 |
-
Connection(278, 439),
|
1314 |
-
Connection(439, 455),
|
1315 |
-
Connection(455, 278),
|
1316 |
-
Connection(292, 407),
|
1317 |
-
Connection(407, 415),
|
1318 |
-
Connection(415, 292),
|
1319 |
-
Connection(358, 371),
|
1320 |
-
Connection(371, 355),
|
1321 |
-
Connection(355, 358),
|
1322 |
-
Connection(340, 345),
|
1323 |
-
Connection(345, 372),
|
1324 |
-
Connection(372, 340),
|
1325 |
-
Connection(346, 347),
|
1326 |
-
Connection(347, 280),
|
1327 |
-
Connection(280, 346),
|
1328 |
-
Connection(442, 443),
|
1329 |
-
Connection(443, 282),
|
1330 |
-
Connection(282, 442),
|
1331 |
-
Connection(19, 94),
|
1332 |
-
Connection(94, 370),
|
1333 |
-
Connection(370, 19),
|
1334 |
-
Connection(441, 442),
|
1335 |
-
Connection(442, 295),
|
1336 |
-
Connection(295, 441),
|
1337 |
-
Connection(248, 419),
|
1338 |
-
Connection(419, 197),
|
1339 |
-
Connection(197, 248),
|
1340 |
-
Connection(263, 255),
|
1341 |
-
Connection(255, 359),
|
1342 |
-
Connection(359, 263),
|
1343 |
-
Connection(440, 275),
|
1344 |
-
Connection(275, 274),
|
1345 |
-
Connection(274, 440),
|
1346 |
-
Connection(300, 383),
|
1347 |
-
Connection(383, 368),
|
1348 |
-
Connection(368, 300),
|
1349 |
-
Connection(351, 412),
|
1350 |
-
Connection(412, 465),
|
1351 |
-
Connection(465, 351),
|
1352 |
-
Connection(263, 467),
|
1353 |
-
Connection(467, 466),
|
1354 |
-
Connection(466, 263),
|
1355 |
-
Connection(301, 368),
|
1356 |
-
Connection(368, 389),
|
1357 |
-
Connection(389, 301),
|
1358 |
-
Connection(395, 378),
|
1359 |
-
Connection(378, 379),
|
1360 |
-
Connection(379, 395),
|
1361 |
-
Connection(412, 351),
|
1362 |
-
Connection(351, 419),
|
1363 |
-
Connection(419, 412),
|
1364 |
-
Connection(436, 426),
|
1365 |
-
Connection(426, 322),
|
1366 |
-
Connection(322, 436),
|
1367 |
-
Connection(2, 164),
|
1368 |
-
Connection(164, 393),
|
1369 |
-
Connection(393, 2),
|
1370 |
-
Connection(370, 462),
|
1371 |
-
Connection(462, 461),
|
1372 |
-
Connection(461, 370),
|
1373 |
-
Connection(164, 0),
|
1374 |
-
Connection(0, 267),
|
1375 |
-
Connection(267, 164),
|
1376 |
-
Connection(302, 11),
|
1377 |
-
Connection(11, 12),
|
1378 |
-
Connection(12, 302),
|
1379 |
-
Connection(268, 12),
|
1380 |
-
Connection(12, 13),
|
1381 |
-
Connection(13, 268),
|
1382 |
-
Connection(293, 300),
|
1383 |
-
Connection(300, 301),
|
1384 |
-
Connection(301, 293),
|
1385 |
-
Connection(446, 261),
|
1386 |
-
Connection(261, 340),
|
1387 |
-
Connection(340, 446),
|
1388 |
-
Connection(330, 266),
|
1389 |
-
Connection(266, 425),
|
1390 |
-
Connection(425, 330),
|
1391 |
-
Connection(426, 423),
|
1392 |
-
Connection(423, 391),
|
1393 |
-
Connection(391, 426),
|
1394 |
-
Connection(429, 355),
|
1395 |
-
Connection(355, 437),
|
1396 |
-
Connection(437, 429),
|
1397 |
-
Connection(391, 327),
|
1398 |
-
Connection(327, 326),
|
1399 |
-
Connection(326, 391),
|
1400 |
-
Connection(440, 457),
|
1401 |
-
Connection(457, 438),
|
1402 |
-
Connection(438, 440),
|
1403 |
-
Connection(341, 382),
|
1404 |
-
Connection(382, 362),
|
1405 |
-
Connection(362, 341),
|
1406 |
-
Connection(459, 457),
|
1407 |
-
Connection(457, 461),
|
1408 |
-
Connection(461, 459),
|
1409 |
-
Connection(434, 430),
|
1410 |
-
Connection(430, 394),
|
1411 |
-
Connection(394, 434),
|
1412 |
-
Connection(414, 463),
|
1413 |
-
Connection(463, 362),
|
1414 |
-
Connection(362, 414),
|
1415 |
-
Connection(396, 369),
|
1416 |
-
Connection(369, 262),
|
1417 |
-
Connection(262, 396),
|
1418 |
-
Connection(354, 461),
|
1419 |
-
Connection(461, 457),
|
1420 |
-
Connection(457, 354),
|
1421 |
-
Connection(316, 403),
|
1422 |
-
Connection(403, 402),
|
1423 |
-
Connection(402, 316),
|
1424 |
-
Connection(315, 404),
|
1425 |
-
Connection(404, 403),
|
1426 |
-
Connection(403, 315),
|
1427 |
-
Connection(314, 405),
|
1428 |
-
Connection(405, 404),
|
1429 |
-
Connection(404, 314),
|
1430 |
-
Connection(313, 406),
|
1431 |
-
Connection(406, 405),
|
1432 |
-
Connection(405, 313),
|
1433 |
-
Connection(421, 418),
|
1434 |
-
Connection(418, 406),
|
1435 |
-
Connection(406, 421),
|
1436 |
-
Connection(366, 401),
|
1437 |
-
Connection(401, 361),
|
1438 |
-
Connection(361, 366),
|
1439 |
-
Connection(306, 408),
|
1440 |
-
Connection(408, 407),
|
1441 |
-
Connection(407, 306),
|
1442 |
-
Connection(291, 409),
|
1443 |
-
Connection(409, 408),
|
1444 |
-
Connection(408, 291),
|
1445 |
-
Connection(287, 410),
|
1446 |
-
Connection(410, 409),
|
1447 |
-
Connection(409, 287),
|
1448 |
-
Connection(432, 436),
|
1449 |
-
Connection(436, 410),
|
1450 |
-
Connection(410, 432),
|
1451 |
-
Connection(434, 416),
|
1452 |
-
Connection(416, 411),
|
1453 |
-
Connection(411, 434),
|
1454 |
-
Connection(264, 368),
|
1455 |
-
Connection(368, 383),
|
1456 |
-
Connection(383, 264),
|
1457 |
-
Connection(309, 438),
|
1458 |
-
Connection(438, 457),
|
1459 |
-
Connection(457, 309),
|
1460 |
-
Connection(352, 376),
|
1461 |
-
Connection(376, 401),
|
1462 |
-
Connection(401, 352),
|
1463 |
-
Connection(274, 275),
|
1464 |
-
Connection(275, 4),
|
1465 |
-
Connection(4, 274),
|
1466 |
-
Connection(421, 428),
|
1467 |
-
Connection(428, 262),
|
1468 |
-
Connection(262, 421),
|
1469 |
-
Connection(294, 327),
|
1470 |
-
Connection(327, 358),
|
1471 |
-
Connection(358, 294),
|
1472 |
-
Connection(433, 416),
|
1473 |
-
Connection(416, 367),
|
1474 |
-
Connection(367, 433),
|
1475 |
-
Connection(289, 455),
|
1476 |
-
Connection(455, 439),
|
1477 |
-
Connection(439, 289),
|
1478 |
-
Connection(462, 370),
|
1479 |
-
Connection(370, 326),
|
1480 |
-
Connection(326, 462),
|
1481 |
-
Connection(2, 326),
|
1482 |
-
Connection(326, 370),
|
1483 |
-
Connection(370, 2),
|
1484 |
-
Connection(305, 460),
|
1485 |
-
Connection(460, 455),
|
1486 |
-
Connection(455, 305),
|
1487 |
-
Connection(254, 449),
|
1488 |
-
Connection(449, 448),
|
1489 |
-
Connection(448, 254),
|
1490 |
-
Connection(255, 261),
|
1491 |
-
Connection(261, 446),
|
1492 |
-
Connection(446, 255),
|
1493 |
-
Connection(253, 450),
|
1494 |
-
Connection(450, 449),
|
1495 |
-
Connection(449, 253),
|
1496 |
-
Connection(252, 451),
|
1497 |
-
Connection(451, 450),
|
1498 |
-
Connection(450, 252),
|
1499 |
-
Connection(256, 452),
|
1500 |
-
Connection(452, 451),
|
1501 |
-
Connection(451, 256),
|
1502 |
-
Connection(341, 453),
|
1503 |
-
Connection(453, 452),
|
1504 |
-
Connection(452, 341),
|
1505 |
-
Connection(413, 464),
|
1506 |
-
Connection(464, 463),
|
1507 |
-
Connection(463, 413),
|
1508 |
-
Connection(441, 413),
|
1509 |
-
Connection(413, 414),
|
1510 |
-
Connection(414, 441),
|
1511 |
-
Connection(258, 442),
|
1512 |
-
Connection(442, 441),
|
1513 |
-
Connection(441, 258),
|
1514 |
-
Connection(257, 443),
|
1515 |
-
Connection(443, 442),
|
1516 |
-
Connection(442, 257),
|
1517 |
-
Connection(259, 444),
|
1518 |
-
Connection(444, 443),
|
1519 |
-
Connection(443, 259),
|
1520 |
-
Connection(260, 445),
|
1521 |
-
Connection(445, 444),
|
1522 |
-
Connection(444, 260),
|
1523 |
-
Connection(467, 342),
|
1524 |
-
Connection(342, 445),
|
1525 |
-
Connection(445, 467),
|
1526 |
-
Connection(459, 458),
|
1527 |
-
Connection(458, 250),
|
1528 |
-
Connection(250, 459),
|
1529 |
-
Connection(289, 392),
|
1530 |
-
Connection(392, 290),
|
1531 |
-
Connection(290, 289),
|
1532 |
-
Connection(290, 328),
|
1533 |
-
Connection(328, 460),
|
1534 |
-
Connection(460, 290),
|
1535 |
-
Connection(376, 433),
|
1536 |
-
Connection(433, 435),
|
1537 |
-
Connection(435, 376),
|
1538 |
-
Connection(250, 290),
|
1539 |
-
Connection(290, 392),
|
1540 |
-
Connection(392, 250),
|
1541 |
-
Connection(411, 416),
|
1542 |
-
Connection(416, 433),
|
1543 |
-
Connection(433, 411),
|
1544 |
-
Connection(341, 463),
|
1545 |
-
Connection(463, 464),
|
1546 |
-
Connection(464, 341),
|
1547 |
-
Connection(453, 464),
|
1548 |
-
Connection(464, 465),
|
1549 |
-
Connection(465, 453),
|
1550 |
-
Connection(357, 465),
|
1551 |
-
Connection(465, 412),
|
1552 |
-
Connection(412, 357),
|
1553 |
-
Connection(343, 412),
|
1554 |
-
Connection(412, 399),
|
1555 |
-
Connection(399, 343),
|
1556 |
-
Connection(360, 363),
|
1557 |
-
Connection(363, 440),
|
1558 |
-
Connection(440, 360),
|
1559 |
-
Connection(437, 399),
|
1560 |
-
Connection(399, 456),
|
1561 |
-
Connection(456, 437),
|
1562 |
-
Connection(420, 456),
|
1563 |
-
Connection(456, 363),
|
1564 |
-
Connection(363, 420),
|
1565 |
-
Connection(401, 435),
|
1566 |
-
Connection(435, 288),
|
1567 |
-
Connection(288, 401),
|
1568 |
-
Connection(372, 383),
|
1569 |
-
Connection(383, 353),
|
1570 |
-
Connection(353, 372),
|
1571 |
-
Connection(339, 255),
|
1572 |
-
Connection(255, 249),
|
1573 |
-
Connection(249, 339),
|
1574 |
-
Connection(448, 261),
|
1575 |
-
Connection(261, 255),
|
1576 |
-
Connection(255, 448),
|
1577 |
-
Connection(133, 243),
|
1578 |
-
Connection(243, 190),
|
1579 |
-
Connection(190, 133),
|
1580 |
-
Connection(133, 155),
|
1581 |
-
Connection(155, 112),
|
1582 |
-
Connection(112, 133),
|
1583 |
-
Connection(33, 246),
|
1584 |
-
Connection(246, 247),
|
1585 |
-
Connection(247, 33),
|
1586 |
-
Connection(33, 130),
|
1587 |
-
Connection(130, 25),
|
1588 |
-
Connection(25, 33),
|
1589 |
-
Connection(398, 384),
|
1590 |
-
Connection(384, 286),
|
1591 |
-
Connection(286, 398),
|
1592 |
-
Connection(362, 398),
|
1593 |
-
Connection(398, 414),
|
1594 |
-
Connection(414, 362),
|
1595 |
-
Connection(362, 463),
|
1596 |
-
Connection(463, 341),
|
1597 |
-
Connection(341, 362),
|
1598 |
-
Connection(263, 359),
|
1599 |
-
Connection(359, 467),
|
1600 |
-
Connection(467, 263),
|
1601 |
-
Connection(263, 249),
|
1602 |
-
Connection(249, 255),
|
1603 |
-
Connection(255, 263),
|
1604 |
-
Connection(466, 467),
|
1605 |
-
Connection(467, 260),
|
1606 |
-
Connection(260, 466),
|
1607 |
-
Connection(75, 60),
|
1608 |
-
Connection(60, 166),
|
1609 |
-
Connection(166, 75),
|
1610 |
-
Connection(238, 239),
|
1611 |
-
Connection(239, 79),
|
1612 |
-
Connection(79, 238),
|
1613 |
-
Connection(162, 127),
|
1614 |
-
Connection(127, 139),
|
1615 |
-
Connection(139, 162),
|
1616 |
-
Connection(72, 11),
|
1617 |
-
Connection(11, 37),
|
1618 |
-
Connection(37, 72),
|
1619 |
-
Connection(121, 232),
|
1620 |
-
Connection(232, 120),
|
1621 |
-
Connection(120, 121),
|
1622 |
-
Connection(73, 72),
|
1623 |
-
Connection(72, 39),
|
1624 |
-
Connection(39, 73),
|
1625 |
-
Connection(114, 128),
|
1626 |
-
Connection(128, 47),
|
1627 |
-
Connection(47, 114),
|
1628 |
-
Connection(233, 232),
|
1629 |
-
Connection(232, 128),
|
1630 |
-
Connection(128, 233),
|
1631 |
-
Connection(103, 104),
|
1632 |
-
Connection(104, 67),
|
1633 |
-
Connection(67, 103),
|
1634 |
-
Connection(152, 175),
|
1635 |
-
Connection(175, 148),
|
1636 |
-
Connection(148, 152),
|
1637 |
-
Connection(119, 118),
|
1638 |
-
Connection(118, 101),
|
1639 |
-
Connection(101, 119),
|
1640 |
-
Connection(74, 73),
|
1641 |
-
Connection(73, 40),
|
1642 |
-
Connection(40, 74),
|
1643 |
-
Connection(107, 9),
|
1644 |
-
Connection(9, 108),
|
1645 |
-
Connection(108, 107),
|
1646 |
-
Connection(49, 48),
|
1647 |
-
Connection(48, 131),
|
1648 |
-
Connection(131, 49),
|
1649 |
-
Connection(32, 194),
|
1650 |
-
Connection(194, 211),
|
1651 |
-
Connection(211, 32),
|
1652 |
-
Connection(184, 74),
|
1653 |
-
Connection(74, 185),
|
1654 |
-
Connection(185, 184),
|
1655 |
-
Connection(191, 80),
|
1656 |
-
Connection(80, 183),
|
1657 |
-
Connection(183, 191),
|
1658 |
-
Connection(185, 40),
|
1659 |
-
Connection(40, 186),
|
1660 |
-
Connection(186, 185),
|
1661 |
-
Connection(119, 230),
|
1662 |
-
Connection(230, 118),
|
1663 |
-
Connection(118, 119),
|
1664 |
-
Connection(210, 202),
|
1665 |
-
Connection(202, 214),
|
1666 |
-
Connection(214, 210),
|
1667 |
-
Connection(84, 83),
|
1668 |
-
Connection(83, 17),
|
1669 |
-
Connection(17, 84),
|
1670 |
-
Connection(77, 76),
|
1671 |
-
Connection(76, 146),
|
1672 |
-
Connection(146, 77),
|
1673 |
-
Connection(161, 160),
|
1674 |
-
Connection(160, 30),
|
1675 |
-
Connection(30, 161),
|
1676 |
-
Connection(190, 56),
|
1677 |
-
Connection(56, 173),
|
1678 |
-
Connection(173, 190),
|
1679 |
-
Connection(182, 106),
|
1680 |
-
Connection(106, 194),
|
1681 |
-
Connection(194, 182),
|
1682 |
-
Connection(138, 135),
|
1683 |
-
Connection(135, 192),
|
1684 |
-
Connection(192, 138),
|
1685 |
-
Connection(129, 203),
|
1686 |
-
Connection(203, 98),
|
1687 |
-
Connection(98, 129),
|
1688 |
-
Connection(54, 21),
|
1689 |
-
Connection(21, 68),
|
1690 |
-
Connection(68, 54),
|
1691 |
-
Connection(5, 51),
|
1692 |
-
Connection(51, 4),
|
1693 |
-
Connection(4, 5),
|
1694 |
-
Connection(145, 144),
|
1695 |
-
Connection(144, 23),
|
1696 |
-
Connection(23, 145),
|
1697 |
-
Connection(90, 77),
|
1698 |
-
Connection(77, 91),
|
1699 |
-
Connection(91, 90),
|
1700 |
-
Connection(207, 205),
|
1701 |
-
Connection(205, 187),
|
1702 |
-
Connection(187, 207),
|
1703 |
-
Connection(83, 201),
|
1704 |
-
Connection(201, 18),
|
1705 |
-
Connection(18, 83),
|
1706 |
-
Connection(181, 91),
|
1707 |
-
Connection(91, 182),
|
1708 |
-
Connection(182, 181),
|
1709 |
-
Connection(180, 90),
|
1710 |
-
Connection(90, 181),
|
1711 |
-
Connection(181, 180),
|
1712 |
-
Connection(16, 85),
|
1713 |
-
Connection(85, 17),
|
1714 |
-
Connection(17, 16),
|
1715 |
-
Connection(205, 206),
|
1716 |
-
Connection(206, 36),
|
1717 |
-
Connection(36, 205),
|
1718 |
-
Connection(176, 148),
|
1719 |
-
Connection(148, 140),
|
1720 |
-
Connection(140, 176),
|
1721 |
-
Connection(165, 92),
|
1722 |
-
Connection(92, 39),
|
1723 |
-
Connection(39, 165),
|
1724 |
-
Connection(245, 193),
|
1725 |
-
Connection(193, 244),
|
1726 |
-
Connection(244, 245),
|
1727 |
-
Connection(27, 159),
|
1728 |
-
Connection(159, 28),
|
1729 |
-
Connection(28, 27),
|
1730 |
-
Connection(30, 247),
|
1731 |
-
Connection(247, 161),
|
1732 |
-
Connection(161, 30),
|
1733 |
-
Connection(174, 236),
|
1734 |
-
Connection(236, 196),
|
1735 |
-
Connection(196, 174),
|
1736 |
-
Connection(103, 54),
|
1737 |
-
Connection(54, 104),
|
1738 |
-
Connection(104, 103),
|
1739 |
-
Connection(55, 193),
|
1740 |
-
Connection(193, 8),
|
1741 |
-
Connection(8, 55),
|
1742 |
-
Connection(111, 117),
|
1743 |
-
Connection(117, 31),
|
1744 |
-
Connection(31, 111),
|
1745 |
-
Connection(221, 189),
|
1746 |
-
Connection(189, 55),
|
1747 |
-
Connection(55, 221),
|
1748 |
-
Connection(240, 98),
|
1749 |
-
Connection(98, 99),
|
1750 |
-
Connection(99, 240),
|
1751 |
-
Connection(142, 126),
|
1752 |
-
Connection(126, 100),
|
1753 |
-
Connection(100, 142),
|
1754 |
-
Connection(219, 166),
|
1755 |
-
Connection(166, 218),
|
1756 |
-
Connection(218, 219),
|
1757 |
-
Connection(112, 155),
|
1758 |
-
Connection(155, 26),
|
1759 |
-
Connection(26, 112),
|
1760 |
-
Connection(198, 209),
|
1761 |
-
Connection(209, 131),
|
1762 |
-
Connection(131, 198),
|
1763 |
-
Connection(169, 135),
|
1764 |
-
Connection(135, 150),
|
1765 |
-
Connection(150, 169),
|
1766 |
-
Connection(114, 47),
|
1767 |
-
Connection(47, 217),
|
1768 |
-
Connection(217, 114),
|
1769 |
-
Connection(224, 223),
|
1770 |
-
Connection(223, 53),
|
1771 |
-
Connection(53, 224),
|
1772 |
-
Connection(220, 45),
|
1773 |
-
Connection(45, 134),
|
1774 |
-
Connection(134, 220),
|
1775 |
-
Connection(32, 211),
|
1776 |
-
Connection(211, 140),
|
1777 |
-
Connection(140, 32),
|
1778 |
-
Connection(109, 67),
|
1779 |
-
Connection(67, 108),
|
1780 |
-
Connection(108, 109),
|
1781 |
-
Connection(146, 43),
|
1782 |
-
Connection(43, 91),
|
1783 |
-
Connection(91, 146),
|
1784 |
-
Connection(231, 230),
|
1785 |
-
Connection(230, 120),
|
1786 |
-
Connection(120, 231),
|
1787 |
-
Connection(113, 226),
|
1788 |
-
Connection(226, 247),
|
1789 |
-
Connection(247, 113),
|
1790 |
-
Connection(105, 63),
|
1791 |
-
Connection(63, 52),
|
1792 |
-
Connection(52, 105),
|
1793 |
-
Connection(241, 238),
|
1794 |
-
Connection(238, 242),
|
1795 |
-
Connection(242, 241),
|
1796 |
-
Connection(124, 46),
|
1797 |
-
Connection(46, 156),
|
1798 |
-
Connection(156, 124),
|
1799 |
-
Connection(95, 78),
|
1800 |
-
Connection(78, 96),
|
1801 |
-
Connection(96, 95),
|
1802 |
-
Connection(70, 46),
|
1803 |
-
Connection(46, 63),
|
1804 |
-
Connection(63, 70),
|
1805 |
-
Connection(116, 143),
|
1806 |
-
Connection(143, 227),
|
1807 |
-
Connection(227, 116),
|
1808 |
-
Connection(116, 123),
|
1809 |
-
Connection(123, 111),
|
1810 |
-
Connection(111, 116),
|
1811 |
-
Connection(1, 44),
|
1812 |
-
Connection(44, 19),
|
1813 |
-
Connection(19, 1),
|
1814 |
-
Connection(3, 236),
|
1815 |
-
Connection(236, 51),
|
1816 |
-
Connection(51, 3),
|
1817 |
-
Connection(207, 216),
|
1818 |
-
Connection(216, 205),
|
1819 |
-
Connection(205, 207),
|
1820 |
-
Connection(26, 154),
|
1821 |
-
Connection(154, 22),
|
1822 |
-
Connection(22, 26),
|
1823 |
-
Connection(165, 39),
|
1824 |
-
Connection(39, 167),
|
1825 |
-
Connection(167, 165),
|
1826 |
-
Connection(199, 200),
|
1827 |
-
Connection(200, 208),
|
1828 |
-
Connection(208, 199),
|
1829 |
-
Connection(101, 36),
|
1830 |
-
Connection(36, 100),
|
1831 |
-
Connection(100, 101),
|
1832 |
-
Connection(43, 57),
|
1833 |
-
Connection(57, 202),
|
1834 |
-
Connection(202, 43),
|
1835 |
-
Connection(242, 20),
|
1836 |
-
Connection(20, 99),
|
1837 |
-
Connection(99, 242),
|
1838 |
-
Connection(56, 28),
|
1839 |
-
Connection(28, 157),
|
1840 |
-
Connection(157, 56),
|
1841 |
-
Connection(124, 35),
|
1842 |
-
Connection(35, 113),
|
1843 |
-
Connection(113, 124),
|
1844 |
-
Connection(29, 160),
|
1845 |
-
Connection(160, 27),
|
1846 |
-
Connection(27, 29),
|
1847 |
-
Connection(211, 204),
|
1848 |
-
Connection(204, 210),
|
1849 |
-
Connection(210, 211),
|
1850 |
-
Connection(124, 113),
|
1851 |
-
Connection(113, 46),
|
1852 |
-
Connection(46, 124),
|
1853 |
-
Connection(106, 43),
|
1854 |
-
Connection(43, 204),
|
1855 |
-
Connection(204, 106),
|
1856 |
-
Connection(96, 62),
|
1857 |
-
Connection(62, 77),
|
1858 |
-
Connection(77, 96),
|
1859 |
-
Connection(227, 137),
|
1860 |
-
Connection(137, 116),
|
1861 |
-
Connection(116, 227),
|
1862 |
-
Connection(73, 41),
|
1863 |
-
Connection(41, 72),
|
1864 |
-
Connection(72, 73),
|
1865 |
-
Connection(36, 203),
|
1866 |
-
Connection(203, 142),
|
1867 |
-
Connection(142, 36),
|
1868 |
-
Connection(235, 64),
|
1869 |
-
Connection(64, 240),
|
1870 |
-
Connection(240, 235),
|
1871 |
-
Connection(48, 49),
|
1872 |
-
Connection(49, 64),
|
1873 |
-
Connection(64, 48),
|
1874 |
-
Connection(42, 41),
|
1875 |
-
Connection(41, 74),
|
1876 |
-
Connection(74, 42),
|
1877 |
-
Connection(214, 212),
|
1878 |
-
Connection(212, 207),
|
1879 |
-
Connection(207, 214),
|
1880 |
-
Connection(183, 42),
|
1881 |
-
Connection(42, 184),
|
1882 |
-
Connection(184, 183),
|
1883 |
-
Connection(210, 169),
|
1884 |
-
Connection(169, 211),
|
1885 |
-
Connection(211, 210),
|
1886 |
-
Connection(140, 170),
|
1887 |
-
Connection(170, 176),
|
1888 |
-
Connection(176, 140),
|
1889 |
-
Connection(104, 105),
|
1890 |
-
Connection(105, 69),
|
1891 |
-
Connection(69, 104),
|
1892 |
-
Connection(193, 122),
|
1893 |
-
Connection(122, 168),
|
1894 |
-
Connection(168, 193),
|
1895 |
-
Connection(50, 123),
|
1896 |
-
Connection(123, 187),
|
1897 |
-
Connection(187, 50),
|
1898 |
-
Connection(89, 96),
|
1899 |
-
Connection(96, 90),
|
1900 |
-
Connection(90, 89),
|
1901 |
-
Connection(66, 65),
|
1902 |
-
Connection(65, 107),
|
1903 |
-
Connection(107, 66),
|
1904 |
-
Connection(179, 89),
|
1905 |
-
Connection(89, 180),
|
1906 |
-
Connection(180, 179),
|
1907 |
-
Connection(119, 101),
|
1908 |
-
Connection(101, 120),
|
1909 |
-
Connection(120, 119),
|
1910 |
-
Connection(68, 63),
|
1911 |
-
Connection(63, 104),
|
1912 |
-
Connection(104, 68),
|
1913 |
-
Connection(234, 93),
|
1914 |
-
Connection(93, 227),
|
1915 |
-
Connection(227, 234),
|
1916 |
-
Connection(16, 15),
|
1917 |
-
Connection(15, 85),
|
1918 |
-
Connection(85, 16),
|
1919 |
-
Connection(209, 129),
|
1920 |
-
Connection(129, 49),
|
1921 |
-
Connection(49, 209),
|
1922 |
-
Connection(15, 14),
|
1923 |
-
Connection(14, 86),
|
1924 |
-
Connection(86, 15),
|
1925 |
-
Connection(107, 55),
|
1926 |
-
Connection(55, 9),
|
1927 |
-
Connection(9, 107),
|
1928 |
-
Connection(120, 100),
|
1929 |
-
Connection(100, 121),
|
1930 |
-
Connection(121, 120),
|
1931 |
-
Connection(153, 145),
|
1932 |
-
Connection(145, 22),
|
1933 |
-
Connection(22, 153),
|
1934 |
-
Connection(178, 88),
|
1935 |
-
Connection(88, 179),
|
1936 |
-
Connection(179, 178),
|
1937 |
-
Connection(197, 6),
|
1938 |
-
Connection(6, 196),
|
1939 |
-
Connection(196, 197),
|
1940 |
-
Connection(89, 88),
|
1941 |
-
Connection(88, 96),
|
1942 |
-
Connection(96, 89),
|
1943 |
-
Connection(135, 138),
|
1944 |
-
Connection(138, 136),
|
1945 |
-
Connection(136, 135),
|
1946 |
-
Connection(138, 215),
|
1947 |
-
Connection(215, 172),
|
1948 |
-
Connection(172, 138),
|
1949 |
-
Connection(218, 115),
|
1950 |
-
Connection(115, 219),
|
1951 |
-
Connection(219, 218),
|
1952 |
-
Connection(41, 42),
|
1953 |
-
Connection(42, 81),
|
1954 |
-
Connection(81, 41),
|
1955 |
-
Connection(5, 195),
|
1956 |
-
Connection(195, 51),
|
1957 |
-
Connection(51, 5),
|
1958 |
-
Connection(57, 43),
|
1959 |
-
Connection(43, 61),
|
1960 |
-
Connection(61, 57),
|
1961 |
-
Connection(208, 171),
|
1962 |
-
Connection(171, 199),
|
1963 |
-
Connection(199, 208),
|
1964 |
-
Connection(41, 81),
|
1965 |
-
Connection(81, 38),
|
1966 |
-
Connection(38, 41),
|
1967 |
-
Connection(224, 53),
|
1968 |
-
Connection(53, 225),
|
1969 |
-
Connection(225, 224),
|
1970 |
-
Connection(24, 144),
|
1971 |
-
Connection(144, 110),
|
1972 |
-
Connection(110, 24),
|
1973 |
-
Connection(105, 52),
|
1974 |
-
Connection(52, 66),
|
1975 |
-
Connection(66, 105),
|
1976 |
-
Connection(118, 229),
|
1977 |
-
Connection(229, 117),
|
1978 |
-
Connection(117, 118),
|
1979 |
-
Connection(227, 34),
|
1980 |
-
Connection(34, 234),
|
1981 |
-
Connection(234, 227),
|
1982 |
-
Connection(66, 107),
|
1983 |
-
Connection(107, 69),
|
1984 |
-
Connection(69, 66),
|
1985 |
-
Connection(10, 109),
|
1986 |
-
Connection(109, 151),
|
1987 |
-
Connection(151, 10),
|
1988 |
-
Connection(219, 48),
|
1989 |
-
Connection(48, 235),
|
1990 |
-
Connection(235, 219),
|
1991 |
-
Connection(183, 62),
|
1992 |
-
Connection(62, 191),
|
1993 |
-
Connection(191, 183),
|
1994 |
-
Connection(142, 129),
|
1995 |
-
Connection(129, 126),
|
1996 |
-
Connection(126, 142),
|
1997 |
-
Connection(116, 111),
|
1998 |
-
Connection(111, 143),
|
1999 |
-
Connection(143, 116),
|
2000 |
-
Connection(118, 117),
|
2001 |
-
Connection(117, 50),
|
2002 |
-
Connection(50, 118),
|
2003 |
-
Connection(223, 222),
|
2004 |
-
Connection(222, 52),
|
2005 |
-
Connection(52, 223),
|
2006 |
-
Connection(94, 19),
|
2007 |
-
Connection(19, 141),
|
2008 |
-
Connection(141, 94),
|
2009 |
-
Connection(222, 221),
|
2010 |
-
Connection(221, 65),
|
2011 |
-
Connection(65, 222),
|
2012 |
-
Connection(196, 3),
|
2013 |
-
Connection(3, 197),
|
2014 |
-
Connection(197, 196),
|
2015 |
-
Connection(45, 220),
|
2016 |
-
Connection(220, 44),
|
2017 |
-
Connection(44, 45),
|
2018 |
-
Connection(156, 70),
|
2019 |
-
Connection(70, 139),
|
2020 |
-
Connection(139, 156),
|
2021 |
-
Connection(188, 122),
|
2022 |
-
Connection(122, 245),
|
2023 |
-
Connection(245, 188),
|
2024 |
-
Connection(139, 71),
|
2025 |
-
Connection(71, 162),
|
2026 |
-
Connection(162, 139),
|
2027 |
-
Connection(149, 170),
|
2028 |
-
Connection(170, 150),
|
2029 |
-
Connection(150, 149),
|
2030 |
-
Connection(122, 188),
|
2031 |
-
Connection(188, 196),
|
2032 |
-
Connection(196, 122),
|
2033 |
-
Connection(206, 216),
|
2034 |
-
Connection(216, 92),
|
2035 |
-
Connection(92, 206),
|
2036 |
-
Connection(164, 2),
|
2037 |
-
Connection(2, 167),
|
2038 |
-
Connection(167, 164),
|
2039 |
-
Connection(242, 141),
|
2040 |
-
Connection(141, 241),
|
2041 |
-
Connection(241, 242),
|
2042 |
-
Connection(0, 164),
|
2043 |
-
Connection(164, 37),
|
2044 |
-
Connection(37, 0),
|
2045 |
-
Connection(11, 72),
|
2046 |
-
Connection(72, 12),
|
2047 |
-
Connection(12, 11),
|
2048 |
-
Connection(12, 38),
|
2049 |
-
Connection(38, 13),
|
2050 |
-
Connection(13, 12),
|
2051 |
-
Connection(70, 63),
|
2052 |
-
Connection(63, 71),
|
2053 |
-
Connection(71, 70),
|
2054 |
-
Connection(31, 226),
|
2055 |
-
Connection(226, 111),
|
2056 |
-
Connection(111, 31),
|
2057 |
-
Connection(36, 101),
|
2058 |
-
Connection(101, 205),
|
2059 |
-
Connection(205, 36),
|
2060 |
-
Connection(203, 206),
|
2061 |
-
Connection(206, 165),
|
2062 |
-
Connection(165, 203),
|
2063 |
-
Connection(126, 209),
|
2064 |
-
Connection(209, 217),
|
2065 |
-
Connection(217, 126),
|
2066 |
-
Connection(98, 165),
|
2067 |
-
Connection(165, 97),
|
2068 |
-
Connection(97, 98),
|
2069 |
-
Connection(237, 220),
|
2070 |
-
Connection(220, 218),
|
2071 |
-
Connection(218, 237),
|
2072 |
-
Connection(237, 239),
|
2073 |
-
Connection(239, 241),
|
2074 |
-
Connection(241, 237),
|
2075 |
-
Connection(210, 214),
|
2076 |
-
Connection(214, 169),
|
2077 |
-
Connection(169, 210),
|
2078 |
-
Connection(140, 171),
|
2079 |
-
Connection(171, 32),
|
2080 |
-
Connection(32, 140),
|
2081 |
-
Connection(241, 125),
|
2082 |
-
Connection(125, 237),
|
2083 |
-
Connection(237, 241),
|
2084 |
-
Connection(179, 86),
|
2085 |
-
Connection(86, 178),
|
2086 |
-
Connection(178, 179),
|
2087 |
-
Connection(180, 85),
|
2088 |
-
Connection(85, 179),
|
2089 |
-
Connection(179, 180),
|
2090 |
-
Connection(181, 84),
|
2091 |
-
Connection(84, 180),
|
2092 |
-
Connection(180, 181),
|
2093 |
-
Connection(182, 83),
|
2094 |
-
Connection(83, 181),
|
2095 |
-
Connection(181, 182),
|
2096 |
-
Connection(194, 201),
|
2097 |
-
Connection(201, 182),
|
2098 |
-
Connection(182, 194),
|
2099 |
-
Connection(177, 137),
|
2100 |
-
Connection(137, 132),
|
2101 |
-
Connection(132, 177),
|
2102 |
-
Connection(184, 76),
|
2103 |
-
Connection(76, 183),
|
2104 |
-
Connection(183, 184),
|
2105 |
-
Connection(185, 61),
|
2106 |
-
Connection(61, 184),
|
2107 |
-
Connection(184, 185),
|
2108 |
-
Connection(186, 57),
|
2109 |
-
Connection(57, 185),
|
2110 |
-
Connection(185, 186),
|
2111 |
-
Connection(216, 212),
|
2112 |
-
Connection(212, 186),
|
2113 |
-
Connection(186, 216),
|
2114 |
-
Connection(192, 214),
|
2115 |
-
Connection(214, 187),
|
2116 |
-
Connection(187, 192),
|
2117 |
-
Connection(139, 34),
|
2118 |
-
Connection(34, 156),
|
2119 |
-
Connection(156, 139),
|
2120 |
-
Connection(218, 79),
|
2121 |
-
Connection(79, 237),
|
2122 |
-
Connection(237, 218),
|
2123 |
-
Connection(147, 123),
|
2124 |
-
Connection(123, 177),
|
2125 |
-
Connection(177, 147),
|
2126 |
-
Connection(45, 44),
|
2127 |
-
Connection(44, 4),
|
2128 |
-
Connection(4, 45),
|
2129 |
-
Connection(208, 201),
|
2130 |
-
Connection(201, 32),
|
2131 |
-
Connection(32, 208),
|
2132 |
-
Connection(98, 64),
|
2133 |
-
Connection(64, 129),
|
2134 |
-
Connection(129, 98),
|
2135 |
-
Connection(192, 213),
|
2136 |
-
Connection(213, 138),
|
2137 |
-
Connection(138, 192),
|
2138 |
-
Connection(235, 59),
|
2139 |
-
Connection(59, 219),
|
2140 |
-
Connection(219, 235),
|
2141 |
-
Connection(141, 242),
|
2142 |
-
Connection(242, 97),
|
2143 |
-
Connection(97, 141),
|
2144 |
-
Connection(97, 2),
|
2145 |
-
Connection(2, 141),
|
2146 |
-
Connection(141, 97),
|
2147 |
-
Connection(240, 75),
|
2148 |
-
Connection(75, 235),
|
2149 |
-
Connection(235, 240),
|
2150 |
-
Connection(229, 24),
|
2151 |
-
Connection(24, 228),
|
2152 |
-
Connection(228, 229),
|
2153 |
-
Connection(31, 25),
|
2154 |
-
Connection(25, 226),
|
2155 |
-
Connection(226, 31),
|
2156 |
-
Connection(230, 23),
|
2157 |
-
Connection(23, 229),
|
2158 |
-
Connection(229, 230),
|
2159 |
-
Connection(231, 22),
|
2160 |
-
Connection(22, 230),
|
2161 |
-
Connection(230, 231),
|
2162 |
-
Connection(232, 26),
|
2163 |
-
Connection(26, 231),
|
2164 |
-
Connection(231, 232),
|
2165 |
-
Connection(233, 112),
|
2166 |
-
Connection(112, 232),
|
2167 |
-
Connection(232, 233),
|
2168 |
-
Connection(244, 189),
|
2169 |
-
Connection(189, 243),
|
2170 |
-
Connection(243, 244),
|
2171 |
-
Connection(189, 221),
|
2172 |
-
Connection(221, 190),
|
2173 |
-
Connection(190, 189),
|
2174 |
-
Connection(222, 28),
|
2175 |
-
Connection(28, 221),
|
2176 |
-
Connection(221, 222),
|
2177 |
-
Connection(223, 27),
|
2178 |
-
Connection(27, 222),
|
2179 |
-
Connection(222, 223),
|
2180 |
-
Connection(224, 29),
|
2181 |
-
Connection(29, 223),
|
2182 |
-
Connection(223, 224),
|
2183 |
-
Connection(225, 30),
|
2184 |
-
Connection(30, 224),
|
2185 |
-
Connection(224, 225),
|
2186 |
-
Connection(113, 247),
|
2187 |
-
Connection(247, 225),
|
2188 |
-
Connection(225, 113),
|
2189 |
-
Connection(99, 60),
|
2190 |
-
Connection(60, 240),
|
2191 |
-
Connection(240, 99),
|
2192 |
-
Connection(213, 147),
|
2193 |
-
Connection(147, 215),
|
2194 |
-
Connection(215, 213),
|
2195 |
-
Connection(60, 20),
|
2196 |
-
Connection(20, 166),
|
2197 |
-
Connection(166, 60),
|
2198 |
-
Connection(192, 187),
|
2199 |
-
Connection(187, 213),
|
2200 |
-
Connection(213, 192),
|
2201 |
-
Connection(243, 112),
|
2202 |
-
Connection(112, 244),
|
2203 |
-
Connection(244, 243),
|
2204 |
-
Connection(244, 233),
|
2205 |
-
Connection(233, 245),
|
2206 |
-
Connection(245, 244),
|
2207 |
-
Connection(245, 128),
|
2208 |
-
Connection(128, 188),
|
2209 |
-
Connection(188, 245),
|
2210 |
-
Connection(188, 114),
|
2211 |
-
Connection(114, 174),
|
2212 |
-
Connection(174, 188),
|
2213 |
-
Connection(134, 131),
|
2214 |
-
Connection(131, 220),
|
2215 |
-
Connection(220, 134),
|
2216 |
-
Connection(174, 217),
|
2217 |
-
Connection(217, 236),
|
2218 |
-
Connection(236, 174),
|
2219 |
-
Connection(236, 198),
|
2220 |
-
Connection(198, 134),
|
2221 |
-
Connection(134, 236),
|
2222 |
-
Connection(215, 177),
|
2223 |
-
Connection(177, 58),
|
2224 |
-
Connection(58, 215),
|
2225 |
-
Connection(156, 143),
|
2226 |
-
Connection(143, 124),
|
2227 |
-
Connection(124, 156),
|
2228 |
-
Connection(25, 110),
|
2229 |
-
Connection(110, 7),
|
2230 |
-
Connection(7, 25),
|
2231 |
-
Connection(31, 228),
|
2232 |
-
Connection(228, 25),
|
2233 |
-
Connection(25, 31),
|
2234 |
-
Connection(264, 356),
|
2235 |
-
Connection(356, 368),
|
2236 |
-
Connection(368, 264),
|
2237 |
-
Connection(0, 11),
|
2238 |
-
Connection(11, 267),
|
2239 |
-
Connection(267, 0),
|
2240 |
-
Connection(451, 452),
|
2241 |
-
Connection(452, 349),
|
2242 |
-
Connection(349, 451),
|
2243 |
-
Connection(267, 302),
|
2244 |
-
Connection(302, 269),
|
2245 |
-
Connection(269, 267),
|
2246 |
-
Connection(350, 357),
|
2247 |
-
Connection(357, 277),
|
2248 |
-
Connection(277, 350),
|
2249 |
-
Connection(350, 452),
|
2250 |
-
Connection(452, 357),
|
2251 |
-
Connection(357, 350),
|
2252 |
-
Connection(299, 333),
|
2253 |
-
Connection(333, 297),
|
2254 |
-
Connection(297, 299),
|
2255 |
-
Connection(396, 175),
|
2256 |
-
Connection(175, 377),
|
2257 |
-
Connection(377, 396),
|
2258 |
-
Connection(280, 347),
|
2259 |
-
Connection(347, 330),
|
2260 |
-
Connection(330, 280),
|
2261 |
-
Connection(269, 303),
|
2262 |
-
Connection(303, 270),
|
2263 |
-
Connection(270, 269),
|
2264 |
-
Connection(151, 9),
|
2265 |
-
Connection(9, 337),
|
2266 |
-
Connection(337, 151),
|
2267 |
-
Connection(344, 278),
|
2268 |
-
Connection(278, 360),
|
2269 |
-
Connection(360, 344),
|
2270 |
-
Connection(424, 418),
|
2271 |
-
Connection(418, 431),
|
2272 |
-
Connection(431, 424),
|
2273 |
-
Connection(270, 304),
|
2274 |
-
Connection(304, 409),
|
2275 |
-
Connection(409, 270),
|
2276 |
-
Connection(272, 310),
|
2277 |
-
Connection(310, 407),
|
2278 |
-
Connection(407, 272),
|
2279 |
-
Connection(322, 270),
|
2280 |
-
Connection(270, 410),
|
2281 |
-
Connection(410, 322),
|
2282 |
-
Connection(449, 450),
|
2283 |
-
Connection(450, 347),
|
2284 |
-
Connection(347, 449),
|
2285 |
-
Connection(432, 422),
|
2286 |
-
Connection(422, 434),
|
2287 |
-
Connection(434, 432),
|
2288 |
-
Connection(18, 313),
|
2289 |
-
Connection(313, 17),
|
2290 |
-
Connection(17, 18),
|
2291 |
-
Connection(291, 306),
|
2292 |
-
Connection(306, 375),
|
2293 |
-
Connection(375, 291),
|
2294 |
-
Connection(259, 387),
|
2295 |
-
Connection(387, 260),
|
2296 |
-
Connection(260, 259),
|
2297 |
-
Connection(424, 335),
|
2298 |
-
Connection(335, 418),
|
2299 |
-
Connection(418, 424),
|
2300 |
-
Connection(434, 364),
|
2301 |
-
Connection(364, 416),
|
2302 |
-
Connection(416, 434),
|
2303 |
-
Connection(391, 423),
|
2304 |
-
Connection(423, 327),
|
2305 |
-
Connection(327, 391),
|
2306 |
-
Connection(301, 251),
|
2307 |
-
Connection(251, 298),
|
2308 |
-
Connection(298, 301),
|
2309 |
-
Connection(275, 281),
|
2310 |
-
Connection(281, 4),
|
2311 |
-
Connection(4, 275),
|
2312 |
-
Connection(254, 373),
|
2313 |
-
Connection(373, 253),
|
2314 |
-
Connection(253, 254),
|
2315 |
-
Connection(375, 307),
|
2316 |
-
Connection(307, 321),
|
2317 |
-
Connection(321, 375),
|
2318 |
-
Connection(280, 425),
|
2319 |
-
Connection(425, 411),
|
2320 |
-
Connection(411, 280),
|
2321 |
-
Connection(200, 421),
|
2322 |
-
Connection(421, 18),
|
2323 |
-
Connection(18, 200),
|
2324 |
-
Connection(335, 321),
|
2325 |
-
Connection(321, 406),
|
2326 |
-
Connection(406, 335),
|
2327 |
-
Connection(321, 320),
|
2328 |
-
Connection(320, 405),
|
2329 |
-
Connection(405, 321),
|
2330 |
-
Connection(314, 315),
|
2331 |
-
Connection(315, 17),
|
2332 |
-
Connection(17, 314),
|
2333 |
-
Connection(423, 426),
|
2334 |
-
Connection(426, 266),
|
2335 |
-
Connection(266, 423),
|
2336 |
-
Connection(396, 377),
|
2337 |
-
Connection(377, 369),
|
2338 |
-
Connection(369, 396),
|
2339 |
-
Connection(270, 322),
|
2340 |
-
Connection(322, 269),
|
2341 |
-
Connection(269, 270),
|
2342 |
-
Connection(413, 417),
|
2343 |
-
Connection(417, 464),
|
2344 |
-
Connection(464, 413),
|
2345 |
-
Connection(385, 386),
|
2346 |
-
Connection(386, 258),
|
2347 |
-
Connection(258, 385),
|
2348 |
-
Connection(248, 456),
|
2349 |
-
Connection(456, 419),
|
2350 |
-
Connection(419, 248),
|
2351 |
-
Connection(298, 284),
|
2352 |
-
Connection(284, 333),
|
2353 |
-
Connection(333, 298),
|
2354 |
-
Connection(168, 417),
|
2355 |
-
Connection(417, 8),
|
2356 |
-
Connection(8, 168),
|
2357 |
-
Connection(448, 346),
|
2358 |
-
Connection(346, 261),
|
2359 |
-
Connection(261, 448),
|
2360 |
-
Connection(417, 413),
|
2361 |
-
Connection(413, 285),
|
2362 |
-
Connection(285, 417),
|
2363 |
-
Connection(326, 327),
|
2364 |
-
Connection(327, 328),
|
2365 |
-
Connection(328, 326),
|
2366 |
-
Connection(277, 355),
|
2367 |
-
Connection(355, 329),
|
2368 |
-
Connection(329, 277),
|
2369 |
-
Connection(309, 392),
|
2370 |
-
Connection(392, 438),
|
2371 |
-
Connection(438, 309),
|
2372 |
-
Connection(381, 382),
|
2373 |
-
Connection(382, 256),
|
2374 |
-
Connection(256, 381),
|
2375 |
-
Connection(279, 429),
|
2376 |
-
Connection(429, 360),
|
2377 |
-
Connection(360, 279),
|
2378 |
-
Connection(365, 364),
|
2379 |
-
Connection(364, 379),
|
2380 |
-
Connection(379, 365),
|
2381 |
-
Connection(355, 277),
|
2382 |
-
Connection(277, 437),
|
2383 |
-
Connection(437, 355),
|
2384 |
-
Connection(282, 443),
|
2385 |
-
Connection(443, 283),
|
2386 |
-
Connection(283, 282),
|
2387 |
-
Connection(281, 275),
|
2388 |
-
Connection(275, 363),
|
2389 |
-
Connection(363, 281),
|
2390 |
-
Connection(395, 431),
|
2391 |
-
Connection(431, 369),
|
2392 |
-
Connection(369, 395),
|
2393 |
-
Connection(299, 297),
|
2394 |
-
Connection(297, 337),
|
2395 |
-
Connection(337, 299),
|
2396 |
-
Connection(335, 273),
|
2397 |
-
Connection(273, 321),
|
2398 |
-
Connection(321, 335),
|
2399 |
-
Connection(348, 450),
|
2400 |
-
Connection(450, 349),
|
2401 |
-
Connection(349, 348),
|
2402 |
-
Connection(359, 446),
|
2403 |
-
Connection(446, 467),
|
2404 |
-
Connection(467, 359),
|
2405 |
-
Connection(283, 293),
|
2406 |
-
Connection(293, 282),
|
2407 |
-
Connection(282, 283),
|
2408 |
-
Connection(250, 458),
|
2409 |
-
Connection(458, 462),
|
2410 |
-
Connection(462, 250),
|
2411 |
-
Connection(300, 276),
|
2412 |
-
Connection(276, 383),
|
2413 |
-
Connection(383, 300),
|
2414 |
-
Connection(292, 308),
|
2415 |
-
Connection(308, 325),
|
2416 |
-
Connection(325, 292),
|
2417 |
-
Connection(283, 276),
|
2418 |
-
Connection(276, 293),
|
2419 |
-
Connection(293, 283),
|
2420 |
-
Connection(264, 372),
|
2421 |
-
Connection(372, 447),
|
2422 |
-
Connection(447, 264),
|
2423 |
-
Connection(346, 352),
|
2424 |
-
Connection(352, 340),
|
2425 |
-
Connection(340, 346),
|
2426 |
-
Connection(354, 274),
|
2427 |
-
Connection(274, 19),
|
2428 |
-
Connection(19, 354),
|
2429 |
-
Connection(363, 456),
|
2430 |
-
Connection(456, 281),
|
2431 |
-
Connection(281, 363),
|
2432 |
-
Connection(426, 436),
|
2433 |
-
Connection(436, 425),
|
2434 |
-
Connection(425, 426),
|
2435 |
-
Connection(380, 381),
|
2436 |
-
Connection(381, 252),
|
2437 |
-
Connection(252, 380),
|
2438 |
-
Connection(267, 269),
|
2439 |
-
Connection(269, 393),
|
2440 |
-
Connection(393, 267),
|
2441 |
-
Connection(421, 200),
|
2442 |
-
Connection(200, 428),
|
2443 |
-
Connection(428, 421),
|
2444 |
-
Connection(371, 266),
|
2445 |
-
Connection(266, 329),
|
2446 |
-
Connection(329, 371),
|
2447 |
-
Connection(432, 287),
|
2448 |
-
Connection(287, 422),
|
2449 |
-
Connection(422, 432),
|
2450 |
-
Connection(290, 250),
|
2451 |
-
Connection(250, 328),
|
2452 |
-
Connection(328, 290),
|
2453 |
-
Connection(385, 258),
|
2454 |
-
Connection(258, 384),
|
2455 |
-
Connection(384, 385),
|
2456 |
-
Connection(446, 265),
|
2457 |
-
Connection(265, 342),
|
2458 |
-
Connection(342, 446),
|
2459 |
-
Connection(386, 387),
|
2460 |
-
Connection(387, 257),
|
2461 |
-
Connection(257, 386),
|
2462 |
-
Connection(422, 424),
|
2463 |
-
Connection(424, 430),
|
2464 |
-
Connection(430, 422),
|
2465 |
-
Connection(445, 342),
|
2466 |
-
Connection(342, 276),
|
2467 |
-
Connection(276, 445),
|
2468 |
-
Connection(422, 273),
|
2469 |
-
Connection(273, 424),
|
2470 |
-
Connection(424, 422),
|
2471 |
-
Connection(306, 292),
|
2472 |
-
Connection(292, 307),
|
2473 |
-
Connection(307, 306),
|
2474 |
-
Connection(352, 366),
|
2475 |
-
Connection(366, 345),
|
2476 |
-
Connection(345, 352),
|
2477 |
-
Connection(268, 271),
|
2478 |
-
Connection(271, 302),
|
2479 |
-
Connection(302, 268),
|
2480 |
-
Connection(358, 423),
|
2481 |
-
Connection(423, 371),
|
2482 |
-
Connection(371, 358),
|
2483 |
-
Connection(327, 294),
|
2484 |
-
Connection(294, 460),
|
2485 |
-
Connection(460, 327),
|
2486 |
-
Connection(331, 279),
|
2487 |
-
Connection(279, 294),
|
2488 |
-
Connection(294, 331),
|
2489 |
-
Connection(303, 271),
|
2490 |
-
Connection(271, 304),
|
2491 |
-
Connection(304, 303),
|
2492 |
-
Connection(436, 432),
|
2493 |
-
Connection(432, 427),
|
2494 |
-
Connection(427, 436),
|
2495 |
-
Connection(304, 272),
|
2496 |
-
Connection(272, 408),
|
2497 |
-
Connection(408, 304),
|
2498 |
-
Connection(395, 394),
|
2499 |
-
Connection(394, 431),
|
2500 |
-
Connection(431, 395),
|
2501 |
-
Connection(378, 395),
|
2502 |
-
Connection(395, 400),
|
2503 |
-
Connection(400, 378),
|
2504 |
-
Connection(296, 334),
|
2505 |
-
Connection(334, 299),
|
2506 |
-
Connection(299, 296),
|
2507 |
-
Connection(6, 351),
|
2508 |
-
Connection(351, 168),
|
2509 |
-
Connection(168, 6),
|
2510 |
-
Connection(376, 352),
|
2511 |
-
Connection(352, 411),
|
2512 |
-
Connection(411, 376),
|
2513 |
-
Connection(307, 325),
|
2514 |
-
Connection(325, 320),
|
2515 |
-
Connection(320, 307),
|
2516 |
-
Connection(285, 295),
|
2517 |
-
Connection(295, 336),
|
2518 |
-
Connection(336, 285),
|
2519 |
-
Connection(320, 319),
|
2520 |
-
Connection(319, 404),
|
2521 |
-
Connection(404, 320),
|
2522 |
-
Connection(329, 330),
|
2523 |
-
Connection(330, 349),
|
2524 |
-
Connection(349, 329),
|
2525 |
-
Connection(334, 293),
|
2526 |
-
Connection(293, 333),
|
2527 |
-
Connection(333, 334),
|
2528 |
-
Connection(366, 323),
|
2529 |
-
Connection(323, 447),
|
2530 |
-
Connection(447, 366),
|
2531 |
-
Connection(316, 15),
|
2532 |
-
Connection(15, 315),
|
2533 |
-
Connection(315, 316),
|
2534 |
-
Connection(331, 358),
|
2535 |
-
Connection(358, 279),
|
2536 |
-
Connection(279, 331),
|
2537 |
-
Connection(317, 14),
|
2538 |
-
Connection(14, 316),
|
2539 |
-
Connection(316, 317),
|
2540 |
-
Connection(8, 285),
|
2541 |
-
Connection(285, 9),
|
2542 |
-
Connection(9, 8),
|
2543 |
-
Connection(277, 329),
|
2544 |
-
Connection(329, 350),
|
2545 |
-
Connection(350, 277),
|
2546 |
-
Connection(253, 374),
|
2547 |
-
Connection(374, 252),
|
2548 |
-
Connection(252, 253),
|
2549 |
-
Connection(319, 318),
|
2550 |
-
Connection(318, 403),
|
2551 |
-
Connection(403, 319),
|
2552 |
-
Connection(351, 6),
|
2553 |
-
Connection(6, 419),
|
2554 |
-
Connection(419, 351),
|
2555 |
-
Connection(324, 318),
|
2556 |
-
Connection(318, 325),
|
2557 |
-
Connection(325, 324),
|
2558 |
-
Connection(397, 367),
|
2559 |
-
Connection(367, 365),
|
2560 |
-
Connection(365, 397),
|
2561 |
-
Connection(288, 435),
|
2562 |
-
Connection(435, 397),
|
2563 |
-
Connection(397, 288),
|
2564 |
-
Connection(278, 344),
|
2565 |
-
Connection(344, 439),
|
2566 |
-
Connection(439, 278),
|
2567 |
-
Connection(310, 272),
|
2568 |
-
Connection(272, 311),
|
2569 |
-
Connection(311, 310),
|
2570 |
-
Connection(248, 195),
|
2571 |
-
Connection(195, 281),
|
2572 |
-
Connection(281, 248),
|
2573 |
-
Connection(375, 273),
|
2574 |
-
Connection(273, 291),
|
2575 |
-
Connection(291, 375),
|
2576 |
-
Connection(175, 396),
|
2577 |
-
Connection(396, 199),
|
2578 |
-
Connection(199, 175),
|
2579 |
-
Connection(312, 311),
|
2580 |
-
Connection(311, 268),
|
2581 |
-
Connection(268, 312),
|
2582 |
-
Connection(276, 283),
|
2583 |
-
Connection(283, 445),
|
2584 |
-
Connection(445, 276),
|
2585 |
-
Connection(390, 373),
|
2586 |
-
Connection(373, 339),
|
2587 |
-
Connection(339, 390),
|
2588 |
-
Connection(295, 282),
|
2589 |
-
Connection(282, 296),
|
2590 |
-
Connection(296, 295),
|
2591 |
-
Connection(448, 449),
|
2592 |
-
Connection(449, 346),
|
2593 |
-
Connection(346, 448),
|
2594 |
-
Connection(356, 264),
|
2595 |
-
Connection(264, 454),
|
2596 |
-
Connection(454, 356),
|
2597 |
-
Connection(337, 336),
|
2598 |
-
Connection(336, 299),
|
2599 |
-
Connection(299, 337),
|
2600 |
-
Connection(337, 338),
|
2601 |
-
Connection(338, 151),
|
2602 |
-
Connection(151, 337),
|
2603 |
-
Connection(294, 278),
|
2604 |
-
Connection(278, 455),
|
2605 |
-
Connection(455, 294),
|
2606 |
-
Connection(308, 292),
|
2607 |
-
Connection(292, 415),
|
2608 |
-
Connection(415, 308),
|
2609 |
-
Connection(429, 358),
|
2610 |
-
Connection(358, 355),
|
2611 |
-
Connection(355, 429),
|
2612 |
-
Connection(265, 340),
|
2613 |
-
Connection(340, 372),
|
2614 |
-
Connection(372, 265),
|
2615 |
-
Connection(352, 346),
|
2616 |
-
Connection(346, 280),
|
2617 |
-
Connection(280, 352),
|
2618 |
-
Connection(295, 442),
|
2619 |
-
Connection(442, 282),
|
2620 |
-
Connection(282, 295),
|
2621 |
-
Connection(354, 19),
|
2622 |
-
Connection(19, 370),
|
2623 |
-
Connection(370, 354),
|
2624 |
-
Connection(285, 441),
|
2625 |
-
Connection(441, 295),
|
2626 |
-
Connection(295, 285),
|
2627 |
-
Connection(195, 248),
|
2628 |
-
Connection(248, 197),
|
2629 |
-
Connection(197, 195),
|
2630 |
-
Connection(457, 440),
|
2631 |
-
Connection(440, 274),
|
2632 |
-
Connection(274, 457),
|
2633 |
-
Connection(301, 300),
|
2634 |
-
Connection(300, 368),
|
2635 |
-
Connection(368, 301),
|
2636 |
-
Connection(417, 351),
|
2637 |
-
Connection(351, 465),
|
2638 |
-
Connection(465, 417),
|
2639 |
-
Connection(251, 301),
|
2640 |
-
Connection(301, 389),
|
2641 |
-
Connection(389, 251),
|
2642 |
-
Connection(394, 395),
|
2643 |
-
Connection(395, 379),
|
2644 |
-
Connection(379, 394),
|
2645 |
-
Connection(399, 412),
|
2646 |
-
Connection(412, 419),
|
2647 |
-
Connection(419, 399),
|
2648 |
-
Connection(410, 436),
|
2649 |
-
Connection(436, 322),
|
2650 |
-
Connection(322, 410),
|
2651 |
-
Connection(326, 2),
|
2652 |
-
Connection(2, 393),
|
2653 |
-
Connection(393, 326),
|
2654 |
-
Connection(354, 370),
|
2655 |
-
Connection(370, 461),
|
2656 |
-
Connection(461, 354),
|
2657 |
-
Connection(393, 164),
|
2658 |
-
Connection(164, 267),
|
2659 |
-
Connection(267, 393),
|
2660 |
-
Connection(268, 302),
|
2661 |
-
Connection(302, 12),
|
2662 |
-
Connection(12, 268),
|
2663 |
-
Connection(312, 268),
|
2664 |
-
Connection(268, 13),
|
2665 |
-
Connection(13, 312),
|
2666 |
-
Connection(298, 293),
|
2667 |
-
Connection(293, 301),
|
2668 |
-
Connection(301, 298),
|
2669 |
-
Connection(265, 446),
|
2670 |
-
Connection(446, 340),
|
2671 |
-
Connection(340, 265),
|
2672 |
-
Connection(280, 330),
|
2673 |
-
Connection(330, 425),
|
2674 |
-
Connection(425, 280),
|
2675 |
-
Connection(322, 426),
|
2676 |
-
Connection(426, 391),
|
2677 |
-
Connection(391, 322),
|
2678 |
-
Connection(420, 429),
|
2679 |
-
Connection(429, 437),
|
2680 |
-
Connection(437, 420),
|
2681 |
-
Connection(393, 391),
|
2682 |
-
Connection(391, 326),
|
2683 |
-
Connection(326, 393),
|
2684 |
-
Connection(344, 440),
|
2685 |
-
Connection(440, 438),
|
2686 |
-
Connection(438, 344),
|
2687 |
-
Connection(458, 459),
|
2688 |
-
Connection(459, 461),
|
2689 |
-
Connection(461, 458),
|
2690 |
-
Connection(364, 434),
|
2691 |
-
Connection(434, 394),
|
2692 |
-
Connection(394, 364),
|
2693 |
-
Connection(428, 396),
|
2694 |
-
Connection(396, 262),
|
2695 |
-
Connection(262, 428),
|
2696 |
-
Connection(274, 354),
|
2697 |
-
Connection(354, 457),
|
2698 |
-
Connection(457, 274),
|
2699 |
-
Connection(317, 316),
|
2700 |
-
Connection(316, 402),
|
2701 |
-
Connection(402, 317),
|
2702 |
-
Connection(316, 315),
|
2703 |
-
Connection(315, 403),
|
2704 |
-
Connection(403, 316),
|
2705 |
-
Connection(315, 314),
|
2706 |
-
Connection(314, 404),
|
2707 |
-
Connection(404, 315),
|
2708 |
-
Connection(314, 313),
|
2709 |
-
Connection(313, 405),
|
2710 |
-
Connection(405, 314),
|
2711 |
-
Connection(313, 421),
|
2712 |
-
Connection(421, 406),
|
2713 |
-
Connection(406, 313),
|
2714 |
-
Connection(323, 366),
|
2715 |
-
Connection(366, 361),
|
2716 |
-
Connection(361, 323),
|
2717 |
-
Connection(292, 306),
|
2718 |
-
Connection(306, 407),
|
2719 |
-
Connection(407, 292),
|
2720 |
-
Connection(306, 291),
|
2721 |
-
Connection(291, 408),
|
2722 |
-
Connection(408, 306),
|
2723 |
-
Connection(291, 287),
|
2724 |
-
Connection(287, 409),
|
2725 |
-
Connection(409, 291),
|
2726 |
-
Connection(287, 432),
|
2727 |
-
Connection(432, 410),
|
2728 |
-
Connection(410, 287),
|
2729 |
-
Connection(427, 434),
|
2730 |
-
Connection(434, 411),
|
2731 |
-
Connection(411, 427),
|
2732 |
-
Connection(372, 264),
|
2733 |
-
Connection(264, 383),
|
2734 |
-
Connection(383, 372),
|
2735 |
-
Connection(459, 309),
|
2736 |
-
Connection(309, 457),
|
2737 |
-
Connection(457, 459),
|
2738 |
-
Connection(366, 352),
|
2739 |
-
Connection(352, 401),
|
2740 |
-
Connection(401, 366),
|
2741 |
-
Connection(1, 274),
|
2742 |
-
Connection(274, 4),
|
2743 |
-
Connection(4, 1),
|
2744 |
-
Connection(418, 421),
|
2745 |
-
Connection(421, 262),
|
2746 |
-
Connection(262, 418),
|
2747 |
-
Connection(331, 294),
|
2748 |
-
Connection(294, 358),
|
2749 |
-
Connection(358, 331),
|
2750 |
-
Connection(435, 433),
|
2751 |
-
Connection(433, 367),
|
2752 |
-
Connection(367, 435),
|
2753 |
-
Connection(392, 289),
|
2754 |
-
Connection(289, 439),
|
2755 |
-
Connection(439, 392),
|
2756 |
-
Connection(328, 462),
|
2757 |
-
Connection(462, 326),
|
2758 |
-
Connection(326, 328),
|
2759 |
-
Connection(94, 2),
|
2760 |
-
Connection(2, 370),
|
2761 |
-
Connection(370, 94),
|
2762 |
-
Connection(289, 305),
|
2763 |
-
Connection(305, 455),
|
2764 |
-
Connection(455, 289),
|
2765 |
-
Connection(339, 254),
|
2766 |
-
Connection(254, 448),
|
2767 |
-
Connection(448, 339),
|
2768 |
-
Connection(359, 255),
|
2769 |
-
Connection(255, 446),
|
2770 |
-
Connection(446, 359),
|
2771 |
-
Connection(254, 253),
|
2772 |
-
Connection(253, 449),
|
2773 |
-
Connection(449, 254),
|
2774 |
-
Connection(253, 252),
|
2775 |
-
Connection(252, 450),
|
2776 |
-
Connection(450, 253),
|
2777 |
-
Connection(252, 256),
|
2778 |
-
Connection(256, 451),
|
2779 |
-
Connection(451, 252),
|
2780 |
-
Connection(256, 341),
|
2781 |
-
Connection(341, 452),
|
2782 |
-
Connection(452, 256),
|
2783 |
-
Connection(414, 413),
|
2784 |
-
Connection(413, 463),
|
2785 |
-
Connection(463, 414),
|
2786 |
-
Connection(286, 441),
|
2787 |
-
Connection(441, 414),
|
2788 |
-
Connection(414, 286),
|
2789 |
-
Connection(286, 258),
|
2790 |
-
Connection(258, 441),
|
2791 |
-
Connection(441, 286),
|
2792 |
-
Connection(258, 257),
|
2793 |
-
Connection(257, 442),
|
2794 |
-
Connection(442, 258),
|
2795 |
-
Connection(257, 259),
|
2796 |
-
Connection(259, 443),
|
2797 |
-
Connection(443, 257),
|
2798 |
-
Connection(259, 260),
|
2799 |
-
Connection(260, 444),
|
2800 |
-
Connection(444, 259),
|
2801 |
-
Connection(260, 467),
|
2802 |
-
Connection(467, 445),
|
2803 |
-
Connection(445, 260),
|
2804 |
-
Connection(309, 459),
|
2805 |
-
Connection(459, 250),
|
2806 |
-
Connection(250, 309),
|
2807 |
-
Connection(305, 289),
|
2808 |
-
Connection(289, 290),
|
2809 |
-
Connection(290, 305),
|
2810 |
-
Connection(305, 290),
|
2811 |
-
Connection(290, 460),
|
2812 |
-
Connection(460, 305),
|
2813 |
-
Connection(401, 376),
|
2814 |
-
Connection(376, 435),
|
2815 |
-
Connection(435, 401),
|
2816 |
-
Connection(309, 250),
|
2817 |
-
Connection(250, 392),
|
2818 |
-
Connection(392, 309),
|
2819 |
-
Connection(376, 411),
|
2820 |
-
Connection(411, 433),
|
2821 |
-
Connection(433, 376),
|
2822 |
-
Connection(453, 341),
|
2823 |
-
Connection(341, 464),
|
2824 |
-
Connection(464, 453),
|
2825 |
-
Connection(357, 453),
|
2826 |
-
Connection(453, 465),
|
2827 |
-
Connection(465, 357),
|
2828 |
-
Connection(343, 357),
|
2829 |
-
Connection(357, 412),
|
2830 |
-
Connection(412, 343),
|
2831 |
-
Connection(437, 343),
|
2832 |
-
Connection(343, 399),
|
2833 |
-
Connection(399, 437),
|
2834 |
-
Connection(344, 360),
|
2835 |
-
Connection(360, 440),
|
2836 |
-
Connection(440, 344),
|
2837 |
-
Connection(420, 437),
|
2838 |
-
Connection(437, 456),
|
2839 |
-
Connection(456, 420),
|
2840 |
-
Connection(360, 420),
|
2841 |
-
Connection(420, 363),
|
2842 |
-
Connection(363, 360),
|
2843 |
-
Connection(361, 401),
|
2844 |
-
Connection(401, 288),
|
2845 |
-
Connection(288, 361),
|
2846 |
-
Connection(265, 372),
|
2847 |
-
Connection(372, 353),
|
2848 |
-
Connection(353, 265),
|
2849 |
-
Connection(390, 339),
|
2850 |
-
Connection(339, 249),
|
2851 |
-
Connection(249, 390),
|
2852 |
-
Connection(339, 448),
|
2853 |
-
Connection(448, 255),
|
2854 |
-
Connection(255, 339),
|
2855 |
-
]
|
2856 |
-
|
2857 |
-
|
2858 |
-
@dataclasses.dataclass
|
2859 |
-
class FaceLandmarkerResult:
|
2860 |
-
"""The face landmarks detection result from FaceLandmarker, where each vector element represents a single face detected in the image.
|
2861 |
-
|
2862 |
-
Attributes:
|
2863 |
-
face_landmarks: Detected face landmarks in normalized image coordinates.
|
2864 |
-
face_blendshapes: Optional face blendshapes results.
|
2865 |
-
facial_transformation_matrixes: Optional facial transformation matrix.
|
2866 |
-
"""
|
2867 |
-
|
2868 |
-
face_landmarks: List[List[landmark_module.NormalizedLandmark]]
|
2869 |
-
face_blendshapes: List[List[category_module.Category]]
|
2870 |
-
facial_transformation_matrixes: List[np.ndarray]
|
2871 |
-
|
2872 |
-
|
2873 |
-
def _build_landmarker_result(
|
2874 |
-
output_packets: Mapping[str, packet_module.Packet]
|
2875 |
-
) -> FaceLandmarkerResult:
|
2876 |
-
"""Constructs a `FaceLandmarkerResult` from output packets."""
|
2877 |
-
face_landmarks_proto_list = packet_getter.get_proto_list(
|
2878 |
-
output_packets[_NORM_LANDMARKS_STREAM_NAME]
|
2879 |
-
)
|
2880 |
-
|
2881 |
-
face_landmarks_results = []
|
2882 |
-
for proto in face_landmarks_proto_list:
|
2883 |
-
face_landmarks = landmark_pb2.NormalizedLandmarkList()
|
2884 |
-
face_landmarks.MergeFrom(proto)
|
2885 |
-
face_landmarks_list = []
|
2886 |
-
for face_landmark in face_landmarks.landmark:
|
2887 |
-
face_landmarks_list.append(
|
2888 |
-
landmark_module.NormalizedLandmark.create_from_pb2(face_landmark)
|
2889 |
-
)
|
2890 |
-
face_landmarks_results.append(face_landmarks_list)
|
2891 |
-
|
2892 |
-
face_blendshapes_results = []
|
2893 |
-
if _BLENDSHAPES_STREAM_NAME in output_packets:
|
2894 |
-
face_blendshapes_proto_list = packet_getter.get_proto_list(
|
2895 |
-
output_packets[_BLENDSHAPES_STREAM_NAME]
|
2896 |
-
)
|
2897 |
-
for proto in face_blendshapes_proto_list:
|
2898 |
-
face_blendshapes_categories = []
|
2899 |
-
face_blendshapes_classifications = classification_pb2.ClassificationList()
|
2900 |
-
face_blendshapes_classifications.MergeFrom(proto)
|
2901 |
-
for face_blendshapes in face_blendshapes_classifications.classification:
|
2902 |
-
face_blendshapes_categories.append(
|
2903 |
-
category_module.Category(
|
2904 |
-
index=face_blendshapes.index,
|
2905 |
-
score=face_blendshapes.score,
|
2906 |
-
display_name=face_blendshapes.display_name,
|
2907 |
-
category_name=face_blendshapes.label,
|
2908 |
-
)
|
2909 |
-
)
|
2910 |
-
face_blendshapes_results.append(face_blendshapes_categories)
|
2911 |
-
|
2912 |
-
facial_transformation_matrixes_results = []
|
2913 |
-
if _FACE_GEOMETRY_STREAM_NAME in output_packets:
|
2914 |
-
facial_transformation_matrixes_proto_list = packet_getter.get_proto_list(
|
2915 |
-
output_packets[_FACE_GEOMETRY_STREAM_NAME]
|
2916 |
-
)
|
2917 |
-
for proto in facial_transformation_matrixes_proto_list:
|
2918 |
-
if hasattr(proto, 'pose_transform_matrix'):
|
2919 |
-
matrix_data = matrix_data_pb2.MatrixData()
|
2920 |
-
matrix_data.MergeFrom(proto.pose_transform_matrix)
|
2921 |
-
matrix = np.array(matrix_data.packed_data)
|
2922 |
-
matrix = matrix.reshape((matrix_data.rows, matrix_data.cols))
|
2923 |
-
matrix = (
|
2924 |
-
matrix if matrix_data.layout == _LayoutEnum.ROW_MAJOR else matrix.T
|
2925 |
-
)
|
2926 |
-
facial_transformation_matrixes_results.append(matrix)
|
2927 |
-
|
2928 |
-
return FaceLandmarkerResult(
|
2929 |
-
face_landmarks_results,
|
2930 |
-
face_blendshapes_results,
|
2931 |
-
facial_transformation_matrixes_results,
|
2932 |
-
)
|
2933 |
-
|
2934 |
-
def _build_landmarker_result2(
|
2935 |
-
output_packets: Mapping[str, packet_module.Packet]
|
2936 |
-
) -> FaceLandmarkerResult:
|
2937 |
-
"""Constructs a `FaceLandmarkerResult` from output packets."""
|
2938 |
-
face_landmarks_proto_list = packet_getter.get_proto_list(
|
2939 |
-
output_packets[_NORM_LANDMARKS_STREAM_NAME]
|
2940 |
-
)
|
2941 |
-
|
2942 |
-
face_landmarks_results = []
|
2943 |
-
for proto in face_landmarks_proto_list:
|
2944 |
-
face_landmarks = landmark_pb2.NormalizedLandmarkList()
|
2945 |
-
face_landmarks.MergeFrom(proto)
|
2946 |
-
face_landmarks_list = []
|
2947 |
-
for face_landmark in face_landmarks.landmark:
|
2948 |
-
face_landmarks_list.append(
|
2949 |
-
landmark_module.NormalizedLandmark.create_from_pb2(face_landmark)
|
2950 |
-
)
|
2951 |
-
face_landmarks_results.append(face_landmarks_list)
|
2952 |
-
|
2953 |
-
face_blendshapes_results = []
|
2954 |
-
if _BLENDSHAPES_STREAM_NAME in output_packets:
|
2955 |
-
face_blendshapes_proto_list = packet_getter.get_proto_list(
|
2956 |
-
output_packets[_BLENDSHAPES_STREAM_NAME]
|
2957 |
-
)
|
2958 |
-
for proto in face_blendshapes_proto_list:
|
2959 |
-
face_blendshapes_categories = []
|
2960 |
-
face_blendshapes_classifications = classification_pb2.ClassificationList()
|
2961 |
-
face_blendshapes_classifications.MergeFrom(proto)
|
2962 |
-
for face_blendshapes in face_blendshapes_classifications.classification:
|
2963 |
-
face_blendshapes_categories.append(
|
2964 |
-
category_module.Category(
|
2965 |
-
index=face_blendshapes.index,
|
2966 |
-
score=face_blendshapes.score,
|
2967 |
-
display_name=face_blendshapes.display_name,
|
2968 |
-
category_name=face_blendshapes.label,
|
2969 |
-
)
|
2970 |
-
)
|
2971 |
-
face_blendshapes_results.append(face_blendshapes_categories)
|
2972 |
-
|
2973 |
-
facial_transformation_matrixes_results = []
|
2974 |
-
if _FACE_GEOMETRY_STREAM_NAME in output_packets:
|
2975 |
-
facial_transformation_matrixes_proto_list = packet_getter.get_proto_list(
|
2976 |
-
output_packets[_FACE_GEOMETRY_STREAM_NAME]
|
2977 |
-
)
|
2978 |
-
for proto in facial_transformation_matrixes_proto_list:
|
2979 |
-
if hasattr(proto, 'pose_transform_matrix'):
|
2980 |
-
matrix_data = matrix_data_pb2.MatrixData()
|
2981 |
-
matrix_data.MergeFrom(proto.pose_transform_matrix)
|
2982 |
-
matrix = np.array(matrix_data.packed_data)
|
2983 |
-
matrix = matrix.reshape((matrix_data.rows, matrix_data.cols))
|
2984 |
-
matrix = (
|
2985 |
-
matrix if matrix_data.layout == _LayoutEnum.ROW_MAJOR else matrix.T
|
2986 |
-
)
|
2987 |
-
facial_transformation_matrixes_results.append(matrix)
|
2988 |
-
|
2989 |
-
return FaceLandmarkerResult(
|
2990 |
-
face_landmarks_results,
|
2991 |
-
face_blendshapes_results,
|
2992 |
-
facial_transformation_matrixes_results,
|
2993 |
-
), facial_transformation_matrixes_proto_list[0].mesh
|
2994 |
-
|
2995 |
-
@dataclasses.dataclass
|
2996 |
-
class FaceLandmarkerOptions:
|
2997 |
-
"""Options for the face landmarker task.
|
2998 |
-
|
2999 |
-
Attributes:
|
3000 |
-
base_options: Base options for the face landmarker task.
|
3001 |
-
running_mode: The running mode of the task. Default to the image mode.
|
3002 |
-
FaceLandmarker has three running modes: 1) The image mode for detecting
|
3003 |
-
face landmarks on single image inputs. 2) The video mode for detecting
|
3004 |
-
face landmarks on the decoded frames of a video. 3) The live stream mode
|
3005 |
-
for detecting face landmarks on the live stream of input data, such as
|
3006 |
-
from camera. In this mode, the "result_callback" below must be specified
|
3007 |
-
to receive the detection results asynchronously.
|
3008 |
-
num_faces: The maximum number of faces that can be detected by the
|
3009 |
-
FaceLandmarker.
|
3010 |
-
min_face_detection_confidence: The minimum confidence score for the face
|
3011 |
-
detection to be considered successful.
|
3012 |
-
min_face_presence_confidence: The minimum confidence score of face presence
|
3013 |
-
score in the face landmark detection.
|
3014 |
-
min_tracking_confidence: The minimum confidence score for the face tracking
|
3015 |
-
to be considered successful.
|
3016 |
-
output_face_blendshapes: Whether FaceLandmarker outputs face blendshapes
|
3017 |
-
classification. Face blendshapes are used for rendering the 3D face model.
|
3018 |
-
output_facial_transformation_matrixes: Whether FaceLandmarker outputs facial
|
3019 |
-
transformation_matrix. Facial transformation matrix is used to transform
|
3020 |
-
the face landmarks in canonical face to the detected face, so that users
|
3021 |
-
can apply face effects on the detected landmarks.
|
3022 |
-
result_callback: The user-defined result callback for processing live stream
|
3023 |
-
data. The result callback should only be specified when the running mode
|
3024 |
-
is set to the live stream mode.
|
3025 |
-
"""
|
3026 |
-
|
3027 |
-
base_options: _BaseOptions
|
3028 |
-
running_mode: _RunningMode = _RunningMode.IMAGE
|
3029 |
-
num_faces: int = 1
|
3030 |
-
min_face_detection_confidence: float = 0.5
|
3031 |
-
min_face_presence_confidence: float = 0.5
|
3032 |
-
min_tracking_confidence: float = 0.5
|
3033 |
-
output_face_blendshapes: bool = False
|
3034 |
-
output_facial_transformation_matrixes: bool = False
|
3035 |
-
result_callback: Optional[
|
3036 |
-
Callable[[FaceLandmarkerResult, image_module.Image, int], None]
|
3037 |
-
] = None
|
3038 |
-
|
3039 |
-
@doc_controls.do_not_generate_docs
|
3040 |
-
def to_pb2(self) -> _FaceLandmarkerGraphOptionsProto:
|
3041 |
-
"""Generates an FaceLandmarkerGraphOptions protobuf object."""
|
3042 |
-
base_options_proto = self.base_options.to_pb2()
|
3043 |
-
base_options_proto.use_stream_mode = (
|
3044 |
-
False if self.running_mode == _RunningMode.IMAGE else True
|
3045 |
-
)
|
3046 |
-
|
3047 |
-
# Initialize the face landmarker options from base options.
|
3048 |
-
face_landmarker_options_proto = _FaceLandmarkerGraphOptionsProto(
|
3049 |
-
base_options=base_options_proto
|
3050 |
-
)
|
3051 |
-
|
3052 |
-
# Configure face detector options.
|
3053 |
-
face_landmarker_options_proto.face_detector_graph_options.num_faces = (
|
3054 |
-
self.num_faces
|
3055 |
-
)
|
3056 |
-
face_landmarker_options_proto.face_detector_graph_options.min_detection_confidence = (
|
3057 |
-
self.min_face_detection_confidence
|
3058 |
-
)
|
3059 |
-
|
3060 |
-
# Configure face landmark detector options.
|
3061 |
-
face_landmarker_options_proto.min_tracking_confidence = (
|
3062 |
-
self.min_tracking_confidence
|
3063 |
-
)
|
3064 |
-
face_landmarker_options_proto.face_landmarks_detector_graph_options.min_detection_confidence = (
|
3065 |
-
self.min_face_detection_confidence
|
3066 |
-
)
|
3067 |
-
return face_landmarker_options_proto
|
3068 |
-
|
3069 |
-
|
3070 |
-
class FaceLandmarker(base_vision_task_api.BaseVisionTaskApi):
|
3071 |
-
"""Class that performs face landmarks detection on images."""
|
3072 |
-
|
3073 |
-
@classmethod
|
3074 |
-
def create_from_model_path(cls, model_path: str) -> 'FaceLandmarker':
|
3075 |
-
"""Creates an `FaceLandmarker` object from a TensorFlow Lite model and the default `FaceLandmarkerOptions`.
|
3076 |
-
|
3077 |
-
Note that the created `FaceLandmarker` instance is in image mode, for
|
3078 |
-
detecting face landmarks on single image inputs.
|
3079 |
-
|
3080 |
-
Args:
|
3081 |
-
model_path: Path to the model.
|
3082 |
-
|
3083 |
-
Returns:
|
3084 |
-
`FaceLandmarker` object that's created from the model file and the
|
3085 |
-
default `FaceLandmarkerOptions`.
|
3086 |
-
|
3087 |
-
Raises:
|
3088 |
-
ValueError: If failed to create `FaceLandmarker` object from the
|
3089 |
-
provided file such as invalid file path.
|
3090 |
-
RuntimeError: If other types of error occurred.
|
3091 |
-
"""
|
3092 |
-
base_options = _BaseOptions(model_asset_path=model_path)
|
3093 |
-
options = FaceLandmarkerOptions(
|
3094 |
-
base_options=base_options, running_mode=_RunningMode.IMAGE
|
3095 |
-
)
|
3096 |
-
return cls.create_from_options(options)
|
3097 |
-
|
3098 |
-
@classmethod
|
3099 |
-
def create_from_options(
|
3100 |
-
cls, options: FaceLandmarkerOptions
|
3101 |
-
) -> 'FaceLandmarker':
|
3102 |
-
"""Creates the `FaceLandmarker` object from face landmarker options.
|
3103 |
-
|
3104 |
-
Args:
|
3105 |
-
options: Options for the face landmarker task.
|
3106 |
-
|
3107 |
-
Returns:
|
3108 |
-
`FaceLandmarker` object that's created from `options`.
|
3109 |
-
|
3110 |
-
Raises:
|
3111 |
-
ValueError: If failed to create `FaceLandmarker` object from
|
3112 |
-
`FaceLandmarkerOptions` such as missing the model.
|
3113 |
-
RuntimeError: If other types of error occurred.
|
3114 |
-
"""
|
3115 |
-
|
3116 |
-
def packets_callback(output_packets: Mapping[str, packet_module.Packet]):
|
3117 |
-
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
|
3118 |
-
return
|
3119 |
-
|
3120 |
-
image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
|
3121 |
-
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
|
3122 |
-
return
|
3123 |
-
|
3124 |
-
if output_packets[_NORM_LANDMARKS_STREAM_NAME].is_empty():
|
3125 |
-
empty_packet = output_packets[_NORM_LANDMARKS_STREAM_NAME]
|
3126 |
-
options.result_callback(
|
3127 |
-
FaceLandmarkerResult([], [], []),
|
3128 |
-
image,
|
3129 |
-
empty_packet.timestamp.value // _MICRO_SECONDS_PER_MILLISECOND,
|
3130 |
-
)
|
3131 |
-
return
|
3132 |
-
|
3133 |
-
face_landmarks_result = _build_landmarker_result(output_packets)
|
3134 |
-
timestamp = output_packets[_NORM_LANDMARKS_STREAM_NAME].timestamp
|
3135 |
-
options.result_callback(
|
3136 |
-
face_landmarks_result,
|
3137 |
-
image,
|
3138 |
-
timestamp.value // _MICRO_SECONDS_PER_MILLISECOND,
|
3139 |
-
)
|
3140 |
-
|
3141 |
-
output_streams = [
|
3142 |
-
':'.join([_NORM_LANDMARKS_TAG, _NORM_LANDMARKS_STREAM_NAME]),
|
3143 |
-
':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
|
3144 |
-
]
|
3145 |
-
|
3146 |
-
if options.output_face_blendshapes:
|
3147 |
-
output_streams.append(
|
3148 |
-
':'.join([_BLENDSHAPES_TAG, _BLENDSHAPES_STREAM_NAME])
|
3149 |
-
)
|
3150 |
-
if options.output_facial_transformation_matrixes:
|
3151 |
-
output_streams.append(
|
3152 |
-
':'.join([_FACE_GEOMETRY_TAG, _FACE_GEOMETRY_STREAM_NAME])
|
3153 |
-
)
|
3154 |
-
|
3155 |
-
task_info = _TaskInfo(
|
3156 |
-
task_graph=_TASK_GRAPH_NAME,
|
3157 |
-
input_streams=[
|
3158 |
-
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
|
3159 |
-
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
|
3160 |
-
],
|
3161 |
-
output_streams=output_streams,
|
3162 |
-
task_options=options,
|
3163 |
-
)
|
3164 |
-
return cls(
|
3165 |
-
task_info.generate_graph_config(
|
3166 |
-
enable_flow_limiting=options.running_mode
|
3167 |
-
== _RunningMode.LIVE_STREAM
|
3168 |
-
),
|
3169 |
-
options.running_mode,
|
3170 |
-
packets_callback if options.result_callback else None,
|
3171 |
-
)
|
3172 |
-
|
3173 |
-
def detect(
|
3174 |
-
self,
|
3175 |
-
image: image_module.Image,
|
3176 |
-
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
3177 |
-
) -> FaceLandmarkerResult:
|
3178 |
-
"""Performs face landmarks detection on the given image.
|
3179 |
-
|
3180 |
-
Only use this method when the FaceLandmarker is created with the image
|
3181 |
-
running mode.
|
3182 |
-
|
3183 |
-
The image can be of any size with format RGB or RGBA.
|
3184 |
-
TODO: Describes how the input image will be preprocessed after the yuv
|
3185 |
-
support is implemented.
|
3186 |
-
|
3187 |
-
Args:
|
3188 |
-
image: MediaPipe Image.
|
3189 |
-
image_processing_options: Options for image processing.
|
3190 |
-
|
3191 |
-
Returns:
|
3192 |
-
The face landmarks detection results.
|
3193 |
-
|
3194 |
-
Raises:
|
3195 |
-
ValueError: If any of the input arguments is invalid.
|
3196 |
-
RuntimeError: If face landmarker detection failed to run.
|
3197 |
-
"""
|
3198 |
-
|
3199 |
-
normalized_rect = self.convert_to_normalized_rect(
|
3200 |
-
image_processing_options, image, roi_allowed=False
|
3201 |
-
)
|
3202 |
-
output_packets = self._process_image_data({
|
3203 |
-
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image),
|
3204 |
-
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
3205 |
-
normalized_rect.to_pb2()
|
3206 |
-
),
|
3207 |
-
})
|
3208 |
-
|
3209 |
-
if output_packets[_NORM_LANDMARKS_STREAM_NAME].is_empty():
|
3210 |
-
return FaceLandmarkerResult([], [], [])
|
3211 |
-
|
3212 |
-
return _build_landmarker_result2(output_packets)
|
3213 |
-
|
3214 |
-
def detect_for_video(
|
3215 |
-
self,
|
3216 |
-
image: image_module.Image,
|
3217 |
-
timestamp_ms: int,
|
3218 |
-
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
3219 |
-
):
|
3220 |
-
"""Performs face landmarks detection on the provided video frame.
|
3221 |
-
|
3222 |
-
Only use this method when the FaceLandmarker is created with the video
|
3223 |
-
running mode.
|
3224 |
-
|
3225 |
-
Only use this method when the FaceLandmarker is created with the video
|
3226 |
-
running mode. It's required to provide the video frame's timestamp (in
|
3227 |
-
milliseconds) along with the video frame. The input timestamps should be
|
3228 |
-
monotonically increasing for adjacent calls of this method.
|
3229 |
-
|
3230 |
-
Args:
|
3231 |
-
image: MediaPipe Image.
|
3232 |
-
timestamp_ms: The timestamp of the input video frame in milliseconds.
|
3233 |
-
image_processing_options: Options for image processing.
|
3234 |
-
|
3235 |
-
Returns:
|
3236 |
-
The face landmarks detection results.
|
3237 |
-
|
3238 |
-
Raises:
|
3239 |
-
ValueError: If any of the input arguments is invalid.
|
3240 |
-
RuntimeError: If face landmarker detection failed to run.
|
3241 |
-
"""
|
3242 |
-
normalized_rect = self.convert_to_normalized_rect(
|
3243 |
-
image_processing_options, image, roi_allowed=False
|
3244 |
-
)
|
3245 |
-
output_packets = self._process_video_data({
|
3246 |
-
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
3247 |
-
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND
|
3248 |
-
),
|
3249 |
-
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
3250 |
-
normalized_rect.to_pb2()
|
3251 |
-
).at(timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
3252 |
-
})
|
3253 |
-
|
3254 |
-
if output_packets[_NORM_LANDMARKS_STREAM_NAME].is_empty():
|
3255 |
-
return FaceLandmarkerResult([], [], [])
|
3256 |
-
|
3257 |
-
return _build_landmarker_result2(output_packets)
|
3258 |
-
|
3259 |
-
def detect_async(
|
3260 |
-
self,
|
3261 |
-
image: image_module.Image,
|
3262 |
-
timestamp_ms: int,
|
3263 |
-
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
3264 |
-
) -> None:
|
3265 |
-
"""Sends live image data to perform face landmarks detection.
|
3266 |
-
|
3267 |
-
The results will be available via the "result_callback" provided in the
|
3268 |
-
FaceLandmarkerOptions. Only use this method when the FaceLandmarker is
|
3269 |
-
created with the live stream running mode.
|
3270 |
-
|
3271 |
-
Only use this method when the FaceLandmarker is created with the live
|
3272 |
-
stream running mode. The input timestamps should be monotonically increasing
|
3273 |
-
for adjacent calls of this method. This method will return immediately after
|
3274 |
-
the input image is accepted. The results will be available via the
|
3275 |
-
`result_callback` provided in the `FaceLandmarkerOptions`. The
|
3276 |
-
`detect_async` method is designed to process live stream data such as
|
3277 |
-
camera input. To lower the overall latency, face landmarker may drop the
|
3278 |
-
input images if needed. In other words, it's not guaranteed to have output
|
3279 |
-
per input image.
|
3280 |
-
|
3281 |
-
The `result_callback` provides:
|
3282 |
-
- The face landmarks detection results.
|
3283 |
-
- The input image that the face landmarker runs on.
|
3284 |
-
- The input timestamp in milliseconds.
|
3285 |
-
|
3286 |
-
Args:
|
3287 |
-
image: MediaPipe Image.
|
3288 |
-
timestamp_ms: The timestamp of the input image in milliseconds.
|
3289 |
-
image_processing_options: Options for image processing.
|
3290 |
-
|
3291 |
-
Raises:
|
3292 |
-
ValueError: If the current input timestamp is smaller than what the
|
3293 |
-
face landmarker has already processed.
|
3294 |
-
"""
|
3295 |
-
normalized_rect = self.convert_to_normalized_rect(
|
3296 |
-
image_processing_options, image, roi_allowed=False
|
3297 |
-
)
|
3298 |
-
self._send_live_stream_data({
|
3299 |
-
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
3300 |
-
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND
|
3301 |
-
),
|
3302 |
-
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
3303 |
-
normalized_rect.to_pb2()
|
3304 |
-
).at(timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
3305 |
-
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/utils/frame_interpolation.py
DELETED
@@ -1,69 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/dajes/frame-interpolation-pytorch
|
2 |
-
import os
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import bisect
|
7 |
-
import shutil
|
8 |
-
import pdb
|
9 |
-
from tqdm import tqdm
|
10 |
-
|
11 |
-
def init_frame_interpolation_model():
|
12 |
-
print("Initializing frame interpolation model")
|
13 |
-
checkpoint_name = os.path.join("./pretrained_model/film_net_fp16.pt")
|
14 |
-
|
15 |
-
model = torch.jit.load(checkpoint_name, map_location='cpu')
|
16 |
-
model.eval()
|
17 |
-
model = model.half()
|
18 |
-
model = model.to(device="cuda")
|
19 |
-
return model
|
20 |
-
|
21 |
-
|
22 |
-
def batch_images_interpolation_tool(input_tensor, model, inter_frames=1):
|
23 |
-
|
24 |
-
video_tensor = []
|
25 |
-
frame_num = input_tensor.shape[2] # bs, channel, frame, height, width
|
26 |
-
|
27 |
-
for idx in tqdm(range(frame_num-1)):
|
28 |
-
image1 = input_tensor[:,:,idx]
|
29 |
-
image2 = input_tensor[:,:,idx+1]
|
30 |
-
|
31 |
-
results = [image1, image2]
|
32 |
-
|
33 |
-
inter_frames = int(inter_frames)
|
34 |
-
idxes = [0, inter_frames + 1]
|
35 |
-
remains = list(range(1, inter_frames + 1))
|
36 |
-
|
37 |
-
splits = torch.linspace(0, 1, inter_frames + 2)
|
38 |
-
|
39 |
-
for _ in range(len(remains)):
|
40 |
-
starts = splits[idxes[:-1]]
|
41 |
-
ends = splits[idxes[1:]]
|
42 |
-
distances = ((splits[None, remains] - starts[:, None]) / (ends[:, None] - starts[:, None]) - .5).abs()
|
43 |
-
matrix = torch.argmin(distances).item()
|
44 |
-
start_i, step = np.unravel_index(matrix, distances.shape)
|
45 |
-
end_i = start_i + 1
|
46 |
-
|
47 |
-
x0 = results[start_i]
|
48 |
-
x1 = results[end_i]
|
49 |
-
|
50 |
-
x0 = x0.half()
|
51 |
-
x1 = x1.half()
|
52 |
-
x0 = x0.cuda()
|
53 |
-
x1 = x1.cuda()
|
54 |
-
|
55 |
-
dt = x0.new_full((1, 1), (splits[remains[step]] - splits[idxes[start_i]])) / (splits[idxes[end_i]] - splits[idxes[start_i]])
|
56 |
-
|
57 |
-
with torch.no_grad():
|
58 |
-
prediction = model(x0, x1, dt)
|
59 |
-
insert_position = bisect.bisect_left(idxes, remains[step])
|
60 |
-
idxes.insert(insert_position, remains[step])
|
61 |
-
results.insert(insert_position, prediction.clamp(0, 1).cpu().float())
|
62 |
-
del remains[step]
|
63 |
-
|
64 |
-
for sub_idx in range(len(results)-1):
|
65 |
-
video_tensor.append(results[sub_idx].unsqueeze(2))
|
66 |
-
|
67 |
-
video_tensor.append(input_tensor[:,:,-1].unsqueeze(2))
|
68 |
-
video_tensor = torch.cat(video_tensor, dim=2)
|
69 |
-
return video_tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/utils/mp_models/blaze_face_short_range.tflite
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b4578f35940bf5a1a655214a1cce5cab13eba73c1297cd78e1a04c2380b0152f
|
3 |
-
size 229746
|
|
|
|
|
|
|
|
aniportrait/src/utils/mp_models/face_landmarker_v2_with_blendshapes.task
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:64184e229b263107bc2b804c6625db1341ff2bb731874b0bcc2fe6544e0bc9ff
|
3 |
-
size 3758596
|
|
|
|
|
|
|
|
aniportrait/src/utils/mp_models/pose_landmarker_heavy.task
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:64437af838a65d18e5ba7a0d39b465540069bc8aae8308de3e318aad31fcbc7b
|
3 |
-
size 30664242
|
|
|
|
|
|
|
|
aniportrait/src/utils/mp_utils.py
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import cv2
|
4 |
-
import time
|
5 |
-
from tqdm import tqdm
|
6 |
-
import multiprocessing
|
7 |
-
import glob
|
8 |
-
|
9 |
-
import mediapipe as mp
|
10 |
-
from mediapipe import solutions
|
11 |
-
from mediapipe.framework.formats import landmark_pb2
|
12 |
-
from mediapipe.tasks import python
|
13 |
-
from mediapipe.tasks.python import vision
|
14 |
-
from . import face_landmark
|
15 |
-
|
16 |
-
CUR_DIR = os.path.dirname(__file__)
|
17 |
-
|
18 |
-
|
19 |
-
class LMKExtractor():
|
20 |
-
def __init__(self, FPS=25):
|
21 |
-
# Create an FaceLandmarker object.
|
22 |
-
self.mode = mp.tasks.vision.FaceDetectorOptions.running_mode.IMAGE
|
23 |
-
base_options = python.BaseOptions(model_asset_path=os.path.join(CUR_DIR, 'mp_models/face_landmarker_v2_with_blendshapes.task'))
|
24 |
-
base_options.delegate = mp.tasks.BaseOptions.Delegate.CPU
|
25 |
-
options = vision.FaceLandmarkerOptions(base_options=base_options,
|
26 |
-
running_mode=self.mode,
|
27 |
-
output_face_blendshapes=True,
|
28 |
-
output_facial_transformation_matrixes=True,
|
29 |
-
num_faces=1)
|
30 |
-
self.detector = face_landmark.FaceLandmarker.create_from_options(options)
|
31 |
-
self.last_ts = 0
|
32 |
-
self.frame_ms = int(1000 / FPS)
|
33 |
-
|
34 |
-
det_base_options = python.BaseOptions(model_asset_path=os.path.join(CUR_DIR, 'mp_models/blaze_face_short_range.tflite'))
|
35 |
-
det_options = vision.FaceDetectorOptions(base_options=det_base_options)
|
36 |
-
self.det_detector = vision.FaceDetector.create_from_options(det_options)
|
37 |
-
|
38 |
-
|
39 |
-
def __call__(self, img):
|
40 |
-
frame = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
41 |
-
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)
|
42 |
-
t0 = time.time()
|
43 |
-
if self.mode == mp.tasks.vision.FaceDetectorOptions.running_mode.VIDEO:
|
44 |
-
det_result = self.det_detector.detect(image)
|
45 |
-
if len(det_result.detections) != 1:
|
46 |
-
return None
|
47 |
-
self.last_ts += self.frame_ms
|
48 |
-
try:
|
49 |
-
detection_result, mesh3d = self.detector.detect_for_video(image, timestamp_ms=self.last_ts)
|
50 |
-
except:
|
51 |
-
return None
|
52 |
-
elif self.mode == mp.tasks.vision.FaceDetectorOptions.running_mode.IMAGE:
|
53 |
-
# det_result = self.det_detector.detect(image)
|
54 |
-
|
55 |
-
# if len(det_result.detections) != 1:
|
56 |
-
# return None
|
57 |
-
try:
|
58 |
-
detection_result, mesh3d = self.detector.detect(image)
|
59 |
-
except:
|
60 |
-
return None
|
61 |
-
|
62 |
-
|
63 |
-
bs_list = detection_result.face_blendshapes
|
64 |
-
if len(bs_list) == 1:
|
65 |
-
bs = bs_list[0]
|
66 |
-
bs_values = []
|
67 |
-
for index in range(len(bs)):
|
68 |
-
bs_values.append(bs[index].score)
|
69 |
-
bs_values = bs_values[1:] # remove neutral
|
70 |
-
trans_mat = detection_result.facial_transformation_matrixes[0]
|
71 |
-
face_landmarks_list = detection_result.face_landmarks
|
72 |
-
face_landmarks = face_landmarks_list[0]
|
73 |
-
lmks = []
|
74 |
-
for index in range(len(face_landmarks)):
|
75 |
-
x = face_landmarks[index].x
|
76 |
-
y = face_landmarks[index].y
|
77 |
-
z = face_landmarks[index].z
|
78 |
-
lmks.append([x, y, z])
|
79 |
-
lmks = np.array(lmks)
|
80 |
-
|
81 |
-
lmks3d = np.array(mesh3d.vertex_buffer)
|
82 |
-
lmks3d = lmks3d.reshape(-1, 5)[:, :3]
|
83 |
-
mp_tris = np.array(mesh3d.index_buffer).reshape(-1, 3) + 1
|
84 |
-
|
85 |
-
return {
|
86 |
-
"lmks": lmks,
|
87 |
-
'lmks3d': lmks3d,
|
88 |
-
"trans_mat": trans_mat,
|
89 |
-
'faces': mp_tris,
|
90 |
-
"bs": bs_values
|
91 |
-
}
|
92 |
-
else:
|
93 |
-
# print('multiple faces in the image: {}'.format(img_path))
|
94 |
-
return None
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/utils/pose_util.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
from scipy.spatial.transform import Rotation as R
|
5 |
-
|
6 |
-
|
7 |
-
def create_perspective_matrix(aspect_ratio):
|
8 |
-
kDegreesToRadians = np.pi / 180.
|
9 |
-
near = 1
|
10 |
-
far = 10000
|
11 |
-
perspective_matrix = np.zeros(16, dtype=np.float32)
|
12 |
-
|
13 |
-
# Standard perspective projection matrix calculations.
|
14 |
-
f = 1.0 / np.tan(kDegreesToRadians * 63 / 2.)
|
15 |
-
|
16 |
-
denom = 1.0 / (near - far)
|
17 |
-
perspective_matrix[0] = f / aspect_ratio
|
18 |
-
perspective_matrix[5] = f
|
19 |
-
perspective_matrix[10] = (near + far) * denom
|
20 |
-
perspective_matrix[11] = -1.
|
21 |
-
perspective_matrix[14] = 1. * far * near * denom
|
22 |
-
|
23 |
-
# If the environment's origin point location is in the top left corner,
|
24 |
-
# then skip additional flip along Y-axis is required to render correctly.
|
25 |
-
|
26 |
-
perspective_matrix[5] *= -1.
|
27 |
-
return perspective_matrix
|
28 |
-
|
29 |
-
|
30 |
-
def project_points(points_3d, transformation_matrix, pose_vectors, image_shape):
|
31 |
-
P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T
|
32 |
-
L, N, _ = points_3d.shape
|
33 |
-
projected_points = np.zeros((L, N, 2))
|
34 |
-
for i in range(L):
|
35 |
-
points_3d_frame = points_3d[i]
|
36 |
-
ones = np.ones((points_3d_frame.shape[0], 1))
|
37 |
-
points_3d_homogeneous = np.hstack([points_3d_frame, ones])
|
38 |
-
transformed_points = points_3d_homogeneous @ (transformation_matrix @ euler_and_translation_to_matrix(pose_vectors[i][:3], pose_vectors[i][3:])).T @ P
|
39 |
-
projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1
|
40 |
-
projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1]
|
41 |
-
projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0]
|
42 |
-
projected_points[i] = projected_points_frame
|
43 |
-
return projected_points
|
44 |
-
|
45 |
-
|
46 |
-
def project_points_with_trans(points_3d, transformation_matrix, image_shape):
|
47 |
-
P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T
|
48 |
-
L, N, _ = points_3d.shape
|
49 |
-
projected_points = np.zeros((L, N, 2))
|
50 |
-
for i in range(L):
|
51 |
-
points_3d_frame = points_3d[i]
|
52 |
-
ones = np.ones((points_3d_frame.shape[0], 1))
|
53 |
-
points_3d_homogeneous = np.hstack([points_3d_frame, ones])
|
54 |
-
transformed_points = points_3d_homogeneous @ transformation_matrix[i].T @ P
|
55 |
-
projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1
|
56 |
-
projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1]
|
57 |
-
projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0]
|
58 |
-
projected_points[i] = projected_points_frame
|
59 |
-
return projected_points
|
60 |
-
|
61 |
-
|
62 |
-
def euler_and_translation_to_matrix(euler_angles, translation_vector):
|
63 |
-
rotation = R.from_euler('xyz', euler_angles, degrees=True)
|
64 |
-
rotation_matrix = rotation.as_matrix()
|
65 |
-
|
66 |
-
matrix = np.eye(4)
|
67 |
-
matrix[:3, :3] = rotation_matrix
|
68 |
-
matrix[:3, 3] = translation_vector
|
69 |
-
|
70 |
-
return matrix
|
71 |
-
|
72 |
-
|
73 |
-
def matrix_to_euler_and_translation(matrix):
|
74 |
-
rotation_matrix = matrix[:3, :3]
|
75 |
-
translation_vector = matrix[:3, 3]
|
76 |
-
rotation = R.from_matrix(rotation_matrix)
|
77 |
-
euler_angles = rotation.as_euler('xyz', degrees=True)
|
78 |
-
return euler_angles, translation_vector
|
79 |
-
|
80 |
-
|
81 |
-
def smooth_pose_seq(pose_seq, window_size=5):
|
82 |
-
smoothed_pose_seq = np.zeros_like(pose_seq)
|
83 |
-
|
84 |
-
for i in range(len(pose_seq)):
|
85 |
-
start = max(0, i - window_size // 2)
|
86 |
-
end = min(len(pose_seq), i + window_size // 2 + 1)
|
87 |
-
smoothed_pose_seq[i] = np.mean(pose_seq[start:end], axis=0)
|
88 |
-
|
89 |
-
return smoothed_pose_seq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aniportrait/src/utils/util.py
DELETED
@@ -1,181 +0,0 @@
|
|
1 |
-
import importlib
|
2 |
-
import os
|
3 |
-
import os.path as osp
|
4 |
-
import shutil
|
5 |
-
import sys
|
6 |
-
import cv2
|
7 |
-
from pathlib import Path
|
8 |
-
|
9 |
-
import av
|
10 |
-
import numpy as np
|
11 |
-
import torch
|
12 |
-
import torchvision
|
13 |
-
from einops import rearrange
|
14 |
-
from PIL import Image
|
15 |
-
|
16 |
-
|
17 |
-
def seed_everything(seed):
|
18 |
-
import random
|
19 |
-
|
20 |
-
import numpy as np
|
21 |
-
|
22 |
-
torch.manual_seed(seed)
|
23 |
-
torch.cuda.manual_seed_all(seed)
|
24 |
-
np.random.seed(seed % (2**32))
|
25 |
-
random.seed(seed)
|
26 |
-
|
27 |
-
|
28 |
-
def import_filename(filename):
|
29 |
-
spec = importlib.util.spec_from_file_location("mymodule", filename)
|
30 |
-
module = importlib.util.module_from_spec(spec)
|
31 |
-
sys.modules[spec.name] = module
|
32 |
-
spec.loader.exec_module(module)
|
33 |
-
return module
|
34 |
-
|
35 |
-
|
36 |
-
def delete_additional_ckpt(base_path, num_keep):
|
37 |
-
dirs = []
|
38 |
-
for d in os.listdir(base_path):
|
39 |
-
if d.startswith("checkpoint-"):
|
40 |
-
dirs.append(d)
|
41 |
-
num_tot = len(dirs)
|
42 |
-
if num_tot <= num_keep:
|
43 |
-
return
|
44 |
-
# ensure ckpt is sorted and delete the ealier!
|
45 |
-
del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep]
|
46 |
-
for d in del_dirs:
|
47 |
-
path_to_dir = osp.join(base_path, d)
|
48 |
-
if osp.exists(path_to_dir):
|
49 |
-
shutil.rmtree(path_to_dir)
|
50 |
-
|
51 |
-
|
52 |
-
def save_videos_from_pil(pil_images, path, fps=8):
|
53 |
-
import av
|
54 |
-
|
55 |
-
save_fmt = Path(path).suffix
|
56 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
57 |
-
width, height = pil_images[0].size
|
58 |
-
|
59 |
-
if save_fmt == ".mp4":
|
60 |
-
codec = "libx264"
|
61 |
-
container = av.open(path, "w")
|
62 |
-
stream = container.add_stream(codec, rate=fps)
|
63 |
-
|
64 |
-
stream.width = width
|
65 |
-
stream.height = height
|
66 |
-
|
67 |
-
for pil_image in pil_images:
|
68 |
-
# pil_image = Image.fromarray(image_arr).convert("RGB")
|
69 |
-
av_frame = av.VideoFrame.from_image(pil_image)
|
70 |
-
container.mux(stream.encode(av_frame))
|
71 |
-
container.mux(stream.encode())
|
72 |
-
container.close()
|
73 |
-
|
74 |
-
elif save_fmt == ".gif":
|
75 |
-
pil_images[0].save(
|
76 |
-
fp=path,
|
77 |
-
format="GIF",
|
78 |
-
append_images=pil_images[1:],
|
79 |
-
save_all=True,
|
80 |
-
duration=(1 / fps * 1000),
|
81 |
-
loop=0,
|
82 |
-
)
|
83 |
-
else:
|
84 |
-
raise ValueError("Unsupported file type. Use .mp4 or .gif.")
|
85 |
-
|
86 |
-
|
87 |
-
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
|
88 |
-
videos = rearrange(videos, "b c t h w -> t b c h w")
|
89 |
-
height, width = videos.shape[-2:]
|
90 |
-
outputs = []
|
91 |
-
|
92 |
-
for x in videos:
|
93 |
-
x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
|
94 |
-
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
|
95 |
-
if rescale:
|
96 |
-
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
97 |
-
x = (x * 255).numpy().astype(np.uint8)
|
98 |
-
x = Image.fromarray(x)
|
99 |
-
|
100 |
-
outputs.append(x)
|
101 |
-
|
102 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
103 |
-
|
104 |
-
save_videos_from_pil(outputs, path, fps)
|
105 |
-
|
106 |
-
|
107 |
-
def read_frames(video_path):
|
108 |
-
container = av.open(video_path)
|
109 |
-
|
110 |
-
video_stream = next(s for s in container.streams if s.type == "video")
|
111 |
-
frames = []
|
112 |
-
for packet in container.demux(video_stream):
|
113 |
-
for frame in packet.decode():
|
114 |
-
image = Image.frombytes(
|
115 |
-
"RGB",
|
116 |
-
(frame.width, frame.height),
|
117 |
-
frame.to_rgb().to_ndarray(),
|
118 |
-
)
|
119 |
-
frames.append(image)
|
120 |
-
|
121 |
-
return frames
|
122 |
-
|
123 |
-
|
124 |
-
def get_fps(video_path):
|
125 |
-
container = av.open(video_path)
|
126 |
-
video_stream = next(s for s in container.streams if s.type == "video")
|
127 |
-
fps = video_stream.average_rate
|
128 |
-
container.close()
|
129 |
-
return fps
|
130 |
-
|
131 |
-
def crop_face(img, lmk_extractor, expand=1.5):
|
132 |
-
result = lmk_extractor(img) # cv2 BGR
|
133 |
-
|
134 |
-
if result is None:
|
135 |
-
return None
|
136 |
-
|
137 |
-
H, W, _ = img.shape
|
138 |
-
lmks = result['lmks']
|
139 |
-
lmks[:, 0] *= W
|
140 |
-
lmks[:, 1] *= H
|
141 |
-
|
142 |
-
x_min = np.min(lmks[:, 0])
|
143 |
-
x_max = np.max(lmks[:, 0])
|
144 |
-
y_min = np.min(lmks[:, 1])
|
145 |
-
y_max = np.max(lmks[:, 1])
|
146 |
-
|
147 |
-
width = x_max - x_min
|
148 |
-
height = y_max - y_min
|
149 |
-
|
150 |
-
if width*height >= W*H*0.15:
|
151 |
-
if W == H:
|
152 |
-
return img
|
153 |
-
size = min(H, W)
|
154 |
-
offset = int((max(H, W) - size)/2)
|
155 |
-
if size == H:
|
156 |
-
return img[:, offset:-offset]
|
157 |
-
else:
|
158 |
-
return img[offset:-offset, :]
|
159 |
-
else:
|
160 |
-
center_x = x_min + width / 2
|
161 |
-
center_y = y_min + height / 2
|
162 |
-
|
163 |
-
width *= expand
|
164 |
-
height *= expand
|
165 |
-
|
166 |
-
size = max(width, height)
|
167 |
-
|
168 |
-
x_min = int(center_x - size / 2)
|
169 |
-
x_max = int(center_x + size / 2)
|
170 |
-
y_min = int(center_y - size / 2)
|
171 |
-
y_max = int(center_y + size / 2)
|
172 |
-
|
173 |
-
top = max(0, -y_min)
|
174 |
-
bottom = max(0, y_max - img.shape[0])
|
175 |
-
left = max(0, -x_min)
|
176 |
-
right = max(0, x_max - img.shape[1])
|
177 |
-
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0)
|
178 |
-
|
179 |
-
cropped_img = img[y_min + top:y_max + top, x_min + left:x_max + left]
|
180 |
-
|
181 |
-
return cropped_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ckpt_tree.md
DELETED
@@ -1,108 +0,0 @@
|
|
1 |
-
|
2 |
-
```
|
3 |
-
|-- ckpts
|
4 |
-
| |-- aniportrait
|
5 |
-
| | `-- motion_module.pth
|
6 |
-
| | `-- audio2mesh.pt
|
7 |
-
| | `-- film_net_fp16.pt
|
8 |
-
| | |-- sd-vae-ft-mse
|
9 |
-
| | | `-- diffusion_pytorch_model.safetensors
|
10 |
-
| | | `-- config.json
|
11 |
-
| | | `-- diffusion_pytorch_model.bin
|
12 |
-
| | `-- denoising_unet.pth
|
13 |
-
| | `-- audio2pose.pt
|
14 |
-
| | `-- pose_guider.pth
|
15 |
-
| | |-- sd-image-variations-diffusers
|
16 |
-
| | | `-- v1-montage.jpg
|
17 |
-
| | | |-- scheduler
|
18 |
-
| | | | `-- scheduler_config.json
|
19 |
-
| | | `-- README.md
|
20 |
-
| | | `-- model_index.json
|
21 |
-
| | | |-- unet
|
22 |
-
| | | | `-- config.json
|
23 |
-
| | | | `-- diffusion_pytorch_model.bin
|
24 |
-
| | | |-- feature_extractor
|
25 |
-
| | | | `-- preprocessor_config.json
|
26 |
-
| | | `-- v2-montage.jpg
|
27 |
-
| | | |-- vae
|
28 |
-
| | | | `-- config.json
|
29 |
-
| | | | `-- diffusion_pytorch_model.bin
|
30 |
-
| | | `-- alias-montage.jpg
|
31 |
-
| | | `-- inputs.jpg
|
32 |
-
| | | |-- safety_checker
|
33 |
-
| | | | `-- pytorch_model.bin
|
34 |
-
| | | | `-- config.json
|
35 |
-
| | | `-- earring.jpg
|
36 |
-
| | | `-- default-montage.jpg
|
37 |
-
| | |-- image_encoder
|
38 |
-
| | | `-- pytorch_model.bin
|
39 |
-
| | | `-- config.json
|
40 |
-
| | |-- stable-diffusion-v1-5
|
41 |
-
| | | `-- model_index.json
|
42 |
-
| | | `-- v1-inference.yaml
|
43 |
-
| | | |-- unet
|
44 |
-
| | | | `-- config.json
|
45 |
-
| | | | `-- diffusion_pytorch_model.bin
|
46 |
-
| | | |-- feature_extractor
|
47 |
-
| | | | `-- preprocessor_config.json
|
48 |
-
| | `-- reference_unet.pth
|
49 |
-
| | |-- wav2vec2-base-960h
|
50 |
-
| | | `-- pytorch_model.bin
|
51 |
-
| | | `-- README.md
|
52 |
-
| | | `-- vocab.json
|
53 |
-
| | | `-- config.json
|
54 |
-
| | | `-- tf_model.h5
|
55 |
-
| | | `-- tokenizer_config.json
|
56 |
-
| | | `-- model.safetensors
|
57 |
-
| | | `-- special_tokens_map.json
|
58 |
-
| | | `-- preprocessor_config.json
|
59 |
-
| | | `-- feature_extractor_config.json
|
60 |
-
| |-- mofa
|
61 |
-
| | |-- traj_controlnet
|
62 |
-
| | | `-- diffusion_pytorch_model.safetensors
|
63 |
-
| | | `-- config.json
|
64 |
-
| | |-- stable-video-diffusion-img2vid-xt-1-1
|
65 |
-
| | | |-- scheduler
|
66 |
-
| | | | `-- scheduler_config.json
|
67 |
-
| | | `-- README.md
|
68 |
-
| | | `-- model_index.json
|
69 |
-
| | | |-- unet
|
70 |
-
| | | | `-- diffusion_pytorch_model.fp16.safetensors
|
71 |
-
| | | | `-- config.json
|
72 |
-
| | | |-- feature_extractor
|
73 |
-
| | | | `-- preprocessor_config.json
|
74 |
-
| | | |-- vae
|
75 |
-
| | | | `-- diffusion_pytorch_model.fp16.safetensors
|
76 |
-
| | | | `-- config.json
|
77 |
-
| | | `-- LICENSE
|
78 |
-
| | | `-- svd11.webp
|
79 |
-
| | | |-- image_encoder
|
80 |
-
| | | | `-- config.json
|
81 |
-
| | | | `-- model.fp16.safetensors
|
82 |
-
| | |-- ldmk_controlnet
|
83 |
-
| | | `-- diffusion_pytorch_model.safetensors
|
84 |
-
| | | `-- config.json
|
85 |
-
| |-- sad_talker
|
86 |
-
| | `-- SadTalker_V0.0.2_256.safetensors
|
87 |
-
| | |-- hub
|
88 |
-
| | `-- mapping_00229-model.pth.tar
|
89 |
-
| | |-- BFM_Fitting
|
90 |
-
| | | `-- select_vertex_id.mat
|
91 |
-
| | | `-- facemodel_info.mat
|
92 |
-
| | | `-- BFM_exp_idx.mat
|
93 |
-
| | | `-- BFM_model_front.mat
|
94 |
-
| | | `-- 01_MorphableModel.mat
|
95 |
-
| | | `-- similarity_Lm3D_all.mat
|
96 |
-
| | | `-- BFM_front_idx.mat
|
97 |
-
| | | `-- Exp_Pca.bin
|
98 |
-
| | | `-- std_exp.txt
|
99 |
-
| | `-- SadTalker_V0.0.2_512.safetensors
|
100 |
-
| | `-- similarity_Lm3D_all.mat
|
101 |
-
| | `-- epoch_00190_iteration_000400000_checkpoint.pt
|
102 |
-
| | `-- mapping_00109-model.pth.tar
|
103 |
-
| |-- gfpgan
|
104 |
-
| | `-- alignment_WFLW_4HG.pth
|
105 |
-
| | `-- parsing_parsenet.pth
|
106 |
-
| | `-- detection_Resnet50_Final.pth
|
107 |
-
|
108 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
expression.mat
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:93e9d69eb46e866ed5cbb569ed2bdb3813254720fb0cb745d5b56181faf9aec5
|
3 |
-
size 1456
|
|
|
|
|
|
|
|
models/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
models/cmp/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
models/cmp/experiments/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/config.yaml
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
arch: CMP
|
3 |
-
total_iter: 140000
|
4 |
-
lr_steps: [80000, 120000]
|
5 |
-
lr_mults: [0.1, 0.1]
|
6 |
-
lr: 0.1
|
7 |
-
optim: SGD
|
8 |
-
warmup_lr: []
|
9 |
-
warmup_steps: []
|
10 |
-
module:
|
11 |
-
arch: CMP
|
12 |
-
image_encoder: alexnet_fcn_32x
|
13 |
-
sparse_encoder: shallownet32x
|
14 |
-
flow_decoder: MotionDecoderPlain
|
15 |
-
skip_layer: False
|
16 |
-
img_enc_dim: 256
|
17 |
-
sparse_enc_dim: 16
|
18 |
-
output_dim: 198
|
19 |
-
decoder_combo: [1,2,4]
|
20 |
-
pretrained_image_encoder: False
|
21 |
-
flow_criterion: "DiscreteLoss"
|
22 |
-
nbins: 99
|
23 |
-
fmax: 50
|
24 |
-
data:
|
25 |
-
workers: 2
|
26 |
-
batch_size: 12
|
27 |
-
batch_size_test: 1
|
28 |
-
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
-
data_div: [58.395, 57.12, 57.375]
|
30 |
-
short_size: 416
|
31 |
-
crop_size: [384, 384]
|
32 |
-
sample_strategy: ['grid', 'watershed']
|
33 |
-
sample_bg_ratio: 0.000025
|
34 |
-
nms_ks: 81
|
35 |
-
max_num_guide: 150
|
36 |
-
|
37 |
-
flow_file_type: "jpg"
|
38 |
-
image_flow_aug:
|
39 |
-
flip: False
|
40 |
-
flow_aug:
|
41 |
-
reverse: False
|
42 |
-
scale: False
|
43 |
-
rotate: False
|
44 |
-
train_source:
|
45 |
-
- data/yfcc/lists/train.txt
|
46 |
-
- data/youtube9000/lists/train.txt
|
47 |
-
val_source:
|
48 |
-
- data/yfcc/lists/val.txt
|
49 |
-
memcached: False
|
50 |
-
trainer:
|
51 |
-
initial_val: True
|
52 |
-
print_freq: 100
|
53 |
-
val_freq: 10000
|
54 |
-
save_freq: 10000
|
55 |
-
val_iter: -1
|
56 |
-
val_disp_start_iter: 0
|
57 |
-
val_disp_end_iter: 16
|
58 |
-
loss_record: ['loss_flow']
|
59 |
-
tensorboard: False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/resume.sh
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
-
--nnodes=2 --node_rank=$1 \
|
5 |
-
--master_addr="192.168.1.1" main.py \
|
6 |
-
--config $work_path/config.yaml --launcher pytorch \
|
7 |
-
--load-iter 10000 \
|
8 |
-
--resume
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/resume_slurm.sh
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
partition=$1
|
4 |
-
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
-
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
-
python -u main.py \
|
7 |
-
--config $work_path/config.yaml --launcher slurm \
|
8 |
-
--load-iter 10000 \
|
9 |
-
--resume
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/train.sh
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
-
--nnodes=2 --node_rank=$1 \
|
5 |
-
--master_addr="192.168.1.1" main.py \
|
6 |
-
--config $work_path/config.yaml --launcher pytorch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/train_slurm.sh
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
partition=$1
|
4 |
-
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
-
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
-
python -u main.py \
|
7 |
-
--config $work_path/config.yaml --launcher slurm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/validate.sh
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
-
--config $work_path/config.yaml --launcher pytorch \
|
5 |
-
--load-iter 70000 \
|
6 |
-
--validate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc+youtube_voc_16gpu_140k/validate_slurm.sh
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
partition=$1
|
4 |
-
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
-
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
-
python -u main.py --config $work_path/config.yaml --launcher slurm \
|
7 |
-
--load-iter 70000 \
|
8 |
-
--validate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/config.yaml
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
arch: CMP
|
3 |
-
total_iter: 70000
|
4 |
-
lr_steps: [40000, 60000]
|
5 |
-
lr_mults: [0.1, 0.1]
|
6 |
-
lr: 0.1
|
7 |
-
optim: SGD
|
8 |
-
warmup_lr: []
|
9 |
-
warmup_steps: []
|
10 |
-
module:
|
11 |
-
arch: CMP
|
12 |
-
image_encoder: alexnet_fcn_32x
|
13 |
-
sparse_encoder: shallownet32x
|
14 |
-
flow_decoder: MotionDecoderPlain
|
15 |
-
skip_layer: False
|
16 |
-
img_enc_dim: 256
|
17 |
-
sparse_enc_dim: 16
|
18 |
-
output_dim: 198
|
19 |
-
decoder_combo: [1,2,4]
|
20 |
-
pretrained_image_encoder: False
|
21 |
-
flow_criterion: "DiscreteLoss"
|
22 |
-
nbins: 99
|
23 |
-
fmax: 50
|
24 |
-
data:
|
25 |
-
workers: 2
|
26 |
-
batch_size: 12
|
27 |
-
batch_size_test: 1
|
28 |
-
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
-
data_div: [58.395, 57.12, 57.375]
|
30 |
-
short_size: 416
|
31 |
-
crop_size: [384, 384]
|
32 |
-
sample_strategy: ['grid', 'watershed']
|
33 |
-
sample_bg_ratio: 0.00015625
|
34 |
-
nms_ks: 41
|
35 |
-
max_num_guide: 150
|
36 |
-
|
37 |
-
flow_file_type: "jpg"
|
38 |
-
image_flow_aug:
|
39 |
-
flip: False
|
40 |
-
flow_aug:
|
41 |
-
reverse: False
|
42 |
-
scale: False
|
43 |
-
rotate: False
|
44 |
-
train_source:
|
45 |
-
- data/yfcc/lists/train.txt
|
46 |
-
val_source:
|
47 |
-
- data/yfcc/lists/val.txt
|
48 |
-
memcached: False
|
49 |
-
trainer:
|
50 |
-
initial_val: True
|
51 |
-
print_freq: 100
|
52 |
-
val_freq: 10000
|
53 |
-
save_freq: 10000
|
54 |
-
val_iter: -1
|
55 |
-
val_disp_start_iter: 0
|
56 |
-
val_disp_end_iter: 16
|
57 |
-
loss_record: ['loss_flow']
|
58 |
-
tensorboard: False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/resume.sh
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
-
--nnodes=2 --node_rank=$1 \
|
5 |
-
--master_addr="192.168.1.1" main.py \
|
6 |
-
--config $work_path/config.yaml --launcher pytorch \
|
7 |
-
--load-iter 10000 \
|
8 |
-
--resume
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/resume_slurm.sh
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
partition=$1
|
4 |
-
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
-
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
-
python -u main.py \
|
7 |
-
--config $work_path/config.yaml --launcher slurm \
|
8 |
-
--load-iter 10000 \
|
9 |
-
--resume
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/train.sh
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
-
--nnodes=2 --node_rank=$1 \
|
5 |
-
--master_addr="192.168.1.1" main.py \
|
6 |
-
--config $work_path/config.yaml --launcher pytorch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/train_slurm.sh
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
partition=$1
|
4 |
-
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n16 \
|
5 |
-
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
-
python -u main.py \
|
7 |
-
--config $work_path/config.yaml --launcher slurm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/validate.sh
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
-
--config $work_path/config.yaml --launcher pytorch \
|
5 |
-
--load-iter 70000 \
|
6 |
-
--validate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_16gpu_70k/validate_slurm.sh
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
partition=$1
|
4 |
-
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
-
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
-
python -u main.py --config $work_path/config.yaml --launcher slurm \
|
7 |
-
--load-iter 70000 \
|
8 |
-
--validate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/config.yaml
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
arch: CMP
|
3 |
-
total_iter: 140000
|
4 |
-
lr_steps: [80000, 120000]
|
5 |
-
lr_mults: [0.1, 0.1]
|
6 |
-
lr: 0.1
|
7 |
-
optim: SGD
|
8 |
-
warmup_lr: []
|
9 |
-
warmup_steps: []
|
10 |
-
module:
|
11 |
-
arch: CMP
|
12 |
-
image_encoder: alexnet_fcn_32x
|
13 |
-
sparse_encoder: shallownet32x
|
14 |
-
flow_decoder: MotionDecoderPlain
|
15 |
-
skip_layer: False
|
16 |
-
img_enc_dim: 256
|
17 |
-
sparse_enc_dim: 16
|
18 |
-
output_dim: 198
|
19 |
-
decoder_combo: [1,2,4]
|
20 |
-
pretrained_image_encoder: False
|
21 |
-
flow_criterion: "DiscreteLoss"
|
22 |
-
nbins: 99
|
23 |
-
fmax: 50
|
24 |
-
data:
|
25 |
-
workers: 2
|
26 |
-
batch_size: 12
|
27 |
-
batch_size_test: 1
|
28 |
-
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
-
data_div: [58.395, 57.12, 57.375]
|
30 |
-
short_size: 416
|
31 |
-
crop_size: [384, 384]
|
32 |
-
sample_strategy: ['grid', 'watershed']
|
33 |
-
sample_bg_ratio: 0.00015625
|
34 |
-
nms_ks: 41
|
35 |
-
max_num_guide: 150
|
36 |
-
|
37 |
-
flow_file_type: "jpg"
|
38 |
-
image_flow_aug:
|
39 |
-
flip: False
|
40 |
-
flow_aug:
|
41 |
-
reverse: False
|
42 |
-
scale: False
|
43 |
-
rotate: False
|
44 |
-
train_source:
|
45 |
-
- data/yfcc/lists/train.txt
|
46 |
-
val_source:
|
47 |
-
- data/yfcc/lists/val.txt
|
48 |
-
memcached: False
|
49 |
-
trainer:
|
50 |
-
initial_val: True
|
51 |
-
print_freq: 100
|
52 |
-
val_freq: 10000
|
53 |
-
save_freq: 10000
|
54 |
-
val_iter: -1
|
55 |
-
val_disp_start_iter: 0
|
56 |
-
val_disp_end_iter: 16
|
57 |
-
loss_record: ['loss_flow']
|
58 |
-
tensorboard: False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/resume.sh
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
-
--config $work_path/config.yaml --launcher pytorch \
|
5 |
-
--load-iter 10000 \
|
6 |
-
--resume
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/resume_slurm.sh
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
partition=$1
|
4 |
-
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
-
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
-
python -u main.py \
|
7 |
-
--config $work_path/config.yaml --launcher slurm \
|
8 |
-
--load-iter 10000 \
|
9 |
-
--resume
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/train.sh
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
-
--config $work_path/config.yaml --launcher pytorch
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/train_slurm.sh
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
partition=$1
|
4 |
-
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
-
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
-
python -u main.py \
|
7 |
-
--config $work_path/config.yaml --launcher slurm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/validate.sh
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 main.py \
|
4 |
-
--config $work_path/config.yaml --launcher pytorch \
|
5 |
-
--load-iter 70000 \
|
6 |
-
--validate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/alexnet_yfcc_voc_8gpu_140k/validate_slurm.sh
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
partition=$1
|
4 |
-
GLOG_vmodule=MemcachedClient=-1 srun --mpi=pmi2 -p $partition -n8 \
|
5 |
-
--gres=gpu:8 --ntasks-per-node=8 \
|
6 |
-
python -u main.py --config $work_path/config.yaml --launcher slurm \
|
7 |
-
--load-iter 70000 \
|
8 |
-
--validate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/config.yaml
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
arch: CMP
|
3 |
-
total_iter: 70000
|
4 |
-
lr_steps: [40000, 60000]
|
5 |
-
lr_mults: [0.1, 0.1]
|
6 |
-
lr: 0.1
|
7 |
-
optim: SGD
|
8 |
-
warmup_lr: []
|
9 |
-
warmup_steps: []
|
10 |
-
module:
|
11 |
-
arch: CMP
|
12 |
-
image_encoder: resnet50
|
13 |
-
sparse_encoder: shallownet8x
|
14 |
-
flow_decoder: MotionDecoderPlain
|
15 |
-
skip_layer: False
|
16 |
-
img_enc_dim: 256
|
17 |
-
sparse_enc_dim: 16
|
18 |
-
output_dim: 198
|
19 |
-
decoder_combo: [1,2,4]
|
20 |
-
pretrained_image_encoder: False
|
21 |
-
flow_criterion: "DiscreteLoss"
|
22 |
-
nbins: 99
|
23 |
-
fmax: 50
|
24 |
-
data:
|
25 |
-
workers: 2
|
26 |
-
batch_size: 10
|
27 |
-
batch_size_test: 1
|
28 |
-
data_mean: [123.675, 116.28, 103.53] # RGB
|
29 |
-
data_div: [58.395, 57.12, 57.375]
|
30 |
-
short_size: 416
|
31 |
-
crop_size: [320, 320]
|
32 |
-
sample_strategy: ['grid', 'watershed']
|
33 |
-
sample_bg_ratio: 0.00015625
|
34 |
-
nms_ks: 15
|
35 |
-
max_num_guide: -1
|
36 |
-
|
37 |
-
flow_file_type: "jpg"
|
38 |
-
image_flow_aug:
|
39 |
-
flip: False
|
40 |
-
flow_aug:
|
41 |
-
reverse: False
|
42 |
-
scale: False
|
43 |
-
rotate: False
|
44 |
-
train_source:
|
45 |
-
- data/yfcc/lists/train.txt
|
46 |
-
- data/youtube9000/lists/train.txt
|
47 |
-
- data/VIP/lists/train.txt
|
48 |
-
- data/MPII/lists/train.txt
|
49 |
-
val_source:
|
50 |
-
- data/yfcc/lists/val.txt
|
51 |
-
memcached: False
|
52 |
-
trainer:
|
53 |
-
initial_val: True
|
54 |
-
print_freq: 100
|
55 |
-
val_freq: 10000
|
56 |
-
save_freq: 10000
|
57 |
-
val_iter: -1
|
58 |
-
val_disp_start_iter: 0
|
59 |
-
val_disp_end_iter: 16
|
60 |
-
loss_record: ['loss_flow']
|
61 |
-
tensorboard: False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/cmp/experiments/rep_learning/resnet50_yfcc+youtube+vip+mpii_lip_16gpu_70k/resume.sh
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
work_path=$(dirname $0)
|
3 |
-
python -m torch.distributed.launch --nproc_per_node=8 \
|
4 |
-
--nnodes=2 --node_rank=$1 \
|
5 |
-
--master_addr="192.168.1.1" main.py \
|
6 |
-
--config $work_path/config.yaml --launcher pytorch \
|
7 |
-
--load-iter 10000 \
|
8 |
-
--resume
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|