Ming Li commited on
Commit
5262098
0 Parent(s):

Initial commit

Browse files
.gitattributes ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pytorch_model-00001-of-00003.bin filter=lfs diff=lfs merge=lfs -text
2
+ pytorch_model-00002-of-00003.bin filter=lfs diff=lfs merge=lfs -text
3
+ pytorch_model-00003-of-00003.bin filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "yahma/llama-7b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "pad_token_id": 0,
17
+ "rms_norm_eps": 1e-06,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.28.1",
21
+ "use_cache": true,
22
+ "vocab_size": 32001
23
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.28.1"
7
+ }
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:300c81675057ed4826bd0b5577f7949022a60f4a86159b597f519cea3357d448
3
+ size 9878009874
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f654f92e6cc1966b1635cba49fd48f34ca94b6293a3fda36dbd9a7e68a9fb6c
3
+ size 9894805046
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a83ad08ebbed4de36b13c350b24440c139018dbb0d55e1f38769120edb4fa98
3
+ size 7181009913
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26953703424
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
328
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
329
+ }
330
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.model ADDED
Binary file (500 kB). View file
 
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 1024,
22
+ "pad_token": null,
23
+ "padding_side": "right",
24
+ "sp_model_kwargs": {},
25
+ "tokenizer_class": "LlamaTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "use_fast": false
35
+ }
trainer_state.json ADDED
@@ -0,0 +1,3949 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9978513107004727,
5
+ "global_step": 654,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 1.0000000000000002e-06,
13
+ "loss": 0.9831,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 2.0000000000000003e-06,
19
+ "loss": 0.9479,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 3e-06,
25
+ "loss": 0.8474,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.02,
30
+ "learning_rate": 4.000000000000001e-06,
31
+ "loss": 0.8862,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.02,
36
+ "learning_rate": 5e-06,
37
+ "loss": 0.8511,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.03,
42
+ "learning_rate": 6e-06,
43
+ "loss": 0.8842,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "learning_rate": 7e-06,
49
+ "loss": 0.7622,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.04,
54
+ "learning_rate": 8.000000000000001e-06,
55
+ "loss": 0.7532,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.04,
60
+ "learning_rate": 9e-06,
61
+ "loss": 0.7864,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.05,
66
+ "learning_rate": 1e-05,
67
+ "loss": 0.7907,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.05,
72
+ "learning_rate": 1.1000000000000001e-05,
73
+ "loss": 0.7628,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.06,
78
+ "learning_rate": 1.2e-05,
79
+ "loss": 0.7197,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.06,
84
+ "learning_rate": 1.3000000000000001e-05,
85
+ "loss": 0.7173,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.06,
90
+ "learning_rate": 1.4e-05,
91
+ "loss": 0.7939,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.07,
96
+ "learning_rate": 1.5000000000000002e-05,
97
+ "loss": 0.7293,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.07,
102
+ "learning_rate": 1.6000000000000003e-05,
103
+ "loss": 0.7761,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.08,
108
+ "learning_rate": 1.7e-05,
109
+ "loss": 0.7265,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.08,
114
+ "learning_rate": 1.8e-05,
115
+ "loss": 0.7042,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.09,
120
+ "learning_rate": 1.9e-05,
121
+ "loss": 0.6792,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.09,
126
+ "learning_rate": 2e-05,
127
+ "loss": 0.7203,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.1,
132
+ "learning_rate": 1.9999877230540083e-05,
133
+ "loss": 0.7298,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.1,
138
+ "learning_rate": 1.9999508925174792e-05,
139
+ "loss": 0.7191,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.11,
144
+ "learning_rate": 1.999889509294746e-05,
145
+ "loss": 0.7504,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.11,
150
+ "learning_rate": 1.9998035748930055e-05,
151
+ "loss": 0.6989,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.11,
156
+ "learning_rate": 1.999693091422282e-05,
157
+ "loss": 0.7237,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.12,
162
+ "learning_rate": 1.9995580615953747e-05,
163
+ "loss": 0.6478,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.12,
168
+ "learning_rate": 1.9993984887277917e-05,
169
+ "loss": 0.7048,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.13,
174
+ "learning_rate": 1.9992143767376667e-05,
175
+ "loss": 0.7172,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.13,
180
+ "learning_rate": 1.999005730145667e-05,
181
+ "loss": 0.7182,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.14,
186
+ "learning_rate": 1.998772554074878e-05,
187
+ "loss": 0.7409,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.14,
192
+ "learning_rate": 1.99851485425068e-05,
193
+ "loss": 0.7484,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.15,
198
+ "learning_rate": 1.9982326370006056e-05,
199
+ "loss": 0.7077,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.15,
204
+ "learning_rate": 1.997925909254188e-05,
205
+ "loss": 0.7006,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.16,
210
+ "learning_rate": 1.9975946785427864e-05,
211
+ "loss": 0.7109,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.16,
216
+ "learning_rate": 1.9972389529994043e-05,
217
+ "loss": 0.6996,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.17,
222
+ "learning_rate": 1.9968587413584875e-05,
223
+ "loss": 0.6881,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.17,
228
+ "learning_rate": 1.996454052955713e-05,
229
+ "loss": 0.703,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.17,
234
+ "learning_rate": 1.9960248977277548e-05,
235
+ "loss": 0.6502,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.18,
240
+ "learning_rate": 1.9955712862120443e-05,
241
+ "loss": 0.7288,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.18,
246
+ "learning_rate": 1.9950932295465102e-05,
247
+ "loss": 0.7006,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.19,
252
+ "learning_rate": 1.9945907394693034e-05,
253
+ "loss": 0.722,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.19,
258
+ "learning_rate": 1.9940638283185118e-05,
259
+ "loss": 0.7435,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.2,
264
+ "learning_rate": 1.9935125090318547e-05,
265
+ "loss": 0.7045,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.2,
270
+ "learning_rate": 1.9929367951463655e-05,
271
+ "loss": 0.6758,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.21,
276
+ "learning_rate": 1.992336700798062e-05,
277
+ "loss": 0.6703,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.21,
282
+ "learning_rate": 1.991712240721595e-05,
283
+ "loss": 0.6509,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.22,
288
+ "learning_rate": 1.9910634302498906e-05,
289
+ "loss": 0.6535,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.22,
294
+ "learning_rate": 1.9903902853137703e-05,
295
+ "loss": 0.6871,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.22,
300
+ "learning_rate": 1.9896928224415622e-05,
301
+ "loss": 0.6995,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.23,
306
+ "learning_rate": 1.9889710587586953e-05,
307
+ "loss": 0.7394,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.23,
312
+ "learning_rate": 1.9882250119872758e-05,
313
+ "loss": 0.6726,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.24,
318
+ "learning_rate": 1.9874547004456565e-05,
319
+ "loss": 0.6939,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.24,
324
+ "learning_rate": 1.986660143047983e-05,
325
+ "loss": 0.704,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.25,
330
+ "learning_rate": 1.9858413593037326e-05,
331
+ "loss": 0.7042,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.25,
336
+ "learning_rate": 1.9849983693172324e-05,
337
+ "loss": 0.6569,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.26,
342
+ "learning_rate": 1.9841311937871677e-05,
343
+ "loss": 0.6498,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.26,
348
+ "learning_rate": 1.9832398540060727e-05,
349
+ "loss": 0.6551,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.27,
354
+ "learning_rate": 1.982324371859808e-05,
355
+ "loss": 0.6522,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.27,
360
+ "learning_rate": 1.9813847698270236e-05,
361
+ "loss": 0.6868,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.28,
366
+ "learning_rate": 1.980421070978606e-05,
367
+ "loss": 0.635,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.28,
372
+ "learning_rate": 1.9794332989771133e-05,
373
+ "loss": 0.6722,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.28,
378
+ "learning_rate": 1.9784214780761917e-05,
379
+ "loss": 0.6502,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.29,
384
+ "learning_rate": 1.9773856331199823e-05,
385
+ "loss": 0.6862,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.29,
390
+ "learning_rate": 1.9763257895425112e-05,
391
+ "loss": 0.723,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.3,
396
+ "learning_rate": 1.975241973367062e-05,
397
+ "loss": 0.7064,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.3,
402
+ "learning_rate": 1.974134211205541e-05,
403
+ "loss": 0.6093,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.31,
408
+ "learning_rate": 1.97300253025782e-05,
409
+ "loss": 0.6944,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.31,
414
+ "learning_rate": 1.971846958311071e-05,
415
+ "loss": 0.6392,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.32,
420
+ "learning_rate": 1.9706675237390827e-05,
421
+ "loss": 0.657,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.32,
426
+ "learning_rate": 1.9694642555015643e-05,
427
+ "loss": 0.6582,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.33,
432
+ "learning_rate": 1.9682371831434338e-05,
433
+ "loss": 0.6968,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.33,
438
+ "learning_rate": 1.9669863367940936e-05,
439
+ "loss": 0.6958,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.33,
444
+ "learning_rate": 1.9657117471666897e-05,
445
+ "loss": 0.6585,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.34,
450
+ "learning_rate": 1.9644134455573588e-05,
451
+ "loss": 0.6716,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.34,
456
+ "learning_rate": 1.9630914638444572e-05,
457
+ "loss": 0.6753,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.35,
462
+ "learning_rate": 1.9617458344877818e-05,
463
+ "loss": 0.6407,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.35,
468
+ "learning_rate": 1.9603765905277705e-05,
469
+ "loss": 0.6233,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.36,
474
+ "learning_rate": 1.9589837655846916e-05,
475
+ "loss": 0.6693,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.36,
480
+ "learning_rate": 1.957567393857818e-05,
481
+ "loss": 0.6587,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.37,
486
+ "learning_rate": 1.9561275101245886e-05,
487
+ "loss": 0.6806,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.37,
492
+ "learning_rate": 1.9546641497397522e-05,
493
+ "loss": 0.6769,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.38,
498
+ "learning_rate": 1.9531773486345025e-05,
499
+ "loss": 0.6523,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.38,
504
+ "learning_rate": 1.951667143315593e-05,
505
+ "loss": 0.6926,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.39,
510
+ "learning_rate": 1.9501335708644415e-05,
511
+ "loss": 0.6518,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.39,
516
+ "learning_rate": 1.9485766689362205e-05,
517
+ "loss": 0.6683,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.39,
522
+ "learning_rate": 1.9469964757589324e-05,
523
+ "loss": 0.7195,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.4,
528
+ "learning_rate": 1.9453930301324692e-05,
529
+ "loss": 0.6396,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.4,
534
+ "learning_rate": 1.9437663714276617e-05,
535
+ "loss": 0.6797,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.41,
540
+ "learning_rate": 1.9421165395853124e-05,
541
+ "loss": 0.6827,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.41,
546
+ "learning_rate": 1.9404435751152134e-05,
547
+ "loss": 0.6787,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.42,
552
+ "learning_rate": 1.9387475190951542e-05,
553
+ "loss": 0.6523,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.42,
558
+ "learning_rate": 1.937028413169911e-05,
559
+ "loss": 0.6506,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.43,
564
+ "learning_rate": 1.935286299550225e-05,
565
+ "loss": 0.6867,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.43,
570
+ "learning_rate": 1.9335212210117656e-05,
571
+ "loss": 0.6766,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.44,
576
+ "learning_rate": 1.931733220894081e-05,
577
+ "loss": 0.6376,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.44,
582
+ "learning_rate": 1.9299223430995323e-05,
583
+ "loss": 0.6385,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.44,
588
+ "learning_rate": 1.928088632092218e-05,
589
+ "loss": 0.6469,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.45,
594
+ "learning_rate": 1.9262321328968797e-05,
595
+ "loss": 0.688,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.45,
600
+ "learning_rate": 1.924352891097798e-05,
601
+ "loss": 0.6785,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.46,
606
+ "learning_rate": 1.9224509528376737e-05,
607
+ "loss": 0.7346,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.46,
612
+ "learning_rate": 1.920526364816493e-05,
613
+ "loss": 0.6948,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.47,
618
+ "learning_rate": 1.9185791742903816e-05,
619
+ "loss": 0.6711,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.47,
624
+ "learning_rate": 1.916609429070446e-05,
625
+ "loss": 0.6188,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.48,
630
+ "learning_rate": 1.9146171775215982e-05,
631
+ "loss": 0.6117,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.48,
636
+ "learning_rate": 1.9126024685613664e-05,
637
+ "loss": 0.6082,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.49,
642
+ "learning_rate": 1.9105653516586974e-05,
643
+ "loss": 0.6925,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.49,
648
+ "learning_rate": 1.9085058768327394e-05,
649
+ "loss": 0.6782,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.5,
654
+ "learning_rate": 1.906424094651615e-05,
655
+ "loss": 0.7054,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.5,
660
+ "learning_rate": 1.9043200562311788e-05,
661
+ "loss": 0.6751,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.5,
666
+ "learning_rate": 1.9021938132337628e-05,
667
+ "loss": 0.6005,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.51,
672
+ "learning_rate": 1.9000454178669084e-05,
673
+ "loss": 0.6593,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.51,
678
+ "learning_rate": 1.8978749228820827e-05,
679
+ "loss": 0.6555,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.52,
684
+ "learning_rate": 1.8956823815733858e-05,
685
+ "loss": 0.6768,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.52,
690
+ "learning_rate": 1.8934678477762398e-05,
691
+ "loss": 0.7238,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.53,
696
+ "learning_rate": 1.891231375866068e-05,
697
+ "loss": 0.6428,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.53,
702
+ "learning_rate": 1.8889730207569607e-05,
703
+ "loss": 0.6565,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.54,
708
+ "learning_rate": 1.8866928379003253e-05,
709
+ "loss": 0.6442,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.54,
714
+ "learning_rate": 1.8843908832835248e-05,
715
+ "loss": 0.6499,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.55,
720
+ "learning_rate": 1.882067213428505e-05,
721
+ "loss": 0.6379,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.55,
726
+ "learning_rate": 1.8797218853904037e-05,
727
+ "loss": 0.6704,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.55,
732
+ "learning_rate": 1.8773549567561528e-05,
733
+ "loss": 0.6657,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.56,
738
+ "learning_rate": 1.874966485643062e-05,
739
+ "loss": 0.6681,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.56,
744
+ "learning_rate": 1.8725565306973935e-05,
745
+ "loss": 0.6598,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.57,
750
+ "learning_rate": 1.87012515109292e-05,
751
+ "loss": 0.6419,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.57,
756
+ "learning_rate": 1.8676724065294744e-05,
757
+ "loss": 0.683,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.58,
762
+ "learning_rate": 1.865198357231481e-05,
763
+ "loss": 0.6982,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.58,
768
+ "learning_rate": 1.8627030639464794e-05,
769
+ "loss": 0.6285,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.59,
774
+ "learning_rate": 1.8601865879436318e-05,
775
+ "loss": 0.6629,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.59,
780
+ "learning_rate": 1.857648991012218e-05,
781
+ "loss": 0.6572,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.6,
786
+ "learning_rate": 1.8550903354601182e-05,
787
+ "loss": 0.6832,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.6,
792
+ "learning_rate": 1.8525106841122852e-05,
793
+ "loss": 0.6543,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.61,
798
+ "learning_rate": 1.8499101003091995e-05,
799
+ "loss": 0.6509,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.61,
804
+ "learning_rate": 1.8472886479053147e-05,
805
+ "loss": 0.6666,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.61,
810
+ "learning_rate": 1.84464639126749e-05,
811
+ "loss": 0.6756,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.62,
816
+ "learning_rate": 1.8419833952734094e-05,
817
+ "loss": 0.6524,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.62,
822
+ "learning_rate": 1.839299725309989e-05,
823
+ "loss": 0.6862,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.63,
828
+ "learning_rate": 1.836595447271771e-05,
829
+ "loss": 0.657,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.63,
834
+ "learning_rate": 1.8338706275593066e-05,
835
+ "loss": 0.6396,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.64,
840
+ "learning_rate": 1.831125333077525e-05,
841
+ "loss": 0.6946,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.64,
846
+ "learning_rate": 1.8283596312340893e-05,
847
+ "loss": 0.7144,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.65,
852
+ "learning_rate": 1.8255735899377443e-05,
853
+ "loss": 0.7052,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.65,
858
+ "learning_rate": 1.8227672775966478e-05,
859
+ "loss": 0.6792,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.66,
864
+ "learning_rate": 1.819940763116689e-05,
865
+ "loss": 0.6446,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.66,
870
+ "learning_rate": 1.8170941158997992e-05,
871
+ "loss": 0.6499,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.66,
876
+ "learning_rate": 1.8142274058422467e-05,
877
+ "loss": 0.6469,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.67,
882
+ "learning_rate": 1.8113407033329213e-05,
883
+ "loss": 0.6391,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.67,
888
+ "learning_rate": 1.8084340792516038e-05,
889
+ "loss": 0.6411,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.68,
894
+ "learning_rate": 1.8055076049672286e-05,
895
+ "loss": 0.6215,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.68,
900
+ "learning_rate": 1.8025613523361283e-05,
901
+ "loss": 0.6699,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.69,
906
+ "learning_rate": 1.7995953937002723e-05,
907
+ "loss": 0.6861,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.69,
912
+ "learning_rate": 1.7966098018854888e-05,
913
+ "loss": 0.6754,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.7,
918
+ "learning_rate": 1.793604650199676e-05,
919
+ "loss": 0.6583,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.7,
924
+ "learning_rate": 1.7905800124310048e-05,
925
+ "loss": 0.6714,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.71,
930
+ "learning_rate": 1.7875359628461035e-05,
931
+ "loss": 0.6798,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.71,
936
+ "learning_rate": 1.784472576188237e-05,
937
+ "loss": 0.6672,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.72,
942
+ "learning_rate": 1.7813899276754703e-05,
943
+ "loss": 0.6884,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.72,
948
+ "learning_rate": 1.778288092998822e-05,
949
+ "loss": 0.6277,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.72,
954
+ "learning_rate": 1.7751671483204062e-05,
955
+ "loss": 0.6233,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.73,
960
+ "learning_rate": 1.7720271702715607e-05,
961
+ "loss": 0.6577,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.73,
966
+ "learning_rate": 1.768868235950968e-05,
967
+ "loss": 0.6207,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.74,
972
+ "learning_rate": 1.7656904229227598e-05,
973
+ "loss": 0.6266,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.74,
978
+ "learning_rate": 1.7624938092146138e-05,
979
+ "loss": 0.6372,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.75,
984
+ "learning_rate": 1.7592784733158378e-05,
985
+ "loss": 0.696,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.75,
990
+ "learning_rate": 1.7560444941754425e-05,
991
+ "loss": 0.6415,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.76,
996
+ "learning_rate": 1.7527919512002025e-05,
997
+ "loss": 0.6243,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.76,
1002
+ "learning_rate": 1.749520924252706e-05,
1003
+ "loss": 0.5833,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.77,
1008
+ "learning_rate": 1.7462314936493957e-05,
1009
+ "loss": 0.6248,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.77,
1014
+ "learning_rate": 1.742923740158595e-05,
1015
+ "loss": 0.6502,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.77,
1020
+ "learning_rate": 1.7395977449985265e-05,
1021
+ "loss": 0.6422,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.78,
1026
+ "learning_rate": 1.736253589835316e-05,
1027
+ "loss": 0.6289,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.78,
1032
+ "learning_rate": 1.7328913567809876e-05,
1033
+ "loss": 0.6313,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.79,
1038
+ "learning_rate": 1.7295111283914487e-05,
1039
+ "loss": 0.6308,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.79,
1044
+ "learning_rate": 1.7261129876644625e-05,
1045
+ "loss": 0.6308,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.8,
1050
+ "learning_rate": 1.7226970180376087e-05,
1051
+ "loss": 0.6308,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.8,
1056
+ "learning_rate": 1.719263303386237e-05,
1057
+ "loss": 0.6516,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.81,
1062
+ "learning_rate": 1.715811928021406e-05,
1063
+ "loss": 0.6368,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.81,
1068
+ "learning_rate": 1.7123429766878133e-05,
1069
+ "loss": 0.63,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.82,
1074
+ "learning_rate": 1.708856534561716e-05,
1075
+ "loss": 0.6369,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.82,
1080
+ "learning_rate": 1.7053526872488367e-05,
1081
+ "loss": 0.6373,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.83,
1086
+ "learning_rate": 1.701831520782264e-05,
1087
+ "loss": 0.6417,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.83,
1092
+ "learning_rate": 1.6982931216203392e-05,
1093
+ "loss": 0.6458,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.83,
1098
+ "learning_rate": 1.694737576644533e-05,
1099
+ "loss": 0.6879,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.84,
1104
+ "learning_rate": 1.6911649731573127e-05,
1105
+ "loss": 0.6547,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.84,
1110
+ "learning_rate": 1.6875753988799984e-05,
1111
+ "loss": 0.6253,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.85,
1116
+ "learning_rate": 1.6839689419506092e-05,
1117
+ "loss": 0.6941,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.85,
1122
+ "learning_rate": 1.680345690921699e-05,
1123
+ "loss": 0.6663,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.86,
1128
+ "learning_rate": 1.676705734758182e-05,
1129
+ "loss": 0.6244,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.86,
1134
+ "learning_rate": 1.6730491628351487e-05,
1135
+ "loss": 0.6623,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.87,
1140
+ "learning_rate": 1.6693760649356718e-05,
1141
+ "loss": 0.6453,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.87,
1146
+ "learning_rate": 1.6656865312485996e-05,
1147
+ "loss": 0.6387,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.88,
1152
+ "learning_rate": 1.6619806523663435e-05,
1153
+ "loss": 0.6073,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 0.88,
1158
+ "learning_rate": 1.6582585192826544e-05,
1159
+ "loss": 0.6048,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 0.88,
1164
+ "learning_rate": 1.6545202233903846e-05,
1165
+ "loss": 0.592,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 0.89,
1170
+ "learning_rate": 1.6507658564792492e-05,
1171
+ "loss": 0.6529,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 0.89,
1176
+ "learning_rate": 1.6469955107335666e-05,
1177
+ "loss": 0.6008,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 0.9,
1182
+ "learning_rate": 1.6432092787299994e-05,
1183
+ "loss": 0.6669,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 0.9,
1188
+ "learning_rate": 1.639407253435279e-05,
1189
+ "loss": 0.632,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 0.91,
1194
+ "learning_rate": 1.6355895282039244e-05,
1195
+ "loss": 0.6474,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 0.91,
1200
+ "learning_rate": 1.6317561967759474e-05,
1201
+ "loss": 0.6479,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 0.92,
1206
+ "learning_rate": 1.627907353274555e-05,
1207
+ "loss": 0.63,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 0.92,
1212
+ "learning_rate": 1.6240430922038348e-05,
1213
+ "loss": 0.6037,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 0.93,
1218
+ "learning_rate": 1.620163508446435e-05,
1219
+ "loss": 0.7098,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 0.93,
1224
+ "learning_rate": 1.6162686972612363e-05,
1225
+ "loss": 0.6597,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 0.94,
1230
+ "learning_rate": 1.612358754281012e-05,
1231
+ "loss": 0.6891,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 0.94,
1236
+ "learning_rate": 1.6084337755100795e-05,
1237
+ "loss": 0.6422,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 0.94,
1242
+ "learning_rate": 1.604493857321944e-05,
1243
+ "loss": 0.6662,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 0.95,
1248
+ "learning_rate": 1.600539096456931e-05,
1249
+ "loss": 0.6403,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 0.95,
1254
+ "learning_rate": 1.596569590019811e-05,
1255
+ "loss": 0.6195,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 0.96,
1260
+ "learning_rate": 1.592585435477417e-05,
1261
+ "loss": 0.6007,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 0.96,
1266
+ "learning_rate": 1.588586730656249e-05,
1267
+ "loss": 0.6068,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 0.97,
1272
+ "learning_rate": 1.5845735737400733e-05,
1273
+ "loss": 0.6343,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 0.97,
1278
+ "learning_rate": 1.5805460632675112e-05,
1279
+ "loss": 0.6197,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 0.98,
1284
+ "learning_rate": 1.57650429812962e-05,
1285
+ "loss": 0.636,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 0.98,
1290
+ "learning_rate": 1.5724483775674645e-05,
1291
+ "loss": 0.6304,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 0.99,
1296
+ "learning_rate": 1.56837840116968e-05,
1297
+ "loss": 0.6489,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 0.99,
1302
+ "learning_rate": 1.5642944688700263e-05,
1303
+ "loss": 0.6021,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 0.99,
1308
+ "learning_rate": 1.5601966809449375e-05,
1309
+ "loss": 0.6537,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 1.0,
1314
+ "learning_rate": 1.556085138011055e-05,
1315
+ "loss": 0.6562,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 1.0,
1320
+ "learning_rate": 1.5519599410227594e-05,
1321
+ "loss": 0.4769,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 1.01,
1326
+ "learning_rate": 1.547821191269693e-05,
1327
+ "loss": 0.4262,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 1.01,
1332
+ "learning_rate": 1.5436689903742695e-05,
1333
+ "loss": 0.4012,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 1.02,
1338
+ "learning_rate": 1.539503440289181e-05,
1339
+ "loss": 0.4177,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 1.02,
1344
+ "learning_rate": 1.5353246432948954e-05,
1345
+ "loss": 0.4107,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 1.03,
1350
+ "learning_rate": 1.5311327019971415e-05,
1351
+ "loss": 0.4058,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 1.03,
1356
+ "learning_rate": 1.5269277193243936e-05,
1357
+ "loss": 0.4185,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 1.04,
1362
+ "learning_rate": 1.5227097985253422e-05,
1363
+ "loss": 0.3996,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 1.04,
1368
+ "learning_rate": 1.5184790431663586e-05,
1369
+ "loss": 0.4187,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 1.05,
1374
+ "learning_rate": 1.5142355571289533e-05,
1375
+ "loss": 0.38,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 1.05,
1380
+ "learning_rate": 1.509979444607224e-05,
1381
+ "loss": 0.4095,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 1.05,
1386
+ "learning_rate": 1.5057108101052978e-05,
1387
+ "loss": 0.4075,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 1.06,
1392
+ "learning_rate": 1.5014297584347652e-05,
1393
+ "loss": 0.3781,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 1.06,
1398
+ "learning_rate": 1.4971363947121065e-05,
1399
+ "loss": 0.3877,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 1.07,
1404
+ "learning_rate": 1.4928308243561108e-05,
1405
+ "loss": 0.3934,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 1.07,
1410
+ "learning_rate": 1.4885131530852872e-05,
1411
+ "loss": 0.372,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 1.08,
1416
+ "learning_rate": 1.4841834869152703e-05,
1417
+ "loss": 0.3963,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 1.08,
1422
+ "learning_rate": 1.479841932156215e-05,
1423
+ "loss": 0.3955,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 1.09,
1428
+ "learning_rate": 1.4754885954101883e-05,
1429
+ "loss": 0.3849,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 1.09,
1434
+ "learning_rate": 1.4711235835685502e-05,
1435
+ "loss": 0.4244,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 1.1,
1440
+ "learning_rate": 1.46674700380933e-05,
1441
+ "loss": 0.3684,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 1.1,
1446
+ "learning_rate": 1.462358963594595e-05,
1447
+ "loss": 0.4202,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 1.1,
1452
+ "learning_rate": 1.4579595706678095e-05,
1453
+ "loss": 0.398,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 1.11,
1458
+ "learning_rate": 1.4535489330511932e-05,
1459
+ "loss": 0.4082,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 1.11,
1464
+ "learning_rate": 1.449127159043065e-05,
1465
+ "loss": 0.3744,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 1.12,
1470
+ "learning_rate": 1.4446943572151869e-05,
1471
+ "loss": 0.3965,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 1.12,
1476
+ "learning_rate": 1.4402506364100957e-05,
1477
+ "loss": 0.413,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 1.13,
1482
+ "learning_rate": 1.4357961057384323e-05,
1483
+ "loss": 0.4195,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 1.13,
1488
+ "learning_rate": 1.4313308745762616e-05,
1489
+ "loss": 0.4148,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 1.14,
1494
+ "learning_rate": 1.426855052562387e-05,
1495
+ "loss": 0.3986,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 1.14,
1500
+ "learning_rate": 1.4223687495956592e-05,
1501
+ "loss": 0.4128,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 1.15,
1506
+ "learning_rate": 1.4178720758322761e-05,
1507
+ "loss": 0.3874,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 1.15,
1512
+ "learning_rate": 1.4133651416830803e-05,
1513
+ "loss": 0.3938,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 1.16,
1518
+ "learning_rate": 1.4088480578108454e-05,
1519
+ "loss": 0.4315,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 1.16,
1524
+ "learning_rate": 1.4043209351275615e-05,
1525
+ "loss": 0.4098,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 1.16,
1530
+ "learning_rate": 1.3997838847917096e-05,
1531
+ "loss": 0.3793,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 1.17,
1536
+ "learning_rate": 1.3952370182055332e-05,
1537
+ "loss": 0.4081,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 1.17,
1542
+ "learning_rate": 1.3906804470123038e-05,
1543
+ "loss": 0.4026,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 1.18,
1548
+ "learning_rate": 1.3861142830935786e-05,
1549
+ "loss": 0.4051,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 1.18,
1554
+ "learning_rate": 1.3815386385664526e-05,
1555
+ "loss": 0.3842,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 1.19,
1560
+ "learning_rate": 1.3769536257808077e-05,
1561
+ "loss": 0.406,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 1.19,
1566
+ "learning_rate": 1.3723593573165523e-05,
1567
+ "loss": 0.3914,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 1.2,
1572
+ "learning_rate": 1.367755945980858e-05,
1573
+ "loss": 0.4159,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 1.2,
1578
+ "learning_rate": 1.3631435048053899e-05,
1579
+ "loss": 0.3933,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 1.21,
1584
+ "learning_rate": 1.3585221470435301e-05,
1585
+ "loss": 0.3735,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 1.21,
1590
+ "learning_rate": 1.3538919861675979e-05,
1591
+ "loss": 0.3933,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 1.21,
1596
+ "learning_rate": 1.3492531358660634e-05,
1597
+ "loss": 0.382,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 1.22,
1602
+ "learning_rate": 1.3446057100407557e-05,
1603
+ "loss": 0.3773,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 1.22,
1608
+ "learning_rate": 1.3399498228040664e-05,
1609
+ "loss": 0.3935,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 1.23,
1614
+ "learning_rate": 1.3352855884761483e-05,
1615
+ "loss": 0.4454,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 1.23,
1620
+ "learning_rate": 1.330613121582107e-05,
1621
+ "loss": 0.3683,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 1.24,
1626
+ "learning_rate": 1.3259325368491897e-05,
1627
+ "loss": 0.3848,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 1.24,
1632
+ "learning_rate": 1.3212439492039688e-05,
1633
+ "loss": 0.3962,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 1.25,
1638
+ "learning_rate": 1.3165474737695185e-05,
1639
+ "loss": 0.4087,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 1.25,
1644
+ "learning_rate": 1.3118432258625895e-05,
1645
+ "loss": 0.3904,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 1.26,
1650
+ "learning_rate": 1.3071313209907768e-05,
1651
+ "loss": 0.4293,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 1.26,
1656
+ "learning_rate": 1.3024118748496834e-05,
1657
+ "loss": 0.3833,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 1.27,
1662
+ "learning_rate": 1.2976850033200806e-05,
1663
+ "loss": 0.3931,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 1.27,
1668
+ "learning_rate": 1.292950822465061e-05,
1669
+ "loss": 0.41,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 1.27,
1674
+ "learning_rate": 1.2882094485271894e-05,
1675
+ "loss": 0.3931,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 1.28,
1680
+ "learning_rate": 1.2834609979256505e-05,
1681
+ "loss": 0.4066,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 1.28,
1686
+ "learning_rate": 1.2787055872533867e-05,
1687
+ "loss": 0.3927,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 1.29,
1692
+ "learning_rate": 1.2739433332742381e-05,
1693
+ "loss": 0.4068,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 1.29,
1698
+ "learning_rate": 1.2691743529200749e-05,
1699
+ "loss": 0.3804,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 1.3,
1704
+ "learning_rate": 1.264398763287925e-05,
1705
+ "loss": 0.4001,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 1.3,
1710
+ "learning_rate": 1.2596166816371005e-05,
1711
+ "loss": 0.3805,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 1.31,
1716
+ "learning_rate": 1.2548282253863181e-05,
1717
+ "loss": 0.3817,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 1.31,
1722
+ "learning_rate": 1.2500335121108151e-05,
1723
+ "loss": 0.3835,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 1.32,
1728
+ "learning_rate": 1.2452326595394633e-05,
1729
+ "loss": 0.417,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 1.32,
1734
+ "learning_rate": 1.2404257855518782e-05,
1735
+ "loss": 0.3878,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 1.32,
1740
+ "learning_rate": 1.2356130081755243e-05,
1741
+ "loss": 0.3937,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 1.33,
1746
+ "learning_rate": 1.2307944455828178e-05,
1747
+ "loss": 0.3955,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 1.33,
1752
+ "learning_rate": 1.225970216088224e-05,
1753
+ "loss": 0.391,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 1.34,
1758
+ "learning_rate": 1.221140438145353e-05,
1759
+ "loss": 0.4032,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 1.34,
1764
+ "learning_rate": 1.2163052303440503e-05,
1765
+ "loss": 0.3866,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 1.35,
1770
+ "learning_rate": 1.2114647114074863e-05,
1771
+ "loss": 0.4002,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 1.35,
1776
+ "learning_rate": 1.2066190001892398e-05,
1777
+ "loss": 0.387,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 1.36,
1782
+ "learning_rate": 1.2017682156703807e-05,
1783
+ "loss": 0.3885,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 1.36,
1788
+ "learning_rate": 1.1969124769565485e-05,
1789
+ "loss": 0.4031,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 1.37,
1794
+ "learning_rate": 1.1920519032750269e-05,
1795
+ "loss": 0.3797,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 1.37,
1800
+ "learning_rate": 1.1871866139718167e-05,
1801
+ "loss": 0.3705,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 1.38,
1806
+ "learning_rate": 1.1823167285087064e-05,
1807
+ "loss": 0.3996,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 1.38,
1812
+ "learning_rate": 1.177442366460337e-05,
1813
+ "loss": 0.3883,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 1.38,
1818
+ "learning_rate": 1.1725636475112688e-05,
1819
+ "loss": 0.3968,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 1.39,
1824
+ "learning_rate": 1.167680691453039e-05,
1825
+ "loss": 0.3762,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 1.39,
1830
+ "learning_rate": 1.1627936181812233e-05,
1831
+ "loss": 0.4023,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 1.4,
1836
+ "learning_rate": 1.1579025476924912e-05,
1837
+ "loss": 0.3884,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 1.4,
1842
+ "learning_rate": 1.153007600081659e-05,
1843
+ "loss": 0.4205,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 1.41,
1848
+ "learning_rate": 1.1481088955387418e-05,
1849
+ "loss": 0.4153,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 1.41,
1854
+ "learning_rate": 1.1432065543460016e-05,
1855
+ "loss": 0.3908,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 1.42,
1860
+ "learning_rate": 1.1383006968749948e-05,
1861
+ "loss": 0.4012,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 1.42,
1866
+ "learning_rate": 1.1333914435836153e-05,
1867
+ "loss": 0.3788,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 1.43,
1872
+ "learning_rate": 1.1284789150131388e-05,
1873
+ "loss": 0.39,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 1.43,
1878
+ "learning_rate": 1.1235632317852605e-05,
1879
+ "loss": 0.3781,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 1.43,
1884
+ "learning_rate": 1.118644514599136e-05,
1885
+ "loss": 0.3866,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 1.44,
1890
+ "learning_rate": 1.1137228842284156e-05,
1891
+ "loss": 0.3831,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 1.44,
1896
+ "learning_rate": 1.1087984615182797e-05,
1897
+ "loss": 0.4087,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 1.45,
1902
+ "learning_rate": 1.1038713673824715e-05,
1903
+ "loss": 0.3871,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 1.45,
1908
+ "learning_rate": 1.0989417228003285e-05,
1909
+ "loss": 0.3844,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 1.46,
1914
+ "learning_rate": 1.094009648813811e-05,
1915
+ "loss": 0.3787,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 1.46,
1920
+ "learning_rate": 1.0890752665245312e-05,
1921
+ "loss": 0.3753,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 1.47,
1926
+ "learning_rate": 1.0841386970907786e-05,
1927
+ "loss": 0.3917,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 1.47,
1932
+ "learning_rate": 1.0792000617245461e-05,
1933
+ "loss": 0.3836,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 1.48,
1938
+ "learning_rate": 1.074259481688553e-05,
1939
+ "loss": 0.3996,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 1.48,
1944
+ "learning_rate": 1.0693170782932676e-05,
1945
+ "loss": 0.3912,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 1.49,
1950
+ "learning_rate": 1.0643729728939292e-05,
1951
+ "loss": 0.4158,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 1.49,
1956
+ "learning_rate": 1.0594272868875677e-05,
1957
+ "loss": 0.365,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 1.49,
1962
+ "learning_rate": 1.0544801417100228e-05,
1963
+ "loss": 0.3951,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 1.5,
1968
+ "learning_rate": 1.0495316588329634e-05,
1969
+ "loss": 0.4068,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 1.5,
1974
+ "learning_rate": 1.044581959760903e-05,
1975
+ "loss": 0.3909,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 1.51,
1980
+ "learning_rate": 1.0396311660282182e-05,
1981
+ "loss": 0.4009,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 1.51,
1986
+ "learning_rate": 1.0346793991961636e-05,
1987
+ "loss": 0.4002,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 1.52,
1992
+ "learning_rate": 1.0297267808498873e-05,
1993
+ "loss": 0.3741,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 1.52,
1998
+ "learning_rate": 1.0247734325954448e-05,
1999
+ "loss": 0.398,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 1.53,
2004
+ "learning_rate": 1.0198194760568144e-05,
2005
+ "loss": 0.3939,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 1.53,
2010
+ "learning_rate": 1.0148650328729097e-05,
2011
+ "loss": 0.3897,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 1.54,
2016
+ "learning_rate": 1.009910224694593e-05,
2017
+ "loss": 0.3933,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 1.54,
2022
+ "learning_rate": 1.0049551731816902e-05,
2023
+ "loss": 0.3876,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 1.54,
2028
+ "learning_rate": 1e-05,
2029
+ "loss": 0.3875,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 1.55,
2034
+ "learning_rate": 9.950448268183101e-06,
2035
+ "loss": 0.4196,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 1.55,
2040
+ "learning_rate": 9.900897753054071e-06,
2041
+ "loss": 0.4326,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 1.56,
2046
+ "learning_rate": 9.85134967127091e-06,
2047
+ "loss": 0.4109,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 1.56,
2052
+ "learning_rate": 9.80180523943186e-06,
2053
+ "loss": 0.3766,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 1.57,
2058
+ "learning_rate": 9.752265674045556e-06,
2059
+ "loss": 0.4007,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 1.57,
2064
+ "learning_rate": 9.702732191501129e-06,
2065
+ "loss": 0.3804,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 1.58,
2070
+ "learning_rate": 9.653206008038364e-06,
2071
+ "loss": 0.3891,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 1.58,
2076
+ "learning_rate": 9.603688339717818e-06,
2077
+ "loss": 0.4009,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 1.59,
2082
+ "learning_rate": 9.554180402390972e-06,
2083
+ "loss": 0.3607,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 1.59,
2088
+ "learning_rate": 9.50468341167037e-06,
2089
+ "loss": 0.405,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 1.6,
2094
+ "learning_rate": 9.455198582899773e-06,
2095
+ "loss": 0.3946,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 1.6,
2100
+ "learning_rate": 9.405727131124326e-06,
2101
+ "loss": 0.3944,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 1.6,
2106
+ "learning_rate": 9.356270271060711e-06,
2107
+ "loss": 0.4035,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 1.61,
2112
+ "learning_rate": 9.306829217067327e-06,
2113
+ "loss": 0.3789,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 1.61,
2118
+ "learning_rate": 9.257405183114473e-06,
2119
+ "loss": 0.39,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 1.62,
2124
+ "learning_rate": 9.20799938275454e-06,
2125
+ "loss": 0.4013,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 1.62,
2130
+ "learning_rate": 9.158613029092214e-06,
2131
+ "loss": 0.3797,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 1.63,
2136
+ "learning_rate": 9.10924733475469e-06,
2137
+ "loss": 0.3827,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 1.63,
2142
+ "learning_rate": 9.059903511861892e-06,
2143
+ "loss": 0.3887,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 1.64,
2148
+ "learning_rate": 9.010582771996718e-06,
2149
+ "loss": 0.3955,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 1.64,
2154
+ "learning_rate": 8.961286326175288e-06,
2155
+ "loss": 0.3779,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 1.65,
2160
+ "learning_rate": 8.912015384817207e-06,
2161
+ "loss": 0.402,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 1.65,
2166
+ "learning_rate": 8.862771157715847e-06,
2167
+ "loss": 0.4148,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 1.65,
2172
+ "learning_rate": 8.813554854008642e-06,
2173
+ "loss": 0.3745,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 1.66,
2178
+ "learning_rate": 8.764367682147396e-06,
2179
+ "loss": 0.3848,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 1.66,
2184
+ "learning_rate": 8.715210849868617e-06,
2185
+ "loss": 0.4093,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 1.67,
2190
+ "learning_rate": 8.666085564163852e-06,
2191
+ "loss": 0.4238,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 1.67,
2196
+ "learning_rate": 8.616993031250059e-06,
2197
+ "loss": 0.3783,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 1.68,
2202
+ "learning_rate": 8.567934456539985e-06,
2203
+ "loss": 0.3886,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 1.68,
2208
+ "learning_rate": 8.518911044612584e-06,
2209
+ "loss": 0.41,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 1.69,
2214
+ "learning_rate": 8.469923999183412e-06,
2215
+ "loss": 0.3998,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 1.69,
2220
+ "learning_rate": 8.42097452307509e-06,
2221
+ "loss": 0.3921,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 1.7,
2226
+ "learning_rate": 8.372063818187768e-06,
2227
+ "loss": 0.3969,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 1.7,
2232
+ "learning_rate": 8.323193085469615e-06,
2233
+ "loss": 0.4243,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 1.71,
2238
+ "learning_rate": 8.274363524887315e-06,
2239
+ "loss": 0.3838,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 1.71,
2244
+ "learning_rate": 8.225576335396632e-06,
2245
+ "loss": 0.4145,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 1.71,
2250
+ "learning_rate": 8.176832714912942e-06,
2251
+ "loss": 0.3778,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 1.72,
2256
+ "learning_rate": 8.128133860281838e-06,
2257
+ "loss": 0.4341,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 1.72,
2262
+ "learning_rate": 8.079480967249738e-06,
2263
+ "loss": 0.4378,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 1.73,
2268
+ "learning_rate": 8.030875230434517e-06,
2269
+ "loss": 0.4016,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 1.73,
2274
+ "learning_rate": 7.982317843296192e-06,
2275
+ "loss": 0.4061,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 1.74,
2280
+ "learning_rate": 7.933809998107604e-06,
2281
+ "loss": 0.398,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 1.74,
2286
+ "learning_rate": 7.885352885925139e-06,
2287
+ "loss": 0.3965,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 1.75,
2292
+ "learning_rate": 7.836947696559499e-06,
2293
+ "loss": 0.3726,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 1.75,
2298
+ "learning_rate": 7.788595618546474e-06,
2299
+ "loss": 0.3898,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 1.76,
2304
+ "learning_rate": 7.740297839117763e-06,
2305
+ "loss": 0.3583,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 1.76,
2310
+ "learning_rate": 7.692055544171823e-06,
2311
+ "loss": 0.3738,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 1.76,
2316
+ "learning_rate": 7.643869918244759e-06,
2317
+ "loss": 0.3947,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 1.77,
2322
+ "learning_rate": 7.595742144481223e-06,
2323
+ "loss": 0.4034,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 1.77,
2328
+ "learning_rate": 7.547673404605372e-06,
2329
+ "loss": 0.384,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 1.78,
2334
+ "learning_rate": 7.4996648788918505e-06,
2335
+ "loss": 0.4198,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 1.78,
2340
+ "learning_rate": 7.4517177461368195e-06,
2341
+ "loss": 0.4072,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 1.79,
2346
+ "learning_rate": 7.403833183628995e-06,
2347
+ "loss": 0.3998,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 1.79,
2352
+ "learning_rate": 7.356012367120753e-06,
2353
+ "loss": 0.4055,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 1.8,
2358
+ "learning_rate": 7.308256470799255e-06,
2359
+ "loss": 0.4153,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 1.8,
2364
+ "learning_rate": 7.26056666725762e-06,
2365
+ "loss": 0.3925,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 1.81,
2370
+ "learning_rate": 7.212944127466135e-06,
2371
+ "loss": 0.4064,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 1.81,
2376
+ "learning_rate": 7.165390020743498e-06,
2377
+ "loss": 0.4028,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 1.82,
2382
+ "learning_rate": 7.117905514728107e-06,
2383
+ "loss": 0.3929,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 1.82,
2388
+ "learning_rate": 7.070491775349396e-06,
2389
+ "loss": 0.4253,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 1.82,
2394
+ "learning_rate": 7.023149966799198e-06,
2395
+ "loss": 0.4012,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 1.83,
2400
+ "learning_rate": 6.975881251503169e-06,
2401
+ "loss": 0.3896,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 1.83,
2406
+ "learning_rate": 6.928686790092235e-06,
2407
+ "loss": 0.3987,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 1.84,
2412
+ "learning_rate": 6.8815677413741074e-06,
2413
+ "loss": 0.3999,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 1.84,
2418
+ "learning_rate": 6.834525262304818e-06,
2419
+ "loss": 0.4174,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 1.85,
2424
+ "learning_rate": 6.787560507960316e-06,
2425
+ "loss": 0.3844,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 1.85,
2430
+ "learning_rate": 6.740674631508105e-06,
2431
+ "loss": 0.3798,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 1.86,
2436
+ "learning_rate": 6.693868784178934e-06,
2437
+ "loss": 0.3733,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 1.86,
2442
+ "learning_rate": 6.64714411523852e-06,
2443
+ "loss": 0.3948,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 1.87,
2448
+ "learning_rate": 6.600501771959338e-06,
2449
+ "loss": 0.3931,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 1.87,
2454
+ "learning_rate": 6.553942899592447e-06,
2455
+ "loss": 0.3851,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 1.87,
2460
+ "learning_rate": 6.507468641339371e-06,
2461
+ "loss": 0.3872,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 1.88,
2466
+ "learning_rate": 6.461080138324025e-06,
2467
+ "loss": 0.3883,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 1.88,
2472
+ "learning_rate": 6.414778529564701e-06,
2473
+ "loss": 0.4104,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 1.89,
2478
+ "learning_rate": 6.3685649519461035e-06,
2479
+ "loss": 0.3942,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 1.89,
2484
+ "learning_rate": 6.322440540191421e-06,
2485
+ "loss": 0.3965,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 1.9,
2490
+ "learning_rate": 6.276406426834479e-06,
2491
+ "loss": 0.393,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 1.9,
2496
+ "learning_rate": 6.230463742191926e-06,
2497
+ "loss": 0.3936,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 1.91,
2502
+ "learning_rate": 6.184613614335476e-06,
2503
+ "loss": 0.3762,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 1.91,
2508
+ "learning_rate": 6.138857169064216e-06,
2509
+ "loss": 0.3824,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 1.92,
2514
+ "learning_rate": 6.093195529876963e-06,
2515
+ "loss": 0.3739,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 1.92,
2520
+ "learning_rate": 6.047629817944672e-06,
2521
+ "loss": 0.3943,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 1.93,
2526
+ "learning_rate": 6.002161152082909e-06,
2527
+ "loss": 0.3796,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 1.93,
2532
+ "learning_rate": 5.956790648724389e-06,
2533
+ "loss": 0.4059,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 1.93,
2538
+ "learning_rate": 5.911519421891546e-06,
2539
+ "loss": 0.4164,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 1.94,
2544
+ "learning_rate": 5.866348583169199e-06,
2545
+ "loss": 0.4223,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 1.94,
2550
+ "learning_rate": 5.821279241677238e-06,
2551
+ "loss": 0.3837,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 1.95,
2556
+ "learning_rate": 5.7763125040434084e-06,
2557
+ "loss": 0.39,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 1.95,
2562
+ "learning_rate": 5.731449474376134e-06,
2563
+ "loss": 0.4024,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 1.96,
2568
+ "learning_rate": 5.686691254237391e-06,
2569
+ "loss": 0.3991,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 1.96,
2574
+ "learning_rate": 5.6420389426156815e-06,
2575
+ "loss": 0.3815,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 1.97,
2580
+ "learning_rate": 5.597493635899048e-06,
2581
+ "loss": 0.3908,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 1.97,
2586
+ "learning_rate": 5.553056427848136e-06,
2587
+ "loss": 0.3969,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 1.98,
2592
+ "learning_rate": 5.508728409569354e-06,
2593
+ "loss": 0.3771,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 1.98,
2598
+ "learning_rate": 5.4645106694880735e-06,
2599
+ "loss": 0.3837,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 1.98,
2604
+ "learning_rate": 5.420404293321909e-06,
2605
+ "loss": 0.3788,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 1.99,
2610
+ "learning_rate": 5.376410364054052e-06,
2611
+ "loss": 0.4118,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 1.99,
2616
+ "learning_rate": 5.332529961906699e-06,
2617
+ "loss": 0.3804,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 2.0,
2622
+ "learning_rate": 5.288764164314499e-06,
2623
+ "loss": 0.4005,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 2.0,
2628
+ "learning_rate": 5.245114045898118e-06,
2629
+ "loss": 0.308,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 2.01,
2634
+ "learning_rate": 5.201580678437852e-06,
2635
+ "loss": 0.2691,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 2.01,
2640
+ "learning_rate": 5.158165130847301e-06,
2641
+ "loss": 0.2466,
2642
+ "step": 439
2643
+ },
2644
+ {
2645
+ "epoch": 2.02,
2646
+ "learning_rate": 5.11486846914713e-06,
2647
+ "loss": 0.2611,
2648
+ "step": 440
2649
+ },
2650
+ {
2651
+ "epoch": 2.02,
2652
+ "learning_rate": 5.071691756438897e-06,
2653
+ "loss": 0.2371,
2654
+ "step": 441
2655
+ },
2656
+ {
2657
+ "epoch": 2.03,
2658
+ "learning_rate": 5.028636052878938e-06,
2659
+ "loss": 0.2318,
2660
+ "step": 442
2661
+ },
2662
+ {
2663
+ "epoch": 2.03,
2664
+ "learning_rate": 4.98570241565235e-06,
2665
+ "loss": 0.2635,
2666
+ "step": 443
2667
+ },
2668
+ {
2669
+ "epoch": 2.04,
2670
+ "learning_rate": 4.942891898947024e-06,
2671
+ "loss": 0.2503,
2672
+ "step": 444
2673
+ },
2674
+ {
2675
+ "epoch": 2.04,
2676
+ "learning_rate": 4.900205553927761e-06,
2677
+ "loss": 0.2528,
2678
+ "step": 445
2679
+ },
2680
+ {
2681
+ "epoch": 2.04,
2682
+ "learning_rate": 4.85764442871047e-06,
2683
+ "loss": 0.2505,
2684
+ "step": 446
2685
+ },
2686
+ {
2687
+ "epoch": 2.05,
2688
+ "learning_rate": 4.815209568336416e-06,
2689
+ "loss": 0.2666,
2690
+ "step": 447
2691
+ },
2692
+ {
2693
+ "epoch": 2.05,
2694
+ "learning_rate": 4.772902014746583e-06,
2695
+ "loss": 0.2561,
2696
+ "step": 448
2697
+ },
2698
+ {
2699
+ "epoch": 2.06,
2700
+ "learning_rate": 4.730722806756069e-06,
2701
+ "loss": 0.2466,
2702
+ "step": 449
2703
+ },
2704
+ {
2705
+ "epoch": 2.06,
2706
+ "learning_rate": 4.68867298002859e-06,
2707
+ "loss": 0.249,
2708
+ "step": 450
2709
+ },
2710
+ {
2711
+ "epoch": 2.07,
2712
+ "learning_rate": 4.646753567051052e-06,
2713
+ "loss": 0.2375,
2714
+ "step": 451
2715
+ },
2716
+ {
2717
+ "epoch": 2.07,
2718
+ "learning_rate": 4.604965597108192e-06,
2719
+ "loss": 0.2388,
2720
+ "step": 452
2721
+ },
2722
+ {
2723
+ "epoch": 2.08,
2724
+ "learning_rate": 4.563310096257309e-06,
2725
+ "loss": 0.2624,
2726
+ "step": 453
2727
+ },
2728
+ {
2729
+ "epoch": 2.08,
2730
+ "learning_rate": 4.521788087303074e-06,
2731
+ "loss": 0.2565,
2732
+ "step": 454
2733
+ },
2734
+ {
2735
+ "epoch": 2.09,
2736
+ "learning_rate": 4.480400589772409e-06,
2737
+ "loss": 0.2565,
2738
+ "step": 455
2739
+ },
2740
+ {
2741
+ "epoch": 2.09,
2742
+ "learning_rate": 4.439148619889451e-06,
2743
+ "loss": 0.271,
2744
+ "step": 456
2745
+ },
2746
+ {
2747
+ "epoch": 2.09,
2748
+ "learning_rate": 4.398033190550626e-06,
2749
+ "loss": 0.2154,
2750
+ "step": 457
2751
+ },
2752
+ {
2753
+ "epoch": 2.1,
2754
+ "learning_rate": 4.357055311299736e-06,
2755
+ "loss": 0.2548,
2756
+ "step": 458
2757
+ },
2758
+ {
2759
+ "epoch": 2.1,
2760
+ "learning_rate": 4.316215988303204e-06,
2761
+ "loss": 0.2664,
2762
+ "step": 459
2763
+ },
2764
+ {
2765
+ "epoch": 2.11,
2766
+ "learning_rate": 4.275516224325356e-06,
2767
+ "loss": 0.2496,
2768
+ "step": 460
2769
+ },
2770
+ {
2771
+ "epoch": 2.11,
2772
+ "learning_rate": 4.2349570187037995e-06,
2773
+ "loss": 0.2491,
2774
+ "step": 461
2775
+ },
2776
+ {
2777
+ "epoch": 2.12,
2778
+ "learning_rate": 4.194539367324888e-06,
2779
+ "loss": 0.2364,
2780
+ "step": 462
2781
+ },
2782
+ {
2783
+ "epoch": 2.12,
2784
+ "learning_rate": 4.154264262599268e-06,
2785
+ "loss": 0.2337,
2786
+ "step": 463
2787
+ },
2788
+ {
2789
+ "epoch": 2.13,
2790
+ "learning_rate": 4.114132693437511e-06,
2791
+ "loss": 0.2436,
2792
+ "step": 464
2793
+ },
2794
+ {
2795
+ "epoch": 2.13,
2796
+ "learning_rate": 4.074145645225831e-06,
2797
+ "loss": 0.214,
2798
+ "step": 465
2799
+ },
2800
+ {
2801
+ "epoch": 2.14,
2802
+ "learning_rate": 4.034304099801891e-06,
2803
+ "loss": 0.2546,
2804
+ "step": 466
2805
+ },
2806
+ {
2807
+ "epoch": 2.14,
2808
+ "learning_rate": 3.994609035430695e-06,
2809
+ "loss": 0.2525,
2810
+ "step": 467
2811
+ },
2812
+ {
2813
+ "epoch": 2.15,
2814
+ "learning_rate": 3.955061426780562e-06,
2815
+ "loss": 0.2376,
2816
+ "step": 468
2817
+ },
2818
+ {
2819
+ "epoch": 2.15,
2820
+ "learning_rate": 3.915662244899206e-06,
2821
+ "loss": 0.2485,
2822
+ "step": 469
2823
+ },
2824
+ {
2825
+ "epoch": 2.15,
2826
+ "learning_rate": 3.876412457189883e-06,
2827
+ "loss": 0.2488,
2828
+ "step": 470
2829
+ },
2830
+ {
2831
+ "epoch": 2.16,
2832
+ "learning_rate": 3.83731302738764e-06,
2833
+ "loss": 0.2323,
2834
+ "step": 471
2835
+ },
2836
+ {
2837
+ "epoch": 2.16,
2838
+ "learning_rate": 3.7983649155356537e-06,
2839
+ "loss": 0.2256,
2840
+ "step": 472
2841
+ },
2842
+ {
2843
+ "epoch": 2.17,
2844
+ "learning_rate": 3.7595690779616555e-06,
2845
+ "loss": 0.2402,
2846
+ "step": 473
2847
+ },
2848
+ {
2849
+ "epoch": 2.17,
2850
+ "learning_rate": 3.7209264672544498e-06,
2851
+ "loss": 0.2299,
2852
+ "step": 474
2853
+ },
2854
+ {
2855
+ "epoch": 2.18,
2856
+ "learning_rate": 3.6824380322405273e-06,
2857
+ "loss": 0.2454,
2858
+ "step": 475
2859
+ },
2860
+ {
2861
+ "epoch": 2.18,
2862
+ "learning_rate": 3.6441047179607616e-06,
2863
+ "loss": 0.2483,
2864
+ "step": 476
2865
+ },
2866
+ {
2867
+ "epoch": 2.19,
2868
+ "learning_rate": 3.6059274656472133e-06,
2869
+ "loss": 0.2586,
2870
+ "step": 477
2871
+ },
2872
+ {
2873
+ "epoch": 2.19,
2874
+ "learning_rate": 3.56790721270001e-06,
2875
+ "loss": 0.245,
2876
+ "step": 478
2877
+ },
2878
+ {
2879
+ "epoch": 2.2,
2880
+ "learning_rate": 3.530044892664335e-06,
2881
+ "loss": 0.2452,
2882
+ "step": 479
2883
+ },
2884
+ {
2885
+ "epoch": 2.2,
2886
+ "learning_rate": 3.492341435207509e-06,
2887
+ "loss": 0.2273,
2888
+ "step": 480
2889
+ },
2890
+ {
2891
+ "epoch": 2.2,
2892
+ "learning_rate": 3.4547977660961506e-06,
2893
+ "loss": 0.2676,
2894
+ "step": 481
2895
+ },
2896
+ {
2897
+ "epoch": 2.21,
2898
+ "learning_rate": 3.417414807173457e-06,
2899
+ "loss": 0.2862,
2900
+ "step": 482
2901
+ },
2902
+ {
2903
+ "epoch": 2.21,
2904
+ "learning_rate": 3.380193476336564e-06,
2905
+ "loss": 0.2408,
2906
+ "step": 483
2907
+ },
2908
+ {
2909
+ "epoch": 2.22,
2910
+ "learning_rate": 3.343134687514007e-06,
2911
+ "loss": 0.2524,
2912
+ "step": 484
2913
+ },
2914
+ {
2915
+ "epoch": 2.22,
2916
+ "learning_rate": 3.3062393506432843e-06,
2917
+ "loss": 0.2409,
2918
+ "step": 485
2919
+ },
2920
+ {
2921
+ "epoch": 2.23,
2922
+ "learning_rate": 3.269508371648512e-06,
2923
+ "loss": 0.2479,
2924
+ "step": 486
2925
+ },
2926
+ {
2927
+ "epoch": 2.23,
2928
+ "learning_rate": 3.232942652418185e-06,
2929
+ "loss": 0.2586,
2930
+ "step": 487
2931
+ },
2932
+ {
2933
+ "epoch": 2.24,
2934
+ "learning_rate": 3.1965430907830164e-06,
2935
+ "loss": 0.243,
2936
+ "step": 488
2937
+ },
2938
+ {
2939
+ "epoch": 2.24,
2940
+ "learning_rate": 3.1603105804939137e-06,
2941
+ "loss": 0.2356,
2942
+ "step": 489
2943
+ },
2944
+ {
2945
+ "epoch": 2.25,
2946
+ "learning_rate": 3.124246011200018e-06,
2947
+ "loss": 0.2501,
2948
+ "step": 490
2949
+ },
2950
+ {
2951
+ "epoch": 2.25,
2952
+ "learning_rate": 3.0883502684268753e-06,
2953
+ "loss": 0.2669,
2954
+ "step": 491
2955
+ },
2956
+ {
2957
+ "epoch": 2.26,
2958
+ "learning_rate": 3.052624233554672e-06,
2959
+ "loss": 0.2252,
2960
+ "step": 492
2961
+ },
2962
+ {
2963
+ "epoch": 2.26,
2964
+ "learning_rate": 3.0170687837966093e-06,
2965
+ "loss": 0.2598,
2966
+ "step": 493
2967
+ },
2968
+ {
2969
+ "epoch": 2.26,
2970
+ "learning_rate": 2.9816847921773616e-06,
2971
+ "loss": 0.2389,
2972
+ "step": 494
2973
+ },
2974
+ {
2975
+ "epoch": 2.27,
2976
+ "learning_rate": 2.9464731275116355e-06,
2977
+ "loss": 0.2464,
2978
+ "step": 495
2979
+ },
2980
+ {
2981
+ "epoch": 2.27,
2982
+ "learning_rate": 2.911434654382843e-06,
2983
+ "loss": 0.2476,
2984
+ "step": 496
2985
+ },
2986
+ {
2987
+ "epoch": 2.28,
2988
+ "learning_rate": 2.876570233121867e-06,
2989
+ "loss": 0.2375,
2990
+ "step": 497
2991
+ },
2992
+ {
2993
+ "epoch": 2.28,
2994
+ "learning_rate": 2.8418807197859423e-06,
2995
+ "loss": 0.2472,
2996
+ "step": 498
2997
+ },
2998
+ {
2999
+ "epoch": 2.29,
3000
+ "learning_rate": 2.8073669661376325e-06,
3001
+ "loss": 0.2643,
3002
+ "step": 499
3003
+ },
3004
+ {
3005
+ "epoch": 2.29,
3006
+ "learning_rate": 2.773029819623916e-06,
3007
+ "loss": 0.2446,
3008
+ "step": 500
3009
+ },
3010
+ {
3011
+ "epoch": 2.3,
3012
+ "learning_rate": 2.7388701233553806e-06,
3013
+ "loss": 0.2544,
3014
+ "step": 501
3015
+ },
3016
+ {
3017
+ "epoch": 2.3,
3018
+ "learning_rate": 2.704888716085513e-06,
3019
+ "loss": 0.2338,
3020
+ "step": 502
3021
+ },
3022
+ {
3023
+ "epoch": 2.31,
3024
+ "learning_rate": 2.6710864321901255e-06,
3025
+ "loss": 0.2452,
3026
+ "step": 503
3027
+ },
3028
+ {
3029
+ "epoch": 2.31,
3030
+ "learning_rate": 2.6374641016468416e-06,
3031
+ "loss": 0.2544,
3032
+ "step": 504
3033
+ },
3034
+ {
3035
+ "epoch": 2.31,
3036
+ "learning_rate": 2.6040225500147365e-06,
3037
+ "loss": 0.2386,
3038
+ "step": 505
3039
+ },
3040
+ {
3041
+ "epoch": 2.32,
3042
+ "learning_rate": 2.570762598414052e-06,
3043
+ "loss": 0.2386,
3044
+ "step": 506
3045
+ },
3046
+ {
3047
+ "epoch": 2.32,
3048
+ "learning_rate": 2.537685063506048e-06,
3049
+ "loss": 0.2498,
3050
+ "step": 507
3051
+ },
3052
+ {
3053
+ "epoch": 2.33,
3054
+ "learning_rate": 2.5047907574729446e-06,
3055
+ "loss": 0.2294,
3056
+ "step": 508
3057
+ },
3058
+ {
3059
+ "epoch": 2.33,
3060
+ "learning_rate": 2.47208048799798e-06,
3061
+ "loss": 0.2408,
3062
+ "step": 509
3063
+ },
3064
+ {
3065
+ "epoch": 2.34,
3066
+ "learning_rate": 2.4395550582455774e-06,
3067
+ "loss": 0.268,
3068
+ "step": 510
3069
+ },
3070
+ {
3071
+ "epoch": 2.34,
3072
+ "learning_rate": 2.407215266841624e-06,
3073
+ "loss": 0.2575,
3074
+ "step": 511
3075
+ },
3076
+ {
3077
+ "epoch": 2.35,
3078
+ "learning_rate": 2.3750619078538663e-06,
3079
+ "loss": 0.244,
3080
+ "step": 512
3081
+ },
3082
+ {
3083
+ "epoch": 2.35,
3084
+ "learning_rate": 2.3430957707724057e-06,
3085
+ "loss": 0.2641,
3086
+ "step": 513
3087
+ },
3088
+ {
3089
+ "epoch": 2.36,
3090
+ "learning_rate": 2.3113176404903226e-06,
3091
+ "loss": 0.2429,
3092
+ "step": 514
3093
+ },
3094
+ {
3095
+ "epoch": 2.36,
3096
+ "learning_rate": 2.279728297284394e-06,
3097
+ "loss": 0.2208,
3098
+ "step": 515
3099
+ },
3100
+ {
3101
+ "epoch": 2.37,
3102
+ "learning_rate": 2.24832851679594e-06,
3103
+ "loss": 0.2324,
3104
+ "step": 516
3105
+ },
3106
+ {
3107
+ "epoch": 2.37,
3108
+ "learning_rate": 2.217119070011781e-06,
3109
+ "loss": 0.2445,
3110
+ "step": 517
3111
+ },
3112
+ {
3113
+ "epoch": 2.37,
3114
+ "learning_rate": 2.186100723245299e-06,
3115
+ "loss": 0.2358,
3116
+ "step": 518
3117
+ },
3118
+ {
3119
+ "epoch": 2.38,
3120
+ "learning_rate": 2.155274238117633e-06,
3121
+ "loss": 0.2515,
3122
+ "step": 519
3123
+ },
3124
+ {
3125
+ "epoch": 2.38,
3126
+ "learning_rate": 2.1246403715389675e-06,
3127
+ "loss": 0.2297,
3128
+ "step": 520
3129
+ },
3130
+ {
3131
+ "epoch": 2.39,
3132
+ "learning_rate": 2.094199875689954e-06,
3133
+ "loss": 0.2435,
3134
+ "step": 521
3135
+ },
3136
+ {
3137
+ "epoch": 2.39,
3138
+ "learning_rate": 2.063953498003239e-06,
3139
+ "loss": 0.2678,
3140
+ "step": 522
3141
+ },
3142
+ {
3143
+ "epoch": 2.4,
3144
+ "learning_rate": 2.0339019811451154e-06,
3145
+ "loss": 0.2391,
3146
+ "step": 523
3147
+ },
3148
+ {
3149
+ "epoch": 2.4,
3150
+ "learning_rate": 2.004046062997279e-06,
3151
+ "loss": 0.2507,
3152
+ "step": 524
3153
+ },
3154
+ {
3155
+ "epoch": 2.41,
3156
+ "learning_rate": 1.9743864766387198e-06,
3157
+ "loss": 0.2638,
3158
+ "step": 525
3159
+ },
3160
+ {
3161
+ "epoch": 2.41,
3162
+ "learning_rate": 1.9449239503277197e-06,
3163
+ "loss": 0.2337,
3164
+ "step": 526
3165
+ },
3166
+ {
3167
+ "epoch": 2.42,
3168
+ "learning_rate": 1.915659207483964e-06,
3169
+ "loss": 0.2499,
3170
+ "step": 527
3171
+ },
3172
+ {
3173
+ "epoch": 2.42,
3174
+ "learning_rate": 1.8865929666707895e-06,
3175
+ "loss": 0.2398,
3176
+ "step": 528
3177
+ },
3178
+ {
3179
+ "epoch": 2.42,
3180
+ "learning_rate": 1.857725941577534e-06,
3181
+ "loss": 0.2344,
3182
+ "step": 529
3183
+ },
3184
+ {
3185
+ "epoch": 2.43,
3186
+ "learning_rate": 1.8290588410020116e-06,
3187
+ "loss": 0.242,
3188
+ "step": 530
3189
+ },
3190
+ {
3191
+ "epoch": 2.43,
3192
+ "learning_rate": 1.8005923688331152e-06,
3193
+ "loss": 0.2239,
3194
+ "step": 531
3195
+ },
3196
+ {
3197
+ "epoch": 2.44,
3198
+ "learning_rate": 1.7723272240335264e-06,
3199
+ "loss": 0.2541,
3200
+ "step": 532
3201
+ },
3202
+ {
3203
+ "epoch": 2.44,
3204
+ "learning_rate": 1.744264100622558e-06,
3205
+ "loss": 0.2569,
3206
+ "step": 533
3207
+ },
3208
+ {
3209
+ "epoch": 2.45,
3210
+ "learning_rate": 1.7164036876591106e-06,
3211
+ "loss": 0.2348,
3212
+ "step": 534
3213
+ },
3214
+ {
3215
+ "epoch": 2.45,
3216
+ "learning_rate": 1.6887466692247556e-06,
3217
+ "loss": 0.2576,
3218
+ "step": 535
3219
+ },
3220
+ {
3221
+ "epoch": 2.46,
3222
+ "learning_rate": 1.6612937244069326e-06,
3223
+ "loss": 0.249,
3224
+ "step": 536
3225
+ },
3226
+ {
3227
+ "epoch": 2.46,
3228
+ "learning_rate": 1.6340455272822896e-06,
3229
+ "loss": 0.2381,
3230
+ "step": 537
3231
+ },
3232
+ {
3233
+ "epoch": 2.47,
3234
+ "learning_rate": 1.6070027469001115e-06,
3235
+ "loss": 0.2363,
3236
+ "step": 538
3237
+ },
3238
+ {
3239
+ "epoch": 2.47,
3240
+ "learning_rate": 1.5801660472659075e-06,
3241
+ "loss": 0.2388,
3242
+ "step": 539
3243
+ },
3244
+ {
3245
+ "epoch": 2.48,
3246
+ "learning_rate": 1.5535360873251026e-06,
3247
+ "loss": 0.2289,
3248
+ "step": 540
3249
+ },
3250
+ {
3251
+ "epoch": 2.48,
3252
+ "learning_rate": 1.5271135209468546e-06,
3253
+ "loss": 0.2513,
3254
+ "step": 541
3255
+ },
3256
+ {
3257
+ "epoch": 2.48,
3258
+ "learning_rate": 1.5008989969080067e-06,
3259
+ "loss": 0.259,
3260
+ "step": 542
3261
+ },
3262
+ {
3263
+ "epoch": 2.49,
3264
+ "learning_rate": 1.4748931588771486e-06,
3265
+ "loss": 0.2364,
3266
+ "step": 543
3267
+ },
3268
+ {
3269
+ "epoch": 2.49,
3270
+ "learning_rate": 1.4490966453988187e-06,
3271
+ "loss": 0.2582,
3272
+ "step": 544
3273
+ },
3274
+ {
3275
+ "epoch": 2.5,
3276
+ "learning_rate": 1.423510089877823e-06,
3277
+ "loss": 0.2357,
3278
+ "step": 545
3279
+ },
3280
+ {
3281
+ "epoch": 2.5,
3282
+ "learning_rate": 1.3981341205636823e-06,
3283
+ "loss": 0.2291,
3284
+ "step": 546
3285
+ },
3286
+ {
3287
+ "epoch": 2.51,
3288
+ "learning_rate": 1.3729693605352057e-06,
3289
+ "loss": 0.252,
3290
+ "step": 547
3291
+ },
3292
+ {
3293
+ "epoch": 2.51,
3294
+ "learning_rate": 1.3480164276851925e-06,
3295
+ "loss": 0.2429,
3296
+ "step": 548
3297
+ },
3298
+ {
3299
+ "epoch": 2.52,
3300
+ "learning_rate": 1.3232759347052604e-06,
3301
+ "loss": 0.2409,
3302
+ "step": 549
3303
+ },
3304
+ {
3305
+ "epoch": 2.52,
3306
+ "learning_rate": 1.2987484890708024e-06,
3307
+ "loss": 0.2284,
3308
+ "step": 550
3309
+ },
3310
+ {
3311
+ "epoch": 2.53,
3312
+ "learning_rate": 1.2744346930260687e-06,
3313
+ "loss": 0.2263,
3314
+ "step": 551
3315
+ },
3316
+ {
3317
+ "epoch": 2.53,
3318
+ "learning_rate": 1.250335143569381e-06,
3319
+ "loss": 0.2392,
3320
+ "step": 552
3321
+ },
3322
+ {
3323
+ "epoch": 2.53,
3324
+ "learning_rate": 1.226450432438474e-06,
3325
+ "loss": 0.2473,
3326
+ "step": 553
3327
+ },
3328
+ {
3329
+ "epoch": 2.54,
3330
+ "learning_rate": 1.2027811460959648e-06,
3331
+ "loss": 0.2601,
3332
+ "step": 554
3333
+ },
3334
+ {
3335
+ "epoch": 2.54,
3336
+ "learning_rate": 1.1793278657149532e-06,
3337
+ "loss": 0.255,
3338
+ "step": 555
3339
+ },
3340
+ {
3341
+ "epoch": 2.55,
3342
+ "learning_rate": 1.1560911671647535e-06,
3343
+ "loss": 0.2579,
3344
+ "step": 556
3345
+ },
3346
+ {
3347
+ "epoch": 2.55,
3348
+ "learning_rate": 1.1330716209967506e-06,
3349
+ "loss": 0.2317,
3350
+ "step": 557
3351
+ },
3352
+ {
3353
+ "epoch": 2.56,
3354
+ "learning_rate": 1.110269792430393e-06,
3355
+ "loss": 0.2527,
3356
+ "step": 558
3357
+ },
3358
+ {
3359
+ "epoch": 2.56,
3360
+ "learning_rate": 1.0876862413393196e-06,
3361
+ "loss": 0.2591,
3362
+ "step": 559
3363
+ },
3364
+ {
3365
+ "epoch": 2.57,
3366
+ "learning_rate": 1.0653215222376045e-06,
3367
+ "loss": 0.2243,
3368
+ "step": 560
3369
+ },
3370
+ {
3371
+ "epoch": 2.57,
3372
+ "learning_rate": 1.0431761842661437e-06,
3373
+ "loss": 0.2433,
3374
+ "step": 561
3375
+ },
3376
+ {
3377
+ "epoch": 2.58,
3378
+ "learning_rate": 1.021250771179173e-06,
3379
+ "loss": 0.2438,
3380
+ "step": 562
3381
+ },
3382
+ {
3383
+ "epoch": 2.58,
3384
+ "learning_rate": 9.995458213309184e-07,
3385
+ "loss": 0.2494,
3386
+ "step": 563
3387
+ },
3388
+ {
3389
+ "epoch": 2.59,
3390
+ "learning_rate": 9.780618676623722e-07,
3391
+ "loss": 0.2426,
3392
+ "step": 564
3393
+ },
3394
+ {
3395
+ "epoch": 2.59,
3396
+ "learning_rate": 9.56799437688214e-07,
3397
+ "loss": 0.2514,
3398
+ "step": 565
3399
+ },
3400
+ {
3401
+ "epoch": 2.59,
3402
+ "learning_rate": 9.357590534838534e-07,
3403
+ "loss": 0.2477,
3404
+ "step": 566
3405
+ },
3406
+ {
3407
+ "epoch": 2.6,
3408
+ "learning_rate": 9.149412316726081e-07,
3409
+ "loss": 0.2353,
3410
+ "step": 567
3411
+ },
3412
+ {
3413
+ "epoch": 2.6,
3414
+ "learning_rate": 8.943464834130288e-07,
3415
+ "loss": 0.249,
3416
+ "step": 568
3417
+ },
3418
+ {
3419
+ "epoch": 2.61,
3420
+ "learning_rate": 8.739753143863383e-07,
3421
+ "loss": 0.2286,
3422
+ "step": 569
3423
+ },
3424
+ {
3425
+ "epoch": 2.61,
3426
+ "learning_rate": 8.538282247840201e-07,
3427
+ "loss": 0.2453,
3428
+ "step": 570
3429
+ },
3430
+ {
3431
+ "epoch": 2.62,
3432
+ "learning_rate": 8.339057092955383e-07,
3433
+ "loss": 0.2489,
3434
+ "step": 571
3435
+ },
3436
+ {
3437
+ "epoch": 2.62,
3438
+ "learning_rate": 8.142082570961851e-07,
3439
+ "loss": 0.2373,
3440
+ "step": 572
3441
+ },
3442
+ {
3443
+ "epoch": 2.63,
3444
+ "learning_rate": 7.947363518350748e-07,
3445
+ "loss": 0.2366,
3446
+ "step": 573
3447
+ },
3448
+ {
3449
+ "epoch": 2.63,
3450
+ "learning_rate": 7.754904716232647e-07,
3451
+ "loss": 0.2285,
3452
+ "step": 574
3453
+ },
3454
+ {
3455
+ "epoch": 2.64,
3456
+ "learning_rate": 7.564710890220183e-07,
3457
+ "loss": 0.2732,
3458
+ "step": 575
3459
+ },
3460
+ {
3461
+ "epoch": 2.64,
3462
+ "learning_rate": 7.376786710312045e-07,
3463
+ "loss": 0.245,
3464
+ "step": 576
3465
+ },
3466
+ {
3467
+ "epoch": 2.64,
3468
+ "learning_rate": 7.191136790778208e-07,
3469
+ "loss": 0.2544,
3470
+ "step": 577
3471
+ },
3472
+ {
3473
+ "epoch": 2.65,
3474
+ "learning_rate": 7.007765690046775e-07,
3475
+ "loss": 0.2482,
3476
+ "step": 578
3477
+ },
3478
+ {
3479
+ "epoch": 2.65,
3480
+ "learning_rate": 6.826677910591928e-07,
3481
+ "loss": 0.2538,
3482
+ "step": 579
3483
+ },
3484
+ {
3485
+ "epoch": 2.66,
3486
+ "learning_rate": 6.647877898823463e-07,
3487
+ "loss": 0.2493,
3488
+ "step": 580
3489
+ },
3490
+ {
3491
+ "epoch": 2.66,
3492
+ "learning_rate": 6.47137004497751e-07,
3493
+ "loss": 0.2654,
3494
+ "step": 581
3495
+ },
3496
+ {
3497
+ "epoch": 2.67,
3498
+ "learning_rate": 6.297158683008897e-07,
3499
+ "loss": 0.2262,
3500
+ "step": 582
3501
+ },
3502
+ {
3503
+ "epoch": 2.67,
3504
+ "learning_rate": 6.125248090484581e-07,
3505
+ "loss": 0.2535,
3506
+ "step": 583
3507
+ },
3508
+ {
3509
+ "epoch": 2.68,
3510
+ "learning_rate": 5.955642488478675e-07,
3511
+ "loss": 0.2478,
3512
+ "step": 584
3513
+ },
3514
+ {
3515
+ "epoch": 2.68,
3516
+ "learning_rate": 5.788346041468796e-07,
3517
+ "loss": 0.251,
3518
+ "step": 585
3519
+ },
3520
+ {
3521
+ "epoch": 2.69,
3522
+ "learning_rate": 5.623362857233838e-07,
3523
+ "loss": 0.2515,
3524
+ "step": 586
3525
+ },
3526
+ {
3527
+ "epoch": 2.69,
3528
+ "learning_rate": 5.4606969867531e-07,
3529
+ "loss": 0.2181,
3530
+ "step": 587
3531
+ },
3532
+ {
3533
+ "epoch": 2.7,
3534
+ "learning_rate": 5.30035242410678e-07,
3535
+ "loss": 0.2642,
3536
+ "step": 588
3537
+ },
3538
+ {
3539
+ "epoch": 2.7,
3540
+ "learning_rate": 5.142333106377961e-07,
3541
+ "loss": 0.237,
3542
+ "step": 589
3543
+ },
3544
+ {
3545
+ "epoch": 2.7,
3546
+ "learning_rate": 4.986642913555895e-07,
3547
+ "loss": 0.2331,
3548
+ "step": 590
3549
+ },
3550
+ {
3551
+ "epoch": 2.71,
3552
+ "learning_rate": 4.833285668440757e-07,
3553
+ "loss": 0.2404,
3554
+ "step": 591
3555
+ },
3556
+ {
3557
+ "epoch": 2.71,
3558
+ "learning_rate": 4.6822651365497686e-07,
3559
+ "loss": 0.2496,
3560
+ "step": 592
3561
+ },
3562
+ {
3563
+ "epoch": 2.72,
3564
+ "learning_rate": 4.533585026024789e-07,
3565
+ "loss": 0.2408,
3566
+ "step": 593
3567
+ },
3568
+ {
3569
+ "epoch": 2.72,
3570
+ "learning_rate": 4.387248987541182e-07,
3571
+ "loss": 0.2638,
3572
+ "step": 594
3573
+ },
3574
+ {
3575
+ "epoch": 2.73,
3576
+ "learning_rate": 4.2432606142182145e-07,
3577
+ "loss": 0.2188,
3578
+ "step": 595
3579
+ },
3580
+ {
3581
+ "epoch": 2.73,
3582
+ "learning_rate": 4.1016234415308553e-07,
3583
+ "loss": 0.2401,
3584
+ "step": 596
3585
+ },
3586
+ {
3587
+ "epoch": 2.74,
3588
+ "learning_rate": 3.9623409472229535e-07,
3589
+ "loss": 0.26,
3590
+ "step": 597
3591
+ },
3592
+ {
3593
+ "epoch": 2.74,
3594
+ "learning_rate": 3.8254165512218276e-07,
3595
+ "loss": 0.2457,
3596
+ "step": 598
3597
+ },
3598
+ {
3599
+ "epoch": 2.75,
3600
+ "learning_rate": 3.690853615554302e-07,
3601
+ "loss": 0.2252,
3602
+ "step": 599
3603
+ },
3604
+ {
3605
+ "epoch": 2.75,
3606
+ "learning_rate": 3.5586554442641587e-07,
3607
+ "loss": 0.2324,
3608
+ "step": 600
3609
+ },
3610
+ {
3611
+ "epoch": 2.75,
3612
+ "learning_rate": 3.4288252833310277e-07,
3613
+ "loss": 0.2325,
3614
+ "step": 601
3615
+ },
3616
+ {
3617
+ "epoch": 2.76,
3618
+ "learning_rate": 3.3013663205906597e-07,
3619
+ "loss": 0.2282,
3620
+ "step": 602
3621
+ },
3622
+ {
3623
+ "epoch": 2.76,
3624
+ "learning_rate": 3.176281685656646e-07,
3625
+ "loss": 0.2429,
3626
+ "step": 603
3627
+ },
3628
+ {
3629
+ "epoch": 2.77,
3630
+ "learning_rate": 3.0535744498435993e-07,
3631
+ "loss": 0.2343,
3632
+ "step": 604
3633
+ },
3634
+ {
3635
+ "epoch": 2.77,
3636
+ "learning_rate": 2.933247626091751e-07,
3637
+ "loss": 0.2384,
3638
+ "step": 605
3639
+ },
3640
+ {
3641
+ "epoch": 2.78,
3642
+ "learning_rate": 2.815304168892918e-07,
3643
+ "loss": 0.2244,
3644
+ "step": 606
3645
+ },
3646
+ {
3647
+ "epoch": 2.78,
3648
+ "learning_rate": 2.6997469742180093e-07,
3649
+ "loss": 0.2234,
3650
+ "step": 607
3651
+ },
3652
+ {
3653
+ "epoch": 2.79,
3654
+ "learning_rate": 2.586578879445922e-07,
3655
+ "loss": 0.2492,
3656
+ "step": 608
3657
+ },
3658
+ {
3659
+ "epoch": 2.79,
3660
+ "learning_rate": 2.4758026632938026e-07,
3661
+ "loss": 0.2465,
3662
+ "step": 609
3663
+ },
3664
+ {
3665
+ "epoch": 2.8,
3666
+ "learning_rate": 2.367421045748908e-07,
3667
+ "loss": 0.2211,
3668
+ "step": 610
3669
+ },
3670
+ {
3671
+ "epoch": 2.8,
3672
+ "learning_rate": 2.2614366880017723e-07,
3673
+ "loss": 0.236,
3674
+ "step": 611
3675
+ },
3676
+ {
3677
+ "epoch": 2.81,
3678
+ "learning_rate": 2.1578521923808714e-07,
3679
+ "loss": 0.2437,
3680
+ "step": 612
3681
+ },
3682
+ {
3683
+ "epoch": 2.81,
3684
+ "learning_rate": 2.0566701022887047e-07,
3685
+ "loss": 0.2728,
3686
+ "step": 613
3687
+ },
3688
+ {
3689
+ "epoch": 2.81,
3690
+ "learning_rate": 1.9578929021394022e-07,
3691
+ "loss": 0.2821,
3692
+ "step": 614
3693
+ },
3694
+ {
3695
+ "epoch": 2.82,
3696
+ "learning_rate": 1.8615230172976507e-07,
3697
+ "loss": 0.2479,
3698
+ "step": 615
3699
+ },
3700
+ {
3701
+ "epoch": 2.82,
3702
+ "learning_rate": 1.767562814019208e-07,
3703
+ "loss": 0.2439,
3704
+ "step": 616
3705
+ },
3706
+ {
3707
+ "epoch": 2.83,
3708
+ "learning_rate": 1.67601459939275e-07,
3709
+ "loss": 0.2389,
3710
+ "step": 617
3711
+ },
3712
+ {
3713
+ "epoch": 2.83,
3714
+ "learning_rate": 1.586880621283249e-07,
3715
+ "loss": 0.2518,
3716
+ "step": 618
3717
+ },
3718
+ {
3719
+ "epoch": 2.84,
3720
+ "learning_rate": 1.500163068276772e-07,
3721
+ "loss": 0.2242,
3722
+ "step": 619
3723
+ },
3724
+ {
3725
+ "epoch": 2.84,
3726
+ "learning_rate": 1.41586406962676e-07,
3727
+ "loss": 0.2334,
3728
+ "step": 620
3729
+ },
3730
+ {
3731
+ "epoch": 2.85,
3732
+ "learning_rate": 1.3339856952017115e-07,
3733
+ "loss": 0.2491,
3734
+ "step": 621
3735
+ },
3736
+ {
3737
+ "epoch": 2.85,
3738
+ "learning_rate": 1.2545299554343804e-07,
3739
+ "loss": 0.2298,
3740
+ "step": 622
3741
+ },
3742
+ {
3743
+ "epoch": 2.86,
3744
+ "learning_rate": 1.1774988012724364e-07,
3745
+ "loss": 0.2422,
3746
+ "step": 623
3747
+ },
3748
+ {
3749
+ "epoch": 2.86,
3750
+ "learning_rate": 1.1028941241305047e-07,
3751
+ "loss": 0.2355,
3752
+ "step": 624
3753
+ },
3754
+ {
3755
+ "epoch": 2.86,
3756
+ "learning_rate": 1.0307177558437686e-07,
3757
+ "loss": 0.2346,
3758
+ "step": 625
3759
+ },
3760
+ {
3761
+ "epoch": 2.87,
3762
+ "learning_rate": 9.609714686229954e-08,
3763
+ "loss": 0.2243,
3764
+ "step": 626
3765
+ },
3766
+ {
3767
+ "epoch": 2.87,
3768
+ "learning_rate": 8.936569750109702e-08,
3769
+ "loss": 0.2341,
3770
+ "step": 627
3771
+ },
3772
+ {
3773
+ "epoch": 2.88,
3774
+ "learning_rate": 8.287759278405083e-08,
3775
+ "loss": 0.2421,
3776
+ "step": 628
3777
+ },
3778
+ {
3779
+ "epoch": 2.88,
3780
+ "learning_rate": 7.663299201938201e-08,
3781
+ "loss": 0.2465,
3782
+ "step": 629
3783
+ },
3784
+ {
3785
+ "epoch": 2.89,
3786
+ "learning_rate": 7.063204853634543e-08,
3787
+ "loss": 0.2627,
3788
+ "step": 630
3789
+ },
3790
+ {
3791
+ "epoch": 2.89,
3792
+ "learning_rate": 6.487490968145715e-08,
3793
+ "loss": 0.2439,
3794
+ "step": 631
3795
+ },
3796
+ {
3797
+ "epoch": 2.9,
3798
+ "learning_rate": 5.9361716814883006e-08,
3799
+ "loss": 0.2243,
3800
+ "step": 632
3801
+ },
3802
+ {
3803
+ "epoch": 2.9,
3804
+ "learning_rate": 5.409260530696681e-08,
3805
+ "loss": 0.2365,
3806
+ "step": 633
3807
+ },
3808
+ {
3809
+ "epoch": 2.91,
3810
+ "learning_rate": 4.906770453490195e-08,
3811
+ "loss": 0.2489,
3812
+ "step": 634
3813
+ },
3814
+ {
3815
+ "epoch": 2.91,
3816
+ "learning_rate": 4.428713787955841e-08,
3817
+ "loss": 0.215,
3818
+ "step": 635
3819
+ },
3820
+ {
3821
+ "epoch": 2.92,
3822
+ "learning_rate": 3.9751022722455123e-08,
3823
+ "loss": 0.2372,
3824
+ "step": 636
3825
+ },
3826
+ {
3827
+ "epoch": 2.92,
3828
+ "learning_rate": 3.545947044287346e-08,
3829
+ "loss": 0.2491,
3830
+ "step": 637
3831
+ },
3832
+ {
3833
+ "epoch": 2.92,
3834
+ "learning_rate": 3.141258641512379e-08,
3835
+ "loss": 0.2172,
3836
+ "step": 638
3837
+ },
3838
+ {
3839
+ "epoch": 2.93,
3840
+ "learning_rate": 2.7610470005959844e-08,
3841
+ "loss": 0.2363,
3842
+ "step": 639
3843
+ },
3844
+ {
3845
+ "epoch": 2.93,
3846
+ "learning_rate": 2.4053214572137274e-08,
3847
+ "loss": 0.2522,
3848
+ "step": 640
3849
+ },
3850
+ {
3851
+ "epoch": 2.94,
3852
+ "learning_rate": 2.0740907458122184e-08,
3853
+ "loss": 0.2435,
3854
+ "step": 641
3855
+ },
3856
+ {
3857
+ "epoch": 2.94,
3858
+ "learning_rate": 1.7673629993943954e-08,
3859
+ "loss": 0.2528,
3860
+ "step": 642
3861
+ },
3862
+ {
3863
+ "epoch": 2.95,
3864
+ "learning_rate": 1.4851457493204602e-08,
3865
+ "loss": 0.2396,
3866
+ "step": 643
3867
+ },
3868
+ {
3869
+ "epoch": 2.95,
3870
+ "learning_rate": 1.2274459251220283e-08,
3871
+ "loss": 0.2462,
3872
+ "step": 644
3873
+ },
3874
+ {
3875
+ "epoch": 2.96,
3876
+ "learning_rate": 9.942698543330409e-09,
3877
+ "loss": 0.2371,
3878
+ "step": 645
3879
+ },
3880
+ {
3881
+ "epoch": 2.96,
3882
+ "learning_rate": 7.856232623332238e-09,
3883
+ "loss": 0.2588,
3884
+ "step": 646
3885
+ },
3886
+ {
3887
+ "epoch": 2.97,
3888
+ "learning_rate": 6.015112722087546e-09,
3889
+ "loss": 0.2434,
3890
+ "step": 647
3891
+ },
3892
+ {
3893
+ "epoch": 2.97,
3894
+ "learning_rate": 4.419384046253638e-09,
3895
+ "loss": 0.2185,
3896
+ "step": 648
3897
+ },
3898
+ {
3899
+ "epoch": 2.97,
3900
+ "learning_rate": 3.0690857771809023e-09,
3901
+ "loss": 0.2563,
3902
+ "step": 649
3903
+ },
3904
+ {
3905
+ "epoch": 2.98,
3906
+ "learning_rate": 1.9642510699469096e-09,
3907
+ "loss": 0.2227,
3908
+ "step": 650
3909
+ },
3910
+ {
3911
+ "epoch": 2.98,
3912
+ "learning_rate": 1.1049070525426254e-09,
3913
+ "loss": 0.2365,
3914
+ "step": 651
3915
+ },
3916
+ {
3917
+ "epoch": 2.99,
3918
+ "learning_rate": 4.910748252107133e-10,
3919
+ "loss": 0.2518,
3920
+ "step": 652
3921
+ },
3922
+ {
3923
+ "epoch": 2.99,
3924
+ "learning_rate": 1.227694599192919e-10,
3925
+ "loss": 0.2351,
3926
+ "step": 653
3927
+ },
3928
+ {
3929
+ "epoch": 3.0,
3930
+ "learning_rate": 0.0,
3931
+ "loss": 0.2667,
3932
+ "step": 654
3933
+ },
3934
+ {
3935
+ "epoch": 3.0,
3936
+ "step": 654,
3937
+ "total_flos": 4.514766325578465e+17,
3938
+ "train_loss": 0.43864560537382,
3939
+ "train_runtime": 55082.109,
3940
+ "train_samples_per_second": 1.521,
3941
+ "train_steps_per_second": 0.012
3942
+ }
3943
+ ],
3944
+ "max_steps": 654,
3945
+ "num_train_epochs": 3,
3946
+ "total_flos": 4.514766325578465e+17,
3947
+ "trial_name": null,
3948
+ "trial_params": null
3949
+ }
training_args.bin ADDED
Binary file (3.9 kB). View file