Meli101 commited on
Commit
bf0d1f0
1 Parent(s): a4afa8f

Training in progress epoch 0

Browse files
Files changed (7) hide show
  1. README.md +57 -0
  2. config.json +35 -0
  3. special_tokens_map.json +7 -0
  4. tf_model.h5 +3 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +57 -0
  7. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: dmis-lab/biobert-v1.1
3
+ tags:
4
+ - generated_from_keras_callback
5
+ model-index:
6
+ - name: Meli101/biobert-v1.1-text-classifier-tf
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
11
+ probably proofread and complete it, then remove this comment. -->
12
+
13
+ # Meli101/biobert-v1.1-text-classifier-tf
14
+
15
+ This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Train Loss: 0.5948
18
+ - Validation Loss: 0.3185
19
+ - Train Precision: 0.8893
20
+ - Train Recall: 0.8847
21
+ - Train Accuracy: 0.8853
22
+ - Train F1: 0.8858
23
+ - Epoch: 0
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1535, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
43
+ - training_precision: float32
44
+
45
+ ### Training results
46
+
47
+ | Train Loss | Validation Loss | Train Precision | Train Recall | Train Accuracy | Train F1 | Epoch |
48
+ |:----------:|:---------------:|:---------------:|:------------:|:--------------:|:--------:|:-----:|
49
+ | 0.5948 | 0.3185 | 0.8893 | 0.8847 | 0.8853 | 0.8858 | 0 |
50
+
51
+
52
+ ### Framework versions
53
+
54
+ - Transformers 4.38.1
55
+ - TensorFlow 2.15.0
56
+ - Datasets 2.17.1
57
+ - Tokenizers 0.15.2
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "dmis-lab/biobert-v1.1",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "marker/mechanism",
14
+ "1": "therapeutic",
15
+ "2": "unrelated"
16
+ },
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "label2id": {
20
+ "marker/mechanism": 0,
21
+ "therapeutic": 1,
22
+ "unrelated": 2
23
+ },
24
+ "layer_norm_eps": 1e-12,
25
+ "max_position_embeddings": 512,
26
+ "model_type": "bert",
27
+ "num_attention_heads": 12,
28
+ "num_hidden_layers": 12,
29
+ "pad_token_id": 0,
30
+ "position_embedding_type": "absolute",
31
+ "transformers_version": "4.38.1",
32
+ "type_vocab_size": 2,
33
+ "use_cache": true,
34
+ "vocab_size": 28996
35
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d56d68b6056e586abd6e4e4ac0ce113158c3d67477eb74fb40efc0d362f0d2b
3
+ size 433538332
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff