File size: 1,638 Bytes
57ffbe0
 
 
4e42a1b
f53b713
 
 
 
 
 
4e42a1b
 
f5bbdc7
4e42a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d79654c
4e42a1b
57ffbe0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
---


## Paper

arxiv.org/abs/2405.20222


## Introduction

This repo provides the inference Gradio demo for **Hybrid (Trajectory + Landmark)** Control of [MOFA-Video](https://myniuuu.github.io/MOFA_Video/).

## Environment Setup

```
cd MOFA-Hybrid
conda create -n mofa python==3.10
conda activate mofa
pip install -r requirements.txt
pip install opencv-python-headless
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
```

**IMPORTANT:** Gradio Version of **4.5.0** should be used since other versions may cause errors.


## Checkpoints Download
1. Download the checkpoint of CMP from [here](https://huggingface.co/MyNiuuu/MOFA-Video-Hybrid/blob/main/models/cmp/experiments/semiauto_annot/resnet50_vip%2Bmpii_liteflow/checkpoints/ckpt_iter_42000.pth.tar) and put it into `./models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/checkpoints`.

2. Downloading the necessary pretrained checkpoints from [huggingface](https://huggingface.co/MyNiuuu/MOFA-Video-Hybrid). It is recommended to directly using git lfs to clone the [huggingface repo](https://huggingface.co/MyNiuuu/MOFA-Video-Hybrid). The checkpoints should be orgnized as `./ckpt_tree.md` (they will be automatically organized if you use git lfs to clone the [huggingface repo](https://huggingface.co/MyNiuuu/MOFA-Video-Hybrid)).


## Run Gradio Demo

### Using audio to animate the facial part

`python run_gradio_audio_driven.py`

### Using refernce video to animate the facial part

`python run_gradio_video_driven.py`

**IMPORTANT:** Please refer to the instructions on the gradio interface during the inference process.