File size: 2,421 Bytes
278ee69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# NanoLM-0.3B-Instruct-v2

[English](README.md) | 简体中文


## Introduction

为了探究小模型的潜能,我尝试构建一系列小模型,并存放于 [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2)。

这是 NanoLM-0.3B-Instruct-v2。该模型目前仅支持**英文**## 模型详情

| Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len |
| :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: |
| 25M         | 15M  |   MistralForCausalLM     | 12      | 312     | 12    |2K|
| 70M         | 42M |  LlamaForCausalLM          | 12     | 576    | 9   |2K|
| **0.3B**        | **180M** |  **Qwen2ForCausalLM**  | **12**   | **896**    | **14** | **4K** |
| 1B     | 840M | Qwen2ForCausalLM | 18   | 1536   | 12   |4K|


## 如何使用

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = 'Mxode/NanoLM-0.3B-Instruct-v2'

model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_path)


def get_response(prompt: str, **kwargs):
    generation_args = dict(
        max_new_tokens = kwargs.pop("max_new_tokens", 512),
        do_sample = kwargs.pop("do_sample", True),
        temperature = kwargs.pop("temperature", 0.7),
        top_p = kwargs.pop("top_p", 0.8),
        top_k = kwargs.pop("top_k", 40),
        **kwargs
    )

    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    generated_ids = model.generate(model_inputs.input_ids, **generation_args)
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return response


prompt1 = "Calculate (4 - 1) * 7"
print(get_response(prompt1, do_sample=False))

"""
To calculate the expression (4 - 1) * 7, we need to follow the order of operations (PEMDAS):

1. Evaluate the expression inside the parentheses: 4 - 1 = 3
2. Multiply 3 by 7: 3 * 7 = 21

So, (4 - 1) * 7 = 21.
"""
```